Real Analysis Exchange Vol. 3 (1977-78)

Clifford E. Weil, Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

The Space of Bounded Derivatives

Let R denote the real line and let

 $D = \{f: R \rightarrow R: f \text{ is bounded and there is a function}\}$

F such that f(x) = F'(x) for all $x \in \mathbb{R}$. For each f, $q \in D$ set

$$d(f,g) = \sup_{x \in \mathbb{R}} |f(x) - g(x)|.$$

Then d is a metric on D and convergence in d is uniform convergence. So a standard theorem of advanced calculus says that D is complete. Furthermore, D is a vector space if addition of functions and multiplication of functions by real numbers are defined in the usual way.

As a follow-up to papers on nowhere monotone, differentiabl functions by Goffman and by Katznelson and Stromberg, existence of such functions was established by applying the Baire Category Theorem to an appropriate subspace of D (see [3]). The results here also expand on a paper by Goffman [2] in which he gives a short construction of a bounded derivative which is not Riemann integrable. Another construction can be found on page 26 of the excellent expository article by Bruckner and Leonard [1]. From Theorem 1 it follows, using the Baire Category Theorem, that there are bounded derivatives that are not Riemann integrable on any subinterval of R. Theorem 2 proves even more; namely, that there are bounded derivatives which are discontinuous almost everywhere. Theorem 1. Let

 $E = \{f \in D: there is an interval I such that$

f is Riemann integrable on I).

Then E is of the first category in D.

<u>Proof</u>: Let $\{I_n\}_{n=1}^{\infty}$ be an ordering of the collection of all closed intervals having rational endpoints. For each $n = 1, 2, 3, \ldots$, let

 $E_n = \{ f \in D: f \text{ is Riemann integrable on } I_n \}.$ Clearly $E = \bigcup_{n=1}^{\infty} E_n$, and that each E_n is a vector subspace of D. So to prove that E_n is nowhere dense it suffices to show that E_n is closed and $E_n \neq D.$

Suppose $\{f_k\}$ is a sequence of elements of E_n converging in d; that is, uniformly, to f. Since the uniform limit of a sequence of Riemann integrable functions is Riemann integrable, f is Riemann integrable on I_n , and hence $f \in E_n$. By using either the construction of Bruckner and Leonard or of Goffman mentioned above it follows that $E_n \neq D$. This completes the proof.

In [1] (page 27) it is shown that E is the set of discontinuities of a derivative if and only if E is an F_{σ} , first category set. It follows that there are derivatives which are discontinuous almost everywhere. The important conclusion of Theorem 2 (and also Theorem 1) is that such derivatives are typical. In what follows m denotes Lebesgue measure.

Theorem 2. Let

 $E = \{f \in D: m(\{x: f \text{ is continuous at } x\}) > 0\}.$

Then E is of the first category in D.

<u>Proof</u>: For each n = 1, 2, 3, ... let $E_n = \{f \in D: m(\{x \in [-n, n]: f \text{ is continuous at } x\})\}$ $\geq 1/n\}.$

Then $E = \bigcup_{n=1}^{\infty} E_n$; so it suffices to show that each E_n is closed and contains no sphere. To accomplish the first objective let $\{f_k\}$ be a sequence in E_n converging in d to f. For each k let

$$H_k = \{x: f_k \text{ is continuous at } x\}$$

and let

$$H = \bigcap_{\ell=1}^{\infty} \bigcup_{k=\ell}^{\infty} H_{k}.$$

Since for each k $m(H \cap [-n,n]) \ge 1/n$ it follows that $m(H \cap [-n,n]) \ge 1/n$. That f is continuous at each x $\in H$ is a standard $\varepsilon/3$ argument. Consequently, $f \in E_n$.

To show that E_n contains no sphere let $f \in D$ and let $\varepsilon > 0$. There is an $h \in D$ with $|h(x)| \le \varepsilon$ for all x and $m(\{x:h \text{ is continuous at } x\}) \le 1/n$. Such a function can be constructed by using the method in [1] or that in [2]. Now for each $0 < \theta < 1$ let $g_{\theta} = f + \theta h$ and let $B_{\theta} =$ $\{x:g_{\theta} \text{ is continuous at } x \text{ but } h \text{ is not}\}$. It is easily seen that B_{θ} is measurable and $B_{\theta_1} \cap B_{\theta_2} = \emptyset$ if $\theta_1 \neq \theta_2$. It follows that there are at most countably many θ 's such that $m(B_{\theta}) > 0$. Let θ be such that $m(B_{\theta}) = 0$. Then $m(\{x:g_{\theta} \text{ is continuous at } x\})$ = $m(\{x:g_{\theta} \text{ and } h \text{ are continuous at } x\})$ $\leq m(\{x:h \text{ is continuous at } x\}) < 1/n.$

Thus $g_{\theta} \notin E_n$, but clearly $d(f, g_{\theta}) < \varepsilon$. Consequently E_n contains no sphere and the proof is complete.

References

- 1. A Bruckner, J.L. Leonard, Derivatives, Amer. Math. Monthly, 73 (1966) Part II, 24-56.
- 2. Casper Goffman, A bounded derivative which is not Riemann integrable, Amer. Math. Monthly, 84 (1977), 205-206.
- 3. Clifford E. Weil, On nowhere monotone functions, Proc. Amer. Math. Soc., 56 (1976), 388-389.

Received October 6, 1977