Real Analysis Exchange Vol. 4 (1978-79)
Jan Marik, Department of Mathematics, Michigan State
University, East Lansing, Michigan 48824

On a Class of Orthogonal Series

In [2], Skvorcov introduced a generalization of the Perron integral for the purpose of calculation of the coefficients of a Haar series. I would like to mention some results of J. C. Georgiou and myself which extend Skvorcov's theorems to a wider class of orthogonal series. Some related questions have been studied, e.g., in [4] and [5].

1. Let V be a real vector space and let S be a subspace of V. Suppose that φ is a function on $S \times V$ such that $\varphi(s,$.$) is linear on V$ for each $s \in S$, $\varphi(., v)$ is linear on S for each $v \in V, \varphi(s, s)>0$ for each $s \in S \backslash\{0\}$ and that $\varphi(s, v)=\varphi(v, s)$, whenever $s, v \in S$. The restriction of φ to $S \times S$ is, obviously, an inner product so that we may speak about orthogonality in S.

Let T be a finite-dimensional subspace of S and let $v \in V$. It is easy to see that there is a unique $p \in T$ such that $\varphi(t, v)=\varphi(t, p)$ for each $t \in T$; write $p=0 . p .(v, T)$ (orthogonal projection of v to T). If T_{0}, T_{1}, \ldots are pairwise orthogonal finite-dimensional subspaces of S and if $v \in V$, then $\sum_{n=0}^{\infty} 0 . p .\left(v, T_{n}\right)$ will be
called the Fourier series of v with respect to the sequence $\left\langle T_{n}\right\rangle$.
2. Let $D_{0,}, D_{1}, \ldots$ be finite subsets of $[0,1]$ such that $\{0,1\} \subset D_{0} \subset D_{1} \subset \ldots$ and that $D_{0} \cup D_{1} \cup \ldots$ is dense in [0,1]. If we partition $[0,1]$ by D_{n}, we get a system of closed intervals which will be denoted by θ_{n}. Let S_{n} be the system of all functions f on $[0,1]$ such that f is constant on int J for each $J \in A_{n}$, $f(0+)=f(0), f(1-)=f(1)$ and $f(x)=\frac{1}{2}(f(x+)+f(x-))$ for each $x \in(0,1)$. Obviously $S_{0} \subset S_{1} \subset \ldots$... Define $s=S_{0} \cup S_{1} \cup \ldots$ and introduce in S an inner product in the usual way. Let $T_{O}=S_{O}$ and let T_{n} be the orthogonal complement of S_{n-1} in S_{n} for $n=1,2, \ldots$. For each $x \in[0,1)[x \in(0,1]]$ let $J_{n}(x)\left[J_{n}^{\prime}(x)\right]$ be the element $[a, b]$ of δ_{n} for which $x \in[a, b)[x \in(a, b]]$; further set $J_{n}(1)=\{1\}, J_{n}^{\prime}(0)=\{0\}(n=0,1, \ldots)$.
3. Let V be a vector space whose elements are functions on $[0,1]$ and let L be a linear functional on V with the following properties: If f is a finite Lebesgue integrable function on $[0,1]$, then $f \in V$ and Lf is its integral; if $s \in S$ and $v \in V$, then $s v \in V$. It is obvious that all the assumptions of 1 are fulfilled, if we take $\varphi(s, v)=L(s v)$. It is easy to prove the following assertion:

Let n be a nonnegative integer. Let $f \in V, J \in \mathcal{J}_{n}$, $x \in$ int J and let c be the characteristic function of J.

