Real Analysis Exchange Vol. 4 (1978-79)

Jimmie Lee Johnson, Department of Mathematics University of Wisconsin-Milwaukee, Milwaukee, WI 53201 The Uniform Continuity of Certain Translation Semigroups

Let $L^{2}(R^{+};K)$ be the Lebesgue space of square summable functions f on the positive reals with values in a separable Hilbert space K. That is, f satisfies

i. $\langle f(x), k \rangle$ is measurable, a.e.(x), for each $k \in K$, ii. $\int_{0}^{\infty} ||f(x)||^2 dx < \infty$, where ||f(x)|| denotes the norm of f(x) in K.

The inner product is given by $\int_0^{\infty} \langle f(x), g(x) \rangle dx$, where $\langle f(x), g(x) \rangle$ is the inner product in K. For each $h \ge 0$, we define the translation operator S_h by

 $S_h f(x) = f(x + h).$

 $\{S_h\} \text{ is a strongly continuous semigroup of operators,} \\ \text{i. e. for each } f, ||S_hf - f|| \text{ converges to 0 as } h \to 0^+. \\ \text{However, it fails to be uniformly continuous; that is,} \\ ||S_h - I|| \text{ does not converge to zero as } h \to 0^+. \\ \text{For example,} \\ f_h(x) = \begin{cases} 1/\sqrt{h} & \text{for } 0 \leq x \leq h \neq 0 \\ 0 & \text{elsewhere.} \end{cases}$

satisfies $||f_h|| = 1$, $S_h f_h = 0$, so that $||S_h f_h - f_h|| = 1$. Hence $||S_h - I|| \ge 1$ for all h > 0. But if S_h is restricted to multiples of $e_1(x) = e^{-x}$, then since $S_h e_1 = e^{-h}e_1$, we have $||S_h - I|| = |e^{-h} - 1| \Rightarrow 0$ as $h \Rightarrow 0^+$. Therefore, one may ask the following question: If L is a closed linear subspace of $L^2(R^+;K)$ satisfying $S_h(L) \subset L$

76

for all $h \ge 0$, then is S_h^L , the restriction of S_h to L, a uniformly continuous semigroup?

Define the infinitesimal generator of S_h^L as follows: $(D_L f)(x) = \lim_{h \to 0^+} \frac{f(x + h) - f(x)}{h}$ for those $f \in L$ for which

at which the limit exists a. e. The set of such f is dense in L. In fact, S_h^L will be uniformly continuous iff D_L is a bounded operator defined on all of L.

Let $H^{2}(U;K)$ be the Hardy space of functions analytic in the unit disk U with values in K satisfying:

 $\sup_{0 \le r \le 1} \int_{0}^{\pi} ||f(re^{i\theta})||^2 d\theta < \infty$

By an extension of Fatou's Theorem to K-valued functions, the boundary value functions $f(e^{i\theta}) = \lim_{r \to 1^-} f(re^{i\theta})$ exist,

and the inner product can be given by:

$$\langle \mathbf{f}, \mathbf{g} \rangle = \frac{1}{2\pi} \int_{\mathbf{0}}^{2\pi} \langle \mathbf{f}(e^{i\theta}), \mathbf{g}(e^{i\theta}) \rangle d\theta.$$

Choose a basis $g_n k_m$, n = 0, 1, ...; m = 1, where $\{k_m\}$ is a fixed orthonormal basis for K and g_n is the Laguerre function of order n given by

$$g_n(x) = e^{x/2} \frac{d^n(xe^{-x})}{dx^n}.$$

Then J: $L^{2}(R^{+};K) \rightarrow H^{2}(U;K)$ is defined by $J(g_{n}k_{m})(z) = z^{n}k_{m}$ on the basis and is extended continuously to a unitary operator on L^{2} .

The backward shift T on $H^{2}(U;K)$ is defined by:

$$Tf(z) = \frac{f(z) - f(0)}{z}$$
 for $|z| < 1$.

LEMMA: As unbounded operators on J(L),

$$JD_{L}J^{-1} = \frac{1}{2}(T + I)(T - I)^{-1}.$$

Hence, D_L is bounded as an operator on L iff T - I has an inverse on J(L). J. W. Moeller has determined the spectrum of restrictions of T to invariant subspaces in the case of scalar-valued functions. [4] LEMMA: J(L) is invariant under T.

