Ruth Mikkelson, Department of Mathematics, University of Wisconsin-Milwaukee, Milwakee, Wisconsin 53201

Totally and Partiolly Ambiguous
 Points of Planar Functions

Let f be a function from the plane to the complex sphere. A point $z \in P$ is an (rectilinearly oppositely) ambiguous point of I with $\Theta \in[0, \pi)$ as direction of ambiguity if there are two linear arcs, Λ_{1} and Λ_{d}, at z with directions θ and $\Theta-\pi$, resp., such that $C I(\Lambda, z) \cap C I\left(\Lambda_{2}, z\right)$ is empty. $(C I(\Lambda, z)$ is the cluster set of f at z along the arc Λ s) Jet feA if every point of the plane is an ambiguous point of f. H. Fox[2, Theorem 20] exhibits a function f in the set A with the range an enumerable nowhere dense set.

For a given function f there may be more than one direction of ambiguity at a point p. The following two theorems give some examples.

Theorem 1. There exists $f \in A$ such that f has enumerably many distinct directions of ambiguity at every point of the plare. Moreover the range of f is a bounded nowhere dense subset of the real line with measure zero.

Theorem 2. There exists a function $f \in A$ such that f has an everywhere dense set of directions of ambiguity et every point of the plane. The range of f again is a
bounded nowhere dense subset of the real line with measure zero.

However the next theorem shows that a countable number of directions at each point is the most possible.

Theorem 3. The set of points $p \in P$ such that uncountably many directions at p are directions of ambiguity of f is a sparse set.

The definition of sparse set is given in [1].
Next, totally ambiguous points of functions are investigated. If $f \in A$ then the set of totally ambiguous points of the function f, denoted by $T(f)$, is the set of points of the plane that have every direction as a direction of ambiguity. By Theorem 3, $T(f)$ is a sparse set. The following three theorems give examples of functions $f \in A$ for which $T(f)$ has various properties.

Theorem 4. Given T a subset of the plane with $|T| \leq H_{6}$, there exists an $f \in A$ such that $T \subseteq T(f)$.

The set $T(f)$ can also be big in the sense of cardinality.

Theorem 2. There exists an $f \in A$ with $\mid T(f) I=2^{\circ}$. Moreover the range of f can be countable.

Theorem 6. If $2^{N}=N_{1}$, there exists an $f \in A$ with $|T(f)|=2^{\circ}$ and the range of f consists of 8 points.

In addition to being sparse, $T(f)$ has a stronger property, called supersparse, which will be defined next.

Definition. Let ρ_{i} and ρ_{α} be in the interval $[0, \pi)$ and assume ρ_{1} is less than ρ_{2}. set T is called $\left(\rho_{2}, \rho_{2}\right)$-void
if the angle of the line joining and two points of 2 does rot lie in the intorval ($p_{1}: p_{2}$).

Definition. A set s is supersparse if for every rational interval (ρ_{1}, ρ_{2}) contained jn $(0, \pi), s$ can be decomposed into an at rost countable union of sets s_{j} with the property that there exsts \approx subinterval $\left(\rho_{1}, \rho_{2}^{j}\right)$ of $\left(\rho_{1}, \rho_{\alpha}\right)$ for wich S_{j} is $\frac{\left(\beta_{1}^{j}: \rho_{j}^{j}\right) \text {-void. }}{1 / 2}$

Theorem 2. There exists $f \in A$ such that the set of points in the plane at which f has wacountably many directions as directions of embiguity is not a supersperse set.

However the next theorem shows thet if the set of partially ambiguous points is restricted further the result is a supersparse set.

Theorem 8. Let $f \in A$. If B is the set of noints in the plane at which f has all but a nowhere dense set of directions as airections of mbiguity then B is supersparse.

Coroljaxy. For every $f \in f_{h}, T(f)$ is supersparse.
The next question that arises is whether every supersparse set can be a $\mathbb{T}(f)$ for some f. This is not always true. The following theorem though does apply for any supersparse set.

Theorem 2. If a set S is supersparse, there exists a function $f \in A$ such that for every $z \in S, z$ is an ambigunus point of for ail but a nowhere dense set of directions.

Some facts to be noted about supersparse sets are that they exist(see Theorems 4 and 5) and they are sparse; however we show that there are sparse sets that are not supersparse.

REMERENCES

1. K. BJumberg, Exceptionej sets, Fund. Math. 32 (1939), 3-32
2. H. For, The continaum hypothesis and planar functions, Ph.D. Thesis, University of WisconsinMilwaukee, 1972.