Set $s_{n}=\sum_{k=0}^{n} 0 . p \cdot\left(f, T_{k}\right)$. Then $s_{n}=0 . p \cdot\left(f, s_{n}\right)$ and $s_{n}(x)=|J|^{-1} \cdot L(f C)$ (if $J=[a, b]$, then $|J|=b-a$).
4. In [2], Skvorcov constructed an integral that integrates the sum of each everywhere convergent Haar series $\sum a_{n} x_{n}$ for which

$$
\begin{equation*}
a_{n} x_{n}(x) \longrightarrow 0 \quad\left(n \rightarrow \infty, x_{n}(x) \neq 0\right) \tag{1}
\end{equation*}
$$

It is possible to generalize Skvorcov's result in various ways. To illustrate the matter suppose that the set $D_{n+1} \cap$ int J has at most one point for each $J \in A_{n}$ and that there is a number $q>0$ such that $|K|>q|J|$, whenever $J \in \theta_{n}, K \in \theta_{n+1}$ and $K \subset J(n=0,1, \ldots)$. Then there are V and L fulfilling the assumptions of 3 such that the following theorem holds:

Let $f_{n} \in T_{n}, s_{n}=\sum_{k=0}^{n} f_{k}$. Let

$$
\begin{equation*}
\int_{J_{n}(x)} s_{n} \rightarrow 0, \quad \int_{J_{n}^{\prime}(x)} s_{n} \rightarrow 0 \quad(n \rightarrow \infty) \tag{2}
\end{equation*}
$$

for each $x \in[0,1]$ and let the $\operatorname{set}\left\{x ; \sup _{n}\left\{s_{n}(x) \mid=\infty\right\}\right.$
be countable. Then there is an $f \in V$ such that
$\sum_{n=0}^{\infty} f_{n}(x)=f(x)$ almost everywhere and that $\sum_{n=0}^{\infty} f_{n}$ is the Fourier series of f with respect to $\left\langle T_{n}\right\rangle$.

In the proof we apply methods developed in [2] and [3] and a theorem proved in [1].
5. Now suppose that D_{n} has exactly $n+2$ points. Then T_{n} has dimension 1; let g_{n} generate T_{n} and let $\int_{0}^{1} g_{n}^{2}=1(n=0,1, \ldots)$. We may choose $g_{0}=1$. Now let $n>0, p \in D_{n} \backslash D_{n-1}$ and $p \in J=[a, b] \in \mathcal{A}_{n-1}$. Then we may choose g_{n} in such a way that $g_{n}>0$ on (a, p). If $D_{1}=\left\{0, \frac{1}{2}, 1\right\}, D_{2}=\left\{0, \frac{1}{4}, \frac{1}{2}, 1\right\}, D_{3}=\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}$, $D_{4}=\left\{0, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}, \ldots$, then $g_{n}=X_{n}$ (the Haar function) for each n. It is not difficult to prove that, in this case, (1) is equivalent to (2).
6. Finally, let $D_{n}=\left\{k .2^{-n} ; k=0,1, \ldots 2^{n}\right\}$, let $\psi_{0}, \psi_{1}, \ldots$ be the Walsh functions and let f be a Perron integrable function on $[0,1]$. Let $\Sigma a_{n} X_{n}$ and $\Sigma b_{n} \psi_{n}$ be the Haar - and Walsh - Fourier series of f, respectively. Let n be a nonnegative integer and let $m=2^{n}$. As X_{0}, \ldots, X_{m-1} is an orthonormal basis of S_{n} and as the same is true for $\psi_{0}, \ldots, \psi_{m-1}$, we have $\sum_{k=0}^{m-1} a_{k} x_{k}=0 . p_{0}\left(f, s_{n}\right)=\sum_{k=0}^{m-1} b_{k} \psi_{k} \quad$ (see [4]).

References

[1] M. A. Nyman, on a generalization of Haar series, Ph.D. Thesis, Mich. State University, 1972.
[2] V. A. Skvorcov, Calculation of the coefficients of an everywhere convergent Haar series, Math. USSRSbornik, 4(1968), No. 3, 317-327.
[3] D Differentiation with respect to nets and the Haar series, Math. Notes of the Academy of Sciences of the USSR, 4 (1968), No. 1, 509-513.
[4] W. R. Wade, A uniqueness theorem for Haar and Walsh series, Trans. Amer. Math. Soc., 141(1969), 187-194.
[5] Uniqueness Theory for Cesaro summable Haar series, Duke Math. Journal, 38 (1971), No. 2, 221-227.

