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 Differentiation and Lusin's Condition (N)

 This paper deals with a problem mentioned by Professor

 D.W. Solomon; namely, whether two continuous functions can

 each satisfy Lusin's condition (N) , be differentiable a.e.

 with identical derivatives a.e. and not differ from each

 other by a constant. That this can occur is shown in the

 example below. The functions in the example differ by a

 monotone function and Theorem 1 shows that a function

 which has a pair of this type also has a pair which differs

 from it by a monotone function. Theorem 2 shows that no

 function with a pair can be ACG .

 Example : There exist two continuous functions f^ and

 fļ which satisfy Lus in' s condition (N) , are differęntiable

 a.e. with equal derivatives a.e., such that f ^ - f 2 is
 not identically constant .

 Proof : Note that each real number x € [0,1] can be

 written as Zx^ • 16 -:L where 0 < x^ < 16 or, alternatively,
 as Z(%x.) * 8 1 where 0 < x. < 16 and each x. is
 1 - 1 1

 even. Let P be the set of all x = Zx. • 16 1 where
 1

 0 < x^ < 16 and each x^ is even. Then P is perfect,
 of measure 0, and contained in [0,15/16]. If x £ P
 • •

 and x = Zx^ • 16_1 , define f^(x) by f^(x) = Za^ • 8 1
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 where = 6 if 4 divides xi , = 0 otherwise;

 define h(x) = 2 Z(%x^) • 8 . Define f^ and h on
 [0, 15/16] by extending them linearly from P to the

 intervals contiguous to P . Since both f^ and h are
 continuous on P they are continuous on [0, 15/16].

 Note that h(x) takes P onto [0,2], is monotone non-

 decreasing and is constant on intervals contiguous to P .

 Define = fļ(x) + h(x) . Then both f^ and f2

 are differentiable almost everywhere with fļ = f£ a.e. .

 Now, fļ(P) is clearly of measure 0 and since f^ is

 linear on intervals contiguous to P , f^ satisfies

 condition (N) . If y € f£(P) , then

 y = I(a^ + x^)8 where = 6 if x^ = 0,4,8 or 12
 and a. = 0 if x. = 2,6,10, ' ' ' or 14 X x ' ' '

 Thus, the possible values of a^ + x^ are 2, 6, 10, 14,
 or 18. Hence, f£(P) can be covered with 5 intervals

 00

 each of length at most 2*8^ + 6z 8 *" = 8 ^ • 62/7 .
 k

 It follows that ¡ f 2 (P) I - 0 . Since f ^ is also linear
 on intervals contiguous to P , als° satisfies condi-

 tion (N) .

 Theorem 1. If f^ and f2 are continuous functions ,
 which satisfy conditions (N) and are differentiable almost

 everywhere with fļ = f^ a.e. , then there exists a con-

 tinuous function f^ which also satisfies condition (N)

 such that fģ = fļ a.e. and f^ - f^ i£ monotone .
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 Proof . Let and f ^ satisfy the hypotheses of the

 theorem and let h = ~ fļ • Assuming h is not already

 monotone, let y^ = sup h , = inf h and find Xq and
 Xļ such that f(xg) = Yq , f(x^) = y^ . Without loss

 of generality, Xq < x^ . For each y ( ^q'^I"' ' let
 x(y) = inf {x ļx € [xq.x^] and h(x) = y} . Define
 g(x) = y if x = x(y) and extend g continuously to

 the closure E of the set of x(y) and then linearly

 to [0,1] with f(x) = yQ if x < Xq and f(x) = y^
 if x > Xļ . Since h' (x) = 0 a.e. and g agrees with
 h on E and is constant on each interval contiguous to

 E , it follows that g'(x) =0 a.e. It is clear that

 g(x) is monotone. Let fßCx) = fļ(x) + g(x) . Then
 fģ(x) = fļ(x) a.e. . Since fßix) = at each point
 x € E and on each interval In contiguous to E ,

 fg(x) = f^(x) + , where Gn are appropriate constants;
 it follows that f^(x) satisfies condition (N) .

 Theorem 2 . If f ^ ijs ACG , f ^ continuous and satis-

 fies condition (N) and both f^ and are differentiable

 a.e. with fļ = f^ a.e. , then f£ - f^ "is identically
 constant .

 Proof . Suppose not and let h = -• fļ . Construct g

 and f^ as in Theorem 1. Then f^ + g = f^ and f^ is
 both VBG and satisfies condition (N) . By [l,Thm. 6.7,

 p. 227], f^ is ACG . Hence, g is ACG and since g
 is monotone, g is absolutely continuous. Since g' = 0

 a.e., g is identically constant. But this is impossible
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 unless h were constant and in that case Í2 ~ fļ is
 constant .

 Note: Theorems 1 and 2 can be proven in the same fashion

 using the approximate derivative rather than the ordinary

 derivative .
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