QUERIES

Queries will continue to be listed until solutions are received by the $B X O H A N E D$ Solutions ieceived within the pust sia months appecr immediately folzowing the list of queries.

1. If $f: R \rightarrow R$ is continuous with respect to the density topology on both the domain and range, must ine image of. a set of measire zero be of measure zero?
2. If $f: R \rightarrow R$ is continuous must the upper symuntric derivate of f be equal to the upper approximate symmetric derivate of f on a residual set?
3. If $f: R \rightarrow R$ is continuous on the set E and $|x-f(x)|=1$ for each x in E, can $\operatorname{dim}(E)<\operatorname{dim}(f(E))$, where dim() denotes Hausciorff dimension?

4* Can Query 4, parts b and $c, b \in$ answered without the use of the continuum hypothesis?
7. If $f: R \rightarrow R$ is continuous and its graph is sparse, must $f_{a p}^{\prime}$ exist a.e.?
8. Let i dencte the Hausdorfí one-dimensional measure. If $E \in R_{2}$ and $A(E)>0$, must: $\{\vec{p}: \vec{p}=\vec{r}+\vec{s} ; \vec{r} \varepsilon E, \vec{s} \in E\}$ contain an arc?
10. If $S \subset R$ is nowhere dense and $\operatorname{dim}(S)=\alpha(0 \leq 0 \leq 1)$, is there a perfect set T such that $\operatorname{dim}(T) \geq 1-\alpha$ and $S \oplus T$ is nownere dense? Here, dim() denotes Hausdorff dimension.
11. Proposed by Jan Mycielski, Department of Mathematics, University of Colorado, Boulder, Colorado 80302. Let ρ be a distance function over the real line R which generates the usual topology and is translation invariant, i.e., $\rho(x+t, y+t)=\rho(x, y)$ for all x, y, t in R. Let $A, B \subset R$ be two Borel sets which are isometric relative to ρ, i.e., there exists a bi-jection $E: A \leftrightarrow B$ such that $\rho(f(x), f(y))=\rho(x, y)$ for all x, y in A. Must the Lebesgue measures of A and B be equal? (If A and B are open sets, then the answer is yes, see Jan Mycielski: Remarks on invariant measures in metric spaces, Coll. Math. 32 (1974), 105-112.)

Query 4.

Let x and y be two points $i_{n} R_{2}$ and let [$x y$] denote the closed line segment joining x to y. for $E \subset R$, let $[E]=\left\{p \varepsilon R_{2}: p \varepsilon[x y], x \in E \times\{0\}, Y \varepsilon E \times\{1\} \quad\right.$.
a) Does $|E|=0$ imply that the planar measure of $[E]$ is 0 ?
b) Does the measurability of E imply the measurability of [E]?
c) If E is measurable and $\varepsilon>0$, is there a comoact set $F \subset E$ such that $|[E]|<|[F]|+\varepsilon$?

Solution by
Reai Analysis Exchange Eätorial Staff.
a) Let P denote the Euclidean plane with a rectangular Cartesian coordinate system where the y-axis is horizontai and the vertical axis is the y-axis. Let R ide the closed parallelogram (with Interior) in P of height 1 and wiath w whose lower left vertex is at (0,0). Suppose the top T (bottom B) of R is divided into threa abutting closed segments T_{1}, T_{2}, and $T_{3}\left(B_{1}, B_{2}\right.$, and $\left.B_{3}\right)$ of equal lerc̣th where the second is central in each ase. Let $R_{i j}$ denote that closed parallelogram in R whose bottom segment is E_{i} and whose top segment is T_{j}. Then it is easy to see tiat

$$
\begin{equation*}
\{(x, y) \in R: 1 / 4 \leqslant y \leqslant 3 / 4\} \subset \cup R_{i j} \quad(i, j \varepsilon\{1,3\}) . \tag{1}
\end{equation*}
$$

Using the notation introduced above, we define the set: inapping

$$
\begin{equation*}
\Delta(K)=\left\{R_{i j}: i, j \varepsilon\{1,3\}\right\} \tag{2}
\end{equation*}
$$

