Differentiation and Lusin's Condition (N)

This paper deals with a problem mentioned by Professor D.W. Solomon; namely, whether two continuous functions can each satisfy Lusin's condition (N), be differentiable a.e. with identical derivatives a.e. and not differ from each other by a constant. That this can occur is shown in the example below. The functions in the example differ by a monotone function and Theorem 1 shows that a function which has a pair of this type also has a pair which differs from it by a monotone function. Theorem 2 shows that no function with a pair can be ACG.

Example: There exist two continuous functions f_1 and f_2 which satisfy Lusin's condition (N), are differentiable a.e. with equal derivatives a.e., such that $f_1 - f_2$ is not identically constant.

<u>Proof</u>: Note that each real number $x \in [0,1]$ can be written as $\Sigma x_i \cdot 16^{-i}$ where $0 \le x_i < 16$ or, alternatively, as $\Sigma(\frac{1}{2}x_i) \cdot 8^{-i}$ where $0 \le x_i < 16$ and each x_i is even. Let P be the set of all $x = \Sigma x_i \cdot 16^{-i}$ where $0 \le x_i < 16$ and each x_i is even. Then P is perfect, of measure 0, and contained in [0,15/16]. If $x \in P$ and $x = \Sigma x_i \cdot 16^{-i}$, define $f_1(x)$ by $f_1(x) = \Sigma a_i \cdot 8^{-i}$ where $a_i = 6$ if 4 divides x_i , $a_i = 0$ otherwise; define $h(x) = 2 \Sigma(\frac{1}{2}x_i) \cdot 8^{-i}$. Define f_1 and h on [0, 15/16] by extending them linearly from P to the intervals contiguous to P. Since both f_1 and h are continuous on P they are continuous on [0, 15/16]. Note that h(x) takes P onto [0,2], is monotone nondecreasing and is constant on intervals contiguous to P. Define $f_2(x) = f_1(x) + h(x)$. Then both f_1 and f_2 are differentiable almost everywhere with $f'_1 = f'_2$ a.e. Now, $f_1(P)$ is clearly of measure 0 and since f_1 is linear on intervals contiguous to P, f_1 satisfies condition (N). If $y \in f_2(P)$, then

$$y = \Sigma(a_i + x_i)8^{-i}$$
 where $a_i = 6$ if $x_i = 0,4,8$ or 12
and $a_i = 0$ if $x_i = 2,6,10$, or 14

Thus, the possible values of $a_i + x_i$ are 2, 6, 10, 14, or 18. Hence, $f_2(P)$ can be covered with 5^k intervals each of length at most $2 \cdot 8^{-k} + 6\sum_{k}^{\infty} 8^{-i} = 8^{-k} \cdot 62/7$. It follows that $|f_2(P)| = 0$. Since f_2 is also linear on intervals contiguous to P, f_2 also satisfies condition (N).

<u>Theorem 1.</u> If f_1 and f_2 are continuous functions, which satisfy conditions (N) and are differentiable almost everywhere with $f'_1 = f'_2$ a.e., then there exists a continuous function f_3 which also satisfies condition (N) such that $f'_3 = f'_1$ a.e. and $f_3 - f_1$ is monotone.

35

<u>Proof</u>. Let f_1 and f_2 satisfy the hypotheses of the theorem and let $h = f_2 - f_1$. Assuming h is not already monotone, let $y_1 = \sup h$, $y_0 = \inf h$ and find x_0 and $\dot{x_1}$ such that $f(x_0) = y_0$, $f(x_1) = \dot{y_1}$. Without loss of generality, $x_0 < x_1$. For each $y \in [y_0, y_1]$, let $x(y) = \inf \{x \mid x \in [x_0, x_1] \text{ and } h(x) = y\}$. Define g(x) = y if x = x(y) and extend g continuously to the closure E of the set of x(y) and then linearly to [0,1] with $f(x) = y_0$ if $x < x_0$ and $f(x) = y_1$ if $x > x_1$. Since h'(x) = 0 a.e. and g agrees with h on E and is constant on each interval contiguous to E, it follows that g'(x) = 0 a.e. It is clear that g(x) is monotone. Let $f_3(x) = f_1(x) + g(x)$. Then $f'_3(x) = f'_1(x)$ a.e. Since $f_3(x) = f_2(x)$ at each point $x \in E$ and on each interval I_n contiguous to E, $f_3(x) = f_1(x) + C_n$, where C_n are appropriate constants; it follows that $f_3(x)$ satisfies condition (N).

<u>Theorem 2.</u> If f_1 is ACG, f_2 is continuous and satisfies condition (N) and both f_1 and f_2 are differentiable a.e. with $f'_1 = f'_2$ a.e., then $f_2 - f_1 - is$ identically constant.

<u>Proof</u>. Suppose not and let $h = f_2 - f_1$. Construct g and f_3 as in Theorem 1. Then $f_1 + g = f_3$ and f_3 is both VBG and satisfies condition (N). By [1,Thm. 6.7, p.227], f_3 is ACG. Hence, g is ACG and since g is monotone. g is absolutely continuous. Since g' = 0 a.e., g is identically constant. But this is impossible unless h were constant and in that case $f_2 - f_1$ is constant.

Note: Theorems 1 and 2 can be proven in the same fashion using the approximate derivative rather than the ordinary derivative.

REFERENCES

1. S. Saks, Theory of the Integral, New York 1937.

Received August 25, 1977