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 Suppose that T is a topology in [0,1] different

 than the natural topology. Let C([0,1],T) and C([0,1])

 denote the class of all real functions defined on [0,1]

 which are continuous with respect to T and to the natural

 topology, respectively (in both cases we assume that the

 range of functions is endowed with the natural topology).

 Sometimes it can happen that C([0,1],T) = C([0,1]).

 For example this equality holds if T is a topology in

 which for every xQ and every neighborhood U of xQ there

 exists a number i > 0 such that U n (x * -ô,x_+ô) n [0>1] • * O O

 is residual in (x0-6',x0+6) n [0,1] (tlļe so-called qualita-
 tive topology).

 Observe that if T is not stronger than the natural

 topology (recall that this entails that these two topolo-

 gies are different), then there exists an open set A,

 which does not belong to T and C([0,1],T) ¿ C([0,i]).

 Indeed, the function f(x) = x is not continuous with

 respect to T.

 Hence, if we want to characterize all topologies for

 which the above equality holds, it is natural to suppose

 that T is stronger than the natural topology. A similar

 question can be put in a more general setting, namely, if

 X is an arbitrary non-empty set, TQ,T are two topologies
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 an X and we consider only real functions with the range

 endowed with the natural topology. However, we shall be

 mainly interested with the case when TQ <z T and (X,TQ)

 is a compact space. Let C(X,T) and C(X,TQ) denote respec-
 tively the classes of all real T-continuous and

 T -continuous functions defined on X. Also, we shall
 o .

 use the terminology, for example, T- (or T -) neighbor-

 hood, T- (or T0-) accumulation point, T- (or TQ-) limit
 to malce a distinction between two topologies under

 consideration.

 This survey will consist of two parts. In the first

 we shall discuss the general casej in the second we shall

 present some results connected with the special case when

 X = [0,1], Tq - the natural topology. The topology ter-
 minology used in this paper is consistent with that

 found in Engelfcing [1].

 1. Suppose that (X,TQ) is a compact space and that

 T 3 Tq. Obviously C(X,TQ) c C(X,T). Also every function

 f 6 C(X,T0) is bounded. Thus, if C(X,TQ) = C(X,T), then
 every function f 6 C(X,T) is bounded.

 This necessary condition is also sufficient in the

 case when (X,TQ). is a metrizable space.
 Indeed, suppose that f is a T-continuous function

 which is not T-continuous . Let x„ be a point c of T - o . o c o

 discontinuity of f. Then there exists an eQ > 0 such

 that for every TQ -neighborhood U of xQ there is a point
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 X 6 U for which

 lf(x) - f(x0)l > So-
 Put

 . "» - «v . ,

 f2(x) = min { f^x), 2[1+;2(x,x0)] J
 and

 f3(x) = max { f2(x), a[1+j2(X;Xo)]}'

 where £ denotes a metric yielding the topology T.

 Then f^ is a T-continuous function, | x ) I < ^ f°r every
 X € X and sup |f-(x)| = 5 ¿ . x^X J ¿
 If we put now

 f^(x) = tg f3(x) š tan f3(x)'
 then we obtain a T-continuous function which is unbounded

 - a contradiction.

 We shall say that a topological space (X,T) is called

 a *-compact space if for an arbitrary pair of families of

 sets [F } and (G where y ü y , which satisfy the
 J V

 conditions :

 Io F is T-closed, G iś T-open for y i y
 j y • o

 2° y £ J1 y, < y0 ^ F ^ G o F o G o £ J1 y, < y0 2 ^ yx ^ . yx o y 2 o - G y2

 3° Fy ¿ 0 f Gy for y * yQ
 the following condition is satisfied

 t° n = n ¿ 0
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 It can be proved without special difficulty that

 every real T-continuous function is bounded if and only

 if the space (X,T) is *-compact (Kocela [2]). Indeed,

 suppose that (X,T) is a »-compact space and f is a real

 T-continuous unbounded function. Then the pair of

 families of sets F = {x: |f(x)| s y} and
 *7

 G = {x:. |f(x)| > y} for y ž 0 satisfies conditions
 J

 l°-3° and f) F = fi G = 0 because of the finiteness
 y*y0 y y*y0 y

 of f - a contradiction.