Now, if R^{3}, denotes the closed unit square, we define

$$
\begin{array}{lr}
R^{2}=\Delta\left(R^{1}\right), & \text { and inductively } \tag{3}\\
R^{n+1}=U_{\Delta}(R) & \left(R \varepsilon P^{n}\right)
\end{array}
$$

Finally, we define $R^{n^{*}}$ to be the union of the parallelograms composing R^{n}. The collection $\left\{R^{n^{*}}: n=1,2, \ldots\right\}$ is a decreasing sequence of compact sets and it is easily seen that

$$
\begin{equation*}
\bigcap_{n=1}^{\infty} R^{n^{*}}=[C] \tag{4}
\end{equation*}
$$

where C denctes the Cantor ternary set. Eut, from (1) it follows that

$$
\begin{equation*}
S=\left\{(x, y) \varepsilon R^{1}: 1 / 4 \leqq y \leqq 3 / 4\right\} \subseteq[C] \tag{5}
\end{equation*}
$$

and as such $|[C]| \geq 1 / 2$.
b) Suppose that $2^{\kappa_{O}}=\kappa_{i}$, let R^{l} denote the closed unit square, and let C denote the Cantor ternary set. Let

$$
F=\left\{F_{0}, F_{1}, \ldots, F_{\alpha}, \ldots: \alpha<\omega_{1}\right\}
$$

be an enumeration of the perfect sets of positive measure in $R^{1} \cap\{(x, y): 1 / 4 \leqq y \leqq 3 / 4\}=S$, where ω_{1} is the initial ordinal of power ${\underset{1}{l}}_{1}$. Similarly, let

$$
K=\left\{K_{0}, K_{1}, \ldots, K_{\alpha} \ldots: \alpha<\omega_{1}\right\}
$$

be an enumeration of the perfect subsets of c. We will simaltaneously define two complementary subsets S_{1} and S_{2} of S and also iwo complementary subsets C_{1} and C_{2} of C as follows.
0. Let $s_{0}^{1} \varepsilon F_{0}$. As $s_{0}^{1} \varepsilon S$, there are two points c_{0}^{1} and c_{0}^{2} in C such that. $s_{0}^{1} \varepsilon\left[\left(c_{0}^{1}, 0\right),\left(c_{0}^{2}, l\right)\right]$. As F_{0} is a perfect set of positive measure, there is an $s_{0}^{2} \varepsilon F_{0}$ such that

$$
s_{0}^{2} \notin \cup\left[\left(c_{0}^{i}, 0\right),\left(c_{0}^{j}, 1\right)\right] \quad(i, \dot{j} \dot{\varepsilon}\{1,2\}) .
$$

Also, as K_{0} is a perfect set, there is a point k_{0} such that $k_{0} \neq c_{0}^{i}(i=1,2)$ and yet $k_{0} \varepsilon K_{0}$.

1. Suppose that $s_{\alpha,}^{1}, s_{\alpha}^{2}, c_{\alpha}^{1}, c_{\alpha}^{2}$, and k_{α} have been defined for $\alpha<\beta$ such that.

$$
\begin{aligned}
& \text { a. } s_{\alpha}^{1} \text { and } s_{\alpha}^{2} \varepsilon F_{\alpha}, \\
& \text { b. } s_{\alpha}^{1} \varepsilon\left[\left(c_{\alpha}^{1}, 0\right),\left(c_{\alpha}^{2}, 1\right)\right], \\
& \text { c. } s_{\alpha}^{2} \notin \cup\left[\left(c_{\gamma}^{1}, 0\right),\left(c_{\sigma}^{2}, 1\right)\right] \quad(i, j \varepsilon\{1,2\} \text { and } 0 \leq \sigma \leq \gamma \leq \alpha), \\
& \text { d. } k_{\alpha} \varepsilon K_{\alpha}, \\
& \text { e. } c_{\gamma}^{i} \neq k_{\sigma} \text { for } \gamma, \sigma \leqq \alpha \text { and } i \varepsilon\{1,2\} \text {. }
\end{aligned}
$$

