RESEARCH ARTICLES Real Analysis Exchange Vol. 4 (1978-79)

M. Laczkovich and Gy. Petruska, Department I. of Analysis, L. Eötvös University of Budapest, Budapest, Hungary

Differentiable Functions Have Sparse Graphs

Definition 1. A subset H of the plane is said to be a monotone graph if there exists a monotone function the graph of which can be transformed onto H by a rigid motion (of the plane).

Definition 2. (see[1]) A function $f(x)$ is said to have a sparse graph if its graph can be covered by a countable number of monotone graphs.

The problem of whether or not a differentiable function has sparse a graph was raised in [1], Question 2. It is also stated in [1] that, the graph of an absolutely continuous function is not necessarily sparse. Our theorem 1 answers Question 2 affirmatively (which may be unexpected) and theorem 2 establishes that there is a Lipschitz I function with a sparse graph such that its constant multiples do not have sparse graphs. These multiples provide examples of Lipschitz 1 (and hence absolutely continuous) functions with non-sparse graphs; on the other hand they answer Question 10 of [1] in the negative.

Theorem 1. Let the real function $f(x)$ be defined on a subset H of the real numbers and suppose
(i) H is everywhere dense in itself;
(ii) $f^{\prime}(x)$ exists at every point of H $\left(f^{\prime}(x)= \pm \infty\right.$ is allowable).
Then, $f(x)$ has a sparse graph.

Lemma 1. If $|f(x)-f(y)|<|x-y|$ holds for every $x, y \in H$, then the graph of f is a monotone graph.

Proof. Rotate the graph with angle $\frac{\pi}{4}$.
Proof of theorem 1. Let.
$A_{1, n}=$
$\left\{x \in H: \frac{f(x)-f(y)}{x-y}>0\right.$ for every $\left.|x-y|<1 / n, y \in H\right\} \cap\left[\frac{i-1}{n}, \frac{i}{n}\right]$,
$B_{i, n}=$
$\left\{x \in H: \frac{f(x)-f(y)}{x-y}<0\right.$ for every $\left.|x-y|<1 / n, y \in H\right\} \cap\left[\frac{1-1}{n}, \frac{1}{n}\right]$,
$C_{i, n}=$
$\left\{x \in H:\left|\frac{f(x)-f(y)}{x-y}\right|<1\right.$ for every $\left.|x-y|<1 / n, y \in H\right\} \cap\left[\frac{1-1}{n}, \frac{i}{n}\right]$
$(i=0, \pm 1, \pm 2, \ldots, n=1,2, \ldots)$ 。
It is obvious from the differentiability of f that
(i) $H=\bigcup_{i=-\infty}^{+\infty} \bigcup_{n=1}^{\infty}\left(A_{i, n} \cup B_{i s n} \cup C_{i, n}\right)$,
furthermore for $2 n-j$ i, n
(ii) f is increasing on $A_{i, n}$,
(iii) f is decreasing on $B_{i, n}$,
(iv) the graph of $\left.f\right|_{C_{i, n}}$ is a monotone graph by Lemma 1.

The countable decomposition in (i) and relations (ii) - (iv) prove our theorem.

Theorem 2. There exists a function $f(x)$ on $[0,1]$ such that
(i) f satisfies Lipschitz's condition
$|f(x)-f(y)|<|x-y|$ (in particular
its graph is a monotone graph by Lemma 1).
(ii) For any $c>1 \mathrm{cf}(\mathrm{x})$ does not have a sparse graph on I, where I is any nonempty open subinterval of $[0,1]$.

We need the following lemma, whose simple proof we omit.

Lemma 2. Let f be defined on a set H which is everywhere dense in itself and suppose that $f^{\prime}\left(x_{0}\right)=0, f^{\prime}\left(x_{1}\right) \geqslant I, f^{\prime}\left(x_{2}\right)<-1$ hold for some $x_{0}, x_{1}, x_{2} \in H$. Then the graph of f is not a monotone graph.