 Suppose now that (X,T) is not *-compact. Then there

 exists a pair of sets {F } , [G }, y^yo* fulfilling l°-3° J J

 such that fi F„ = 0.^-0» Obviously we can assuma
 y*y0 y y^y0 y

 G = F = X. If we define the function f in the follow-
 y0 y0

 ing way:

 t (x) = sup {y: xÇFy} for x 6 X,

 then it is easy to see that f is unbounded and,^ after

 a bit of reflection, that f is T-continuous .

 From the above it follows Immediately that if (X,TQ)

 is a compact metrizable space, then C(X,T) = C(X,TQ) if
 and only if (X,T) is *-compact. Also it is possible to

 prove (Nonas [7]) that a mgtrizable space (X,T) is compact

 if and only if it is *-compact.

 So if (X,T0) is a compact metrizable space and
 T 3 T , then the following conditions are equivalent:

 (i) C (X,Tp) = C(X,T)
 (ii) C (X,T) c B(X) ,
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 where B(X) denotes the class of all bounded functions

 defined on X.

 Simultaneously (ii) is equivalent to the *-compact-

 ness of (X,T). One can ask whether the metrizability is

 essential. The answer is included in the following

 theorems (Nonas [7]).

 If (XaTQ) .is a compact space (even countably compact

 will suffice) and if there exists a point xQ ç X such
 that x^ is a T -accumulation c point of X but x„ is not a o o c o

 TQ-accumulation point of any countable subset of X,

 then there' exists a topology T 3 TQ such that (X,T) is

 ■»-compact and C(X,TQ) ¿ C(X,T). It 'suffices to tate

 for T the coarsest topology which contains both TQ and

 {x0*} . As the example of a compact topological space

 (X,Tq) in which there exists a point xQ having the above
 mentioned properties we can talee a set of denumerable

 ordinals together with the smallest nondenumerable

 ordinal o endowed with the topology generated by sets of

 the form {0} u [z: y < z £ x} , where y < x ¿ Q.

 The above theorem of Nonas shows that compactness

 of (XjTq) without metrizability is not sufficient for
 the equivalence of conditions (i) and (ii) (or (i) and

 ♦-compactness } of course) for some topology T TQ.
 However, it is possible to weafcen the assumption

 concerning the metrizability. In [7] it is proved that

 if (X,TQ) is a compact space such that every one-point
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 set in X is a Tq-Gj set and if T is a topology finer than

 TQ, then the conditions (i) and (ii) are equivalent.
 Moreover, it is sufficient to assume only pseudo-

 compactness instead of compactness of (X,T ) (a topologi-

 cal space (X,TQ) is called pseudocompact if it is a Tycho-
 noff space and every continuous real-valued function

 defined on X is bounded, compare ['l]). The proof is

 essentially the same as in the case of metrizability.

 The last theorem is stronger than the previous,

 because there exist compact spaces in which every one-

 point set is of type G. and which are not metrizable
 o

 (Urysohn [12], pp. 936-939).

 On the other hand, it is possible that (X,TQ) is

 a compact space, T is some topology such that T o TQ
 and (i) is equivalent to (ii), but there exists a point

 x_ Ç X which is not a T^-G. set. One can construct an
 o u o

 example in the following way (Nonas [7]):

 Let X be an uncountable set and let xQ 6 X. Let

 E ç Tq if and only if E e X and xQ ¿ E or E c. X, xQ e E

 and card(X-E) < KQ. It is easy to see that (X,TQ) is a

 compact space and [xQ] is not a TQ-Gg set. It is a
 little more difficult is to show that the only topology

 T finer than TQ for which (X,T) is *-compact is TQ itself.
 So (i) is obviously equivalent to (ii) for T=TQ and we
 are done.