This can be done by factoring J through another Hardy space $H^{2}(P;K)$ where P is the open upper half plane. A function $f: P \rightarrow K$ is in $H^2(P; K)$ iff f is analytic in P and $\sup_{t>0} \int_{-\infty}^{\infty} ||f(s + it)||^2 ds < \infty$

Again the boundary value functions $f(s) = \lim_{t\to 0+} f(s + it)$

exist, a.e., and the inner product is given by: $\langle f,g \rangle = \int_{-\infty}^{\infty} \langle f(s),g(s) \rangle ds.$ The Fourier integral transform $F(f)(u) = \int_{-\infty}^{\infty} e^{iux} f(x) dx$ can be defined on $L^{2}(R^{+};K)$ and maps L^{2} isometrically onto H²(P;K).

Now W: $H^{2}(P;K) \rightarrow H^{2}(U;K)$ can be defined using a conformal mapping of P onto U in this manner:

$$Wg(z) = \frac{\sqrt{2\pi}}{(z-1)}g\left(\frac{z+1}{2i(z-1)}\right), |z| < 1$$

Then J = WF. Now let N denote the orthogonal complement of F(L) in $H^{2}(P;K)$. Then N is invariant under multiplication by exponentials of the form e^{ihu} for $h \ge 0$. Using approximation by trigonometric polynomials of such exponentials, N can be shown to be invariant under multiplication by $(2u + 1)(2u - 1)^{-1}$, so that W(N) is invariant under $T^{\bigstar}f(z) = zf(z)$, the adjoint of T. But $W(N) = WF(L)^{\perp} = J(L)^{\perp}$, so J(L) is invariant under T. <u>REPRESENTATION THEOREM</u>: If M is a closed linear subpace of $H^{2}(U;K)$ which is invariant under T, then there exists an analytic function G_{M} defined on U satisfying

$$H^{2}(U;K) = M \oplus G_{M}H^{2}(U;K)$$

where: i. if dim K = 1, then G_M is a complex-valued <u>inner</u> function, i. e., $|G_M(z)| \leq 1$ for $z \in U$ and $|G_M(e^{i\Theta})|$ is 1 a. e. G_M is unique up to multiplication by a number of unit modulus. [1]

ii. if dim K = n, then there exists H, a Hilbert space of dimension \leq dim K such that $G_M(z)$: H \rightarrow K is an operator with $||G_M(z)|| \leq 1$ and $G_M(e^{i\Theta})$ is an isometry a. e. G_M is unique up to multiplication on the right by a unitary matrix. G_M is called <u>inner</u> if dim H = dim K so that $G_M(e^{i\Theta})$ is unitary a. e. [3]

iii. if dim $K = \infty$, then $G_M(z): K \to K$ is an operator with $||G_M(z)|| \leq 1$ and $G_M(e^{i\Theta})$ is a partial isometry a. e. with a common initial space. That is, $G_M(e^{i\Theta})$ is an isometry on the initial space and zero on its orthogonal complement. G_M is unique up to multiplication on the right by a partial isometry corresponding to a different choice of initial space. G_M is called <u>inner</u> if $G_M(e^{i\Theta})$ is unitary a. e. [2] <u>SPECTRAL</u> <u>THEOREM</u>: Let G_L be the function given by the representation theorem for the subspace J(L) and R(T,L) will denote the resolvent set for T restricted to J(L).

i. if $z \in U$, then $z \in R(T,L)$ iff $G_L(z^{\bigstar})$ is invertible. That is, it is nonzero if dim K = 1 and is invertible as an operator on the appropriate Hilbert spaces otherwise.

ii. if |u| = 1, then $u \in R(T,L)$ iff $G_L(z)$ can be analytically continued across an arc of the unit circle containing $u^{\frac{1}{4}}$.

<u>MAIN THEOREM</u>: The restricted semigroup S_h^L is uniformly continuous iff the function G_L is an inner function and can be analytically continued across an arc of the unit circle containing z = 1.

Comment: Using $H^2(P;K) = F(L) \oplus Q_L H^2(P;K)$ where Q_L defined on P has similar properties to G_L , the analytic continuation at z = 1 can be replaced by the condition of being analytic at infinity.

REFERENCES

- Beurling, A., On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1949), 239-255.
- 2. Halmos, P.R., Shifts on Hilbert space, Crelle's Journal 208 (1961), 102-112.
- 3. Lax, P.D., Translation invariant spaces, Acta Math. 101 (1959), 163-178.
- 4. Moeller, J.W., On the spectra of some translation invariant subspaces, J. Math. Anal. Appl. 4 (1962), 276-296.

Received September 7, 1978