Proof of treorem 2. We take a decomposition

$$
[0,1]=\bigcup_{n=0}^{\infty} H_{n}
$$

with pairwise disjoint measurable and metrically dense subsets H_{n} (i.e. denoting Lebesgue's measure by $|\cdot|$, we have $\left|H_{n} \cap I\right|>0$ for every open subinterval $\varnothing \neq I \subset[0,1])$. Put
$\varphi(x)= \begin{cases}0, & x \in H_{0}, \\ 1-\frac{1}{n}, & x \in H_{2 n}(n=1,2, \ldots), \\ -1+\frac{1}{n}, & x \in H_{2 n-1}(n=1,2, \ldots)\end{cases}$
and

$$
f(x)=\int_{0}^{x} \varphi(t) d t
$$

Obviously $|f(x)-f(y)|<|x-y|$ holds for every $x, y \in[0, I]$ and hence by Lemma I, f has a monotone graph. By Lebesgue's theorem $f^{\prime}(x)=\varphi(x)$ holds a.e. and hence $f^{\prime}(x)$ takes the values $0,1-\frac{1}{n},-1+\frac{1}{n}(n=1,2, \ldots)$ almost everywhere on the corresponding subsets H_{i}.

Suppose that of has a sparse graph for a given $c>1$, that is

$$
G=\operatorname{graph}(c f) \subset \bigcup_{n=1}^{\infty} \Gamma_{n}
$$

where Γ_{n} is a monotone graph for every n . We may clearly assume that the monotone function f_{n} whose graph is Γ_{n} is defined on the whole real line. Referring to Baire's category theorem there exist N
and a subarc $J \subset G$ such that $J \subset C I \Gamma_{N}$. Let H denote the projection of $J \cap \Gamma_{N}$ to the axis x.

Obviously, cf $\left.\right|_{\mathrm{H}}$ has a monotone graph. Since $c l \Gamma_{\mathbb{N}} \backslash \Gamma_{\mathbb{N}}$ is a countable set, H fills up the interval I corresponding to J apart from countable many points. Therefore $\left|H_{n} \cap H\right|>0$ holds for every $n=0, l, \ldots$ and hence there exist $x_{0} \in H_{0} \cap H, x_{1} \in H_{2 n} \cap H$, $x_{2} \in H_{2 n-1} \cap H$ such that $c f^{\prime}\left(x_{0}\right)=0, c f^{\prime}\left(x_{1}\right)=c\left(1-\frac{1}{n}\right)>1$, $c I^{\prime}\left(x_{2}\right)=c\left(-1+\frac{l}{n}\right)<-1$.

By Lemma 2, the restricted function $\left.\mathrm{cf}\right|_{\mathrm{H}}$ cannot have a. monotone graph, a contradiction. The proof is complete.

Remark: With theorem 2 we can answer Question 10 of [1]. Let f denote the function of theorem 2, then putting f with the outer homeomorphism $\operatorname{cx}(c>1)$ the composition cf does not have a sparse graph. Let $g(x)$ denote the inner homeomorphism
$g(x)= \begin{cases}2 x, & 0 \leq x \leq 1 / 3 \\ \frac{1}{2} x+\frac{1}{2}, & 1 / 3<x \leq 1\end{cases}$
Then the composition $f(g(x))$ does not have \equiv sparse graph, either. Indeed, the graph of $\mathrm{f}(\mathrm{g}(\mathrm{x})$) on $\left[0, \frac{1}{3}\right]$ is similar to the graph of $2 f(x)$ on $\left[0, \frac{2}{3}\right]$ by the similarity tranformation $F(x, y)=(2 x, 2 y)$.

Similarity transformations plainly preserve the sparse graph property. We conclude that the sparse graph property is not an invariant with respect to homeomorphic transformations.

Reference

[1] J. Foran, Continuous Function - A Survey, Real Analysis Exchange, Vol. 2, No. 2 (1977) 85-103.