 From the above it follows that if (X,TQ) is a compact
 space, then the supposition that every one-point set is a
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 T -G. set is sufficient, but not necessary for the
 O 0

 equivalence of (i) and (ii) for a topology T 3 TQ.

 However, if we assume that the topology TQ is deter-
 mined by order, then this supposition becomes necessary

 and sufficient (Nonas [7]).

 Question 1. Sow can the class of compact spaces (X,Tq)
 for which (i) is equivalent to (ii) be

 characterized?

 To show how close the notion of *-compactness is .

 to notions of compactness, pseudocompactness and coun-

 table compactness we shall quote several theorems in

 which functionally T-open set means a set of the form

 f"^"(G), where f is a real T-contlnuous function defined

 on X and G is open subset of the real. line.

 The *-compactness of the space (X,T) is equivalent

 to each of the following conditions ([4]):

 a. Every locally finite functionally T-open cover

 of X is finite

 b. For every decreasing sequence {Gn} of nonempty
 functionally T-open subsets of X the intersection

 of their T-closures is nonempty.

 If we assume that (X,T) is a normal space, then

 *-compactness' is equivalent to countable compactness ([6]).

 Here is another simple characterization of ^compact-

 ness in terms of continuous images ([6]): a topological
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 space (X,T) is *-compact if and only if for every topolo-

 gical space (YjTļ) and for every continuous transformation

 f: X-*Y the space (f (X) ,Tļ | f (X) ) is *-compact.

 There is also a close connection between the ^com-

 pactness of the topological space (X,T) and the behavior

 of sequences of T-continuous real functions defined on X.

 Namely, a topological space (X,T) is *-compact if and

 only if every sequence {fn} of T-continuous real func-
 tions defined on X which is locally uniformly conver-

 gent on X to a function f converges to f uniformly on

 X ([53). Recall that the sequence {fn} converges

 locally uniformly to f if evëry point xQ ç X has the

 neighborhood U(xQ) in which the convergence is uniform.
 The notion of *-compactness allows the possibility

 of generalization of the classical Dini theorem. This

 generalization is stated in [10] in the following form:

 A topological space (X,T) is *-compact if and only if

 every monotone sequence (fn] rea-l T-continuous
 functions which is convergent on X to a T-continuous

 real function f converges to f uniformly on X.

 Question 2. Is. it possible to prove theorems similar

 to the last theorems for g eneral-Lzëd

 (Moore-Smith) sequences of T-continuous

 functions ?

 To finish this section we present some connections

 between *-compactness and the approximation theorem of
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 Stone and Weierstrass. We shall say that a topological

 space (X,T) is a Weierstrass -Stone [W-S] space if and

 only if the following condition is fulfilled: for every

 family F c C(X,T) which includes all constant functions,

 separates points of X, and is closed under talcing linear

 combinations, the uniform closure of F is equal to C(X,T)

 (that is, if in (X,T) the thesis of the Stone-Weierstrass

 theorem holds ) .

 The following theorems have been proved in [11]:

 If (X,T) is a W-S space, then (X,T) is *-compact. If

 (X,Tq) is a compact metrizable space and T is a topology

 on X finer than TQ, then (X,T) is a W-S space if and
 only if it is a *-compact space.

 2. Suppose now that X = [0,1] and T0 is the natu-

 ral topology on the unit segment. Since (X,TQ) is
 compact and metrizable, from the first section we have

 that if T is a topology on [0,1] finer than the natural

 topology, then C([0,1],T) = C([0,1]) if and only if

 ([0,1],T) is a *-compact space.

 However, in the case of functions of a real variable

 we are able to present a more detailed discussion.

 Throughout this section T will always denote a topology

 in [0,1] finer than the natural topology in [0,1].

