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 A Note on A- Bounded Variation

 Let A = {Xn3 be a nondecreasing sequence of real

 numbers such that xn *+ 08 and Sl/Xn = CD. A function f
 on an interval I is said to be of A* bounded variation

 (f€ABV) if there exists an M such that

 Z|f(bn)-f(an)|An < M

 for each finite collection of non-overlapping intervals

 (an*bn) contained in I. The supremum of such sums is
 called the (total) A variation of f on I which we

 m

 abbreviate as A(f). If 'n - n, ABV is called harmonic
 bounded variation (HBV). For a discussion of the proper-

 ties of functions of HBV and ABV and their connection

 with Fourier Series, see [132,3j4,5].

 Por A = {'Ł}, let Am = (X^Vt-l' * * Since A ls
 nondecreasing, it is easily seen that if f 6 ABV, the

 sequence A^f) is noninc reas ing. Professor Daniel
 Waterman [5] posed the following problem. If f £ ABV,

 does Am(f) -+ "o as m 4 »? The purpose of this note is

 to show' that A^f need not tend tó 0. For convenience

 we shall write w^ in place of l/'
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 Example . There is a continuous function f and a;

 sequence {w^} with w^ -> 0 and £w^ = œ such that for

 each m, ^ ^ < "•
 Construction: Call the following operation D(n)

 upon a rectangle R: Divide the rectaingle into 15 smaller

 equal rectangles by dividing it by 5ths in the x-direction

 and by 3rds in the y-direction. Let A represent the

 three rectangles central to R along with two rectangles

 chosen in opposing corners of R. Divide each rectangle

 of A into 9 smaller congruent rectangles, by 3rds in the

 X- and y-directions . Let A^ be the central subrectangles
 of rectangles of A along with the two opposing corner

 subrectangles from each rectangle in A chosen in such a

 fashion that the points in the rectangles of A^ form

 a connected set. Form A^ from the rectangles of A^_^

 in the same fashion that A^ was formed from A. Continue

 this until i=2n. The collections A, A^,..., Apn of
 subrectangles will be referred to as the stages of the

 operation D(n) with A being the first stage and A Pn the

 last stage. Thus the operation D(l) performed on the

 unit square loolcs like the figure on the next page

 (the shaded portions in the figure represent the rectangles
 Pn

 of Ag)-. Note that the operation D(n) determines 5*3
 subrectangles within a given rectangle.

 186



 We define f as follows: Perform the operation D(l)

 on the unit square EQ in the fashion illustrated. On
 each of the rectangles of the set result,

 perform the operation D(2) in such a fashion that the

 points in the resulting collection Eg of rectangles form
 a connected set. Similarly form a collection of rectan-

 gles En by performing the operation D(n) on the rectan-
 gles in the set in such a way that the points in

 the rectałigles of En form a connected set. If we denote

 by Fn the collection of points in the rectangles of En,

 then HFn is the graph of a function f and since this
 intersection is closed, f is continuous. Note that the

 rectangles involved in the stages of D(n) have heights

 3~fc where n^ ^ k < (n+1)^.
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 In what follows , when we refer simply to the

 operation D(n), we mean the operation D(n) upon

 We define. A as follows: Let w^ = 1. Set
 N(n) = 5n3n(n~^)i which for n ž 1 is the number of

 rectangles in the first stage of D(n)j and note that

 2

 (*) N(n) - N(n-l) i ~n.

 If N(n-l) < j ś N(n), set Wj = (3/5)n (these Wj will
 be called the n-th block of A). Then w. -> 0, and by

 (*) the sum of the n-th block is at least (V5)3 I

 hence, £w^ = ®.

 Now the first stage of D(n) yields a partition of

 the domain of f into N(n) subintervars on each of which
 _2

 the oscillation of f is 3" • Since the n-th block of

 A- contains N(n) ^ N(n-l) terms each equal to ( 3/5)n*

 this partition shows that

 Vn-l)^ > [H(n) "

 which together with (*) gives (f) > ^/5«

 In order to determine that A(f) < ®, let {[a^,b^]}
 be any finite collection of non -over lapping sub intervals

 of [0,1]. Since f is continuous, we may assume it takes

 on its maxi muni and minimum values on [a^,b^] precisely
 at the endpoints of this interval (otherwise, choose a

 subinterval of the given interval). Let R^ denote the
 largest subrectangle involved with the construction of

 the sets (i.e., is one of the rectangles chosen
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 at some stage of some operation D(n)) such that

 c [a^,b^] X [0,1]. Then the points (a^,f(a^)) and
 (b^f^^)) lie in a single rectangle of the previous
 stage or they lie in two adjacent rectangles from the

 previous stage. Since at each stage new rectangles were

 obtained by dividing the previous heights in 3rds,

 ļf(a^) - f (b^) I cannot exceed 6 times the height of R^.
 Thus if we confine our attention to intervals whose

 endpoints are the abscissas of corners of the rectangles

 of the various stages, the estimate of A(f) will be off

 by at most a factor of 6. Furthermore, if [c^,d^] = Prx^i^
 then since {w^} is non-increasing, it is easily shown

 that E|f(c^) - f (djj |w^ asstimes its maximum value if the
 öscillations in the sum are arranged in descending- order

 and we shall assume that they are.

 Case 1. It is first shown that those rectangles R^
 • _

 which are associated with Wj = (3/5) and which were
 obtained at some point after the operation D(n) was

 performed are a small part of the sum. In fact, if we

 were to allow them every available place in the series

 they would contribute to the sum no more than

 1- (1/3) *1 + 5(1/3)^(3/5) + 5232(l/3)9(3/5)2 +

 ... + 5n3n2~n(l/3)(n+1)2(3/5)n + ...

 which is less than £(l/3)n = 1/2.
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 Case 2. We now consider the remaining rectangles.
 12 t

 Fix n ž 1 and let E , R be the rectangles that

 both come from one of the stages of D(n) and are associ-

 ated with (3/5)^ for some j ž n. (Case 1 takes care of

 those otherwise associated.) Then, letting Zn denote
 the part of the stun that involves the rectangles R^" and

 letting h(R^) denote the height of R"*", we easily see that

 rn n * (3/5)n s Mr1). n i=l

 But, since h(RL) equals the sum of the heights of all

 the rectangles from the last stage of D(n) that are

 contained in we have

 2

 (**) zn * (3/5)nQn(l/3)(n+1) 2 "1 = Qn(l/3)n(n+1)(l/5)n ,

 where Qn is the total number of rectangles from the last
 stage of D(n) that are contained in some R* (i=l,2, . . . ,t) ♦

 Furthermore, since the width of each such rectangle is

 (l/3)n^n+1^(l/5)n, the right side of (**) is Just the
 measure of the x -projection of the union of the R^,

 which we denote by Mß. Consequently, the rectangles
 considered in this case contribute to the sum an amount

 less than the sum of the Mn, which is less than or equal
 to 1.

 Finally, by combining the estimates of Cases 1 and

 2 and talcing into account the factor of 6, we have

 A(f) < 6(1 + 1/2).
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 Problem. If f £ EBV 3 does lim A^f) = 0 where
 m-H-»

 1 «
 "V ^m+i^i=0

 The authors wish to thank Professor C. Belna for

 rewriting several passages in the proof in a rauch clearer

 fashion than their original form.
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