 The following conditions were introduced in [9]

 during a study of asymmetry of functions:
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 (ff) If X e (En)' for n=l , 2 , . . . (where
 T

 (E x ) 1 is the set of all T-ac cumulât ion
 x nyT
 points of En) and xn converges to x
 (in the natural topology), then

 x € ( U En' / ' 'n=l / T

 (W) For an arbitrary point x ç [0,1] and for

 arbitrary T-neighborhood U of x there

 exists a number 6 > 0 such that the set

 {(x-ô,x+ó) - U}' is empty.
 T

 In [9] it. was proved that (W) is equivalent to

 (W*). Koc eia in [2] has proved that if (X,T) fulfills

 (W) , then C([0,1],T) = C([0,1]J. For suppose that f
 is a T-continuous function which is not continuous at

 some point xQ. Then there exists an e > 0 and a sequence

 {xn} converging to xQ such that for every n we have the

 inequality,, say, f(xn) < f(xQ) ~ s* From the T-continuity
 we have for each n a T-opèn set E„ such that x„ € E„ ■ n n n

 (so obviously xß 6 (En) T ) and f(x) < f(xQ) - e f°r x € En.

 But then x Ç Í (J E ' ' from the assumption, so f(x )
 'n=l / T

 cannot be the T-limit of f at x„ - a contradiction.
 o

 The inverse implication is false. The example of a

 topology T finer than a natural topology for which (W)

 does not hold but the classes C([0,1],T) and C([0,1])

 are equal, can be constructed in the following way:
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 The set U 6 T if and only if it has density one

 at each of its points (right-hand density at 0 and left-

 hand density at 1, of course) and if for every xQ ç U
 there exists a number ô > 0 such that

 (x0-ô,x0+6) n (Q+x0) n .[o,i] - U n (Q+x0) n [0,1],

 where Q is a set of rational numbers and Q+xq = pc+xQ: xgQ}
 ( [ 3 3 ) • Every T-continuous function is approximately conti-

 nuous, so is a Baire 1 function. The proof that this

 function is continuous depends on the fact that every

 T-neighborhood of any point x is dense in some ordinary

 neighborhood of x (see the discussion on the following

 pages ) .

 To prove that does not fulfill the condition (W)

 it suffices to observe that* if for every n

 E n = [2"n-4~n,2"n] - U (Wfc-eín^w n w.€Q K

 where (e^n^} is a sequence of positive numbers such that

 Z eļn^ < 4~n and x_ n Ç (En)' n (such a point does exist), lc=l n n T

 then xn converges to zero, but 0 is not a T -accumulation
 CO

 point of (J E .
 n=l n

 Notice that the condition (W) also appeared in the

 generalization of a theorem on monotonicity in [8]

 However, it is possible to modify the condition (W)

 to obtain a condition which is equivalent to
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 C([0,1],T) = C([Ojl]). This condition, unfortunately,

 is not very useful, because it depends on the notion of

 functionally open sets.

 Namely, the following condition:

 (W^) If xQ g Eq and En is functionally T-open

 for n=l,2,..., and xfl converges to x
 (in the natural topology), then

 x6

 This condition is a necesary and sufficient condition

 for the equality C([0,1],T.) = C ( [ 0,1] ) , ( [3] ) .

 The proof that (W^) is sufficient is exactly the

 same as for the condition (¥). If the condition (W^)
 is not fulfilled, then it is possible to choose a

 sequence j[Un} of -disjoint functionally T-open sets and

 a sequence {xn} of points convergent to xQ such that

 xn € Un and xQ Ç ^ U Unj . Next we can find a sequence

 {fn} of T-continuous non-negative functions such that

 Un = [x: fn(x)>0} . Multiplying, if necessary, each fn
 by a suitable constant, we can assume that sup f > n.

 CO

 Then the function f = £ f is T-continuous and unbounded,
 n=l

 so C([0,1],T) ¿ C([0,1]).

 It is easy to observe that if C([0,1],T) = C([0,1] ),

 then every interval [a,b] c [0,1] is a T-connected set'.

 In [2] it was proved that this equality implies that

 every T-neighborhood of an arbitrary point xQ Ç [0,1]
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 is a dense set (with respect to the natural topology) in

 some interval (Xq-ÔjXq+ô) H [0,1].
 Suppose that it is not the case. It means that

 there exists a point xQ, a T-neighborhood U of xQ, and

 a sequence of disjoint intervals f(anjbn)} such that

 U il Ů (anJbn) = lim an = lim bn = xQ.
 n=l n-*» n->®

 Let the function f be defined in the following way:

 r «

 0 for x / U (an'bn) v n n' i v n n' n=± i

 a +b

 f(x) = V 1 for x=xn= n2 n, n=l,2, . . .

 linear in every interval [a .xl
 n n

 and [xn,_bn] .

 This function is T-continuous, but not continuous at

 xQ - a contradiction.

 It is natural to ask if these two conditions are

 sufficient for the equality C([0,1],T) = C([0,1]). The

 answer is negative ([13])*

 Using the transfinite induction one can prove that

 there exists a function F: [0,1] •* (0,1) such that:

 1. Pbr every y e (0,1) the set F~^{y} is dense
 in [0,1] (with the natural topology)

 2. Ebr every interval [a,b] c [0,1] and for every

 set P c [a,b] n [0*1] which is closed in

 [ a., t> ] ^ [0,1] and such that Proj P (i.e. the
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 projection of P on the x-axis) includes some

 interval [c,d] c [a,b], there exists a point

 X1 6 [a,b] such that (x',F(x')) ç P.

 If T is the coarsest topology in [0,l]-such that

 C([0,1]) c C([0,1],T) and F 6 C([0,1],T), then T is

 the required topology. The inequality C([0,1],T) 7¿C([0,1])

 is obvious. From the first property of the function F

 it follows immediately that every T-neighborhood of any

 xQ is dense in some neighborhood of xQ, because the
 basis for T is the class of all sets of the form

 F~^"(C) n D, where C and D are open sets in the natural

 topology. The proof of the fact that every interval

 [a,b] c [0,1] is a T-connected set is more delicate. It

 is based on the second property of F and on the fact

 that for every pair G^,G ^ of open sets in the plane and
 for every straight line P included in the plane either

 there is a point on the line P which does not belong to
 A A

 the union of orthogonal projections G^Gg ^ese two
 sets on this line or there is a linear segment on P

 A A

 which is included in G^ n Gg.
 However, in [3] the following theorem was proved:

 If every T-neighborhood of each point xQ Ç [0,1] is
 dense (in the natural topology) on some interval, then

 every T-continuous real function having a dense set

 of points of continuity is continuous (the last two

 words denote continuity with respect to the natural

 topology) .
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 The proof goes along the following line : If xQ is
 a point of discontinuity of f, then there exist an g > 0

 and an interval [a,b] containing xQ such that both of

 the sets [x: ļf(x) - f(xQ)| < e/3} and

 fx: |f(x) - f(x0)| 25 2g/3} are dense in [a,b]. So f
 cannot have a point of continuity in this interval -

 a contradiction.

 in particular, under this assumption every T-conti-

 nuous Baire 1 function is continuous.

 Hence in the last counterexample (from [13]) it

 is impossible to obtain a topology T such that

 - C([0,1]) includes the Baire 1 functions.

 It is possible to modify the construction in such way

 that the function F is Lebesgue measurable, so

 C([0,1],T) - C([0,1]) does include the Lebesgue measurable

 functions.

 Question 3- Is it possible to construct such a topology

 T which fulfills both conditions (i.e. every

 interval [a, ž>] C 0,1] is a T-connected set

 and every T-neighborhood U of each point xq

 is dense in some interval (xQ-&t x0+& ) t 0^1])
 such that C(lOs lì, T) - C([0j IjJ is nonempty
 and

 a) includes some Baire function?

 b) includes some Baire a function ( for a given
 ordinal a )?
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 a) is included in the set of all Baire functions ?

 d) is included in the class of Baire a functions

 (for a given ordinal a) ?

 e) is included in the class of Lebesgue measurable

 functions ?
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