Now, as F_{β} is a perfect set of positive measure, there is a point s_{β}^{1} in $F_{\beta}^{\cap} S_{-}$[E] such that $s_{\beta}^{1} \neq s_{C}^{2}(0 \leq \alpha<\beta)$. As $s_{\beta}^{1} \not \&[E]$ there are points $\sigma_{\bar{B}}^{1}$ and α_{β}^{2} in C such that $s_{\beta}^{1} \varepsilon\left[\left(c_{\beta}^{1}, 0\right),\left(c_{\beta}^{2}, I\right)\right]$ but $c_{\beta}^{i} \neq k_{\alpha}(0 \leq \alpha<\beta$ and $i \varepsilon\{1,2\})$. Alsc, as β is an enumerabie ordinal,

$$
U\left[\left(c_{\gamma}^{i}, 0\right),\left(c_{\sigma}^{j}, 1\right)\right] \quad(0 \leqq \gamma \leqq \sigma \leqq \beta \text { and } i, j \dot{\varepsilon}\{1,2\})
$$

is of measure zero and consequentiy, there is another point $s_{\beta}^{2} \varepsilon F_{\beta} s u c h$ that $s_{\beta}^{2} \notin \quad\left[\left(c_{\gamma}^{i}, 0\right),\left(c_{\sigma}^{j}, I\right)\right] \quad(0 \leqq r \leqq$ $\leqq \sigma \leqq \beta$ and $i, j \varepsilon\{1,2\})$. Finally, let $k_{\beta} \varepsilon K_{\beta}-\left\{c_{\alpha}^{i}: 0 \leqq \alpha \leqq\right.$ $\leqq \beta$ and $i \varepsilon\{1,2\}$. This completes the induction and we define

$$
\begin{aligned}
& \text { 1. } s_{1}=\left\{s_{\alpha}^{1}: 0 \leqq \alpha<\omega_{1}\right\}, \\
& \text { 2. } s_{2}=\left\{s_{\alpha}^{2}: 0 \leqq \alpha<\omega_{1}\right\}, \\
& \text { 3. } C_{1}=\left\{c_{\alpha}^{i}: 0 \leqq \alpha<\omega_{1}, \text { and } i=1,2\right\}, \\
& \text { 4. } \quad C_{2}=\left\{k_{\alpha}: 0 \leqq \alpha<\omega_{1}\right\} .
\end{aligned}
$$

Now, as $C_{1} \dot{S}$ it follows that C_{1} is of measure zero. However, $\left[C_{1}\right]$ intersects every perfect set of positive measure in S and also intersects the complement of every perfect set of positive measure in S. It follows that $\left[C_{1}\right] S$ and hence $\left[C_{1}\right]$ is nonmeasurable. This answers Query 4b.
c) To answer 4 c , let K be a closed set in C_{1}. If K were uncountable, K would contain a perfect set in C. But $C_{2} \cap_{C_{1}=\varnothing}$ and C_{2} intersects every perfect set in C. Consequently, K is countable and $[K]$ has measure zero for every closed set K in C_{1}. It foilows that 4 c is to be answered in the negative even if the double bar is
interpreted to mean outer measure in the statement of 4 c .

NOTE. 'Regarding problem 4a. Professor Davies (Leicester) points out that the solution is, in essence, obtained in his paper "On accessibility of plane sets and differentiation of functions of two real variables", Proceedings, Cambridge Philosophical Society, 1952. In this paper one sees that a set L of lines can be constructed in P that covers the open first quadrant but whose union meets the Jines $y=0$ and $y=1$ in sets of linear measure zero. If these sets are $E_{1} X\{0\}$ and $E_{2} X\{1\}$ then the set $E=E_{1} \cup E_{2}$ provides a best (worst) possible solution to the problem.

Query 5.

Characterize the countable G_{δ} subsets of R.

Solution by
Roy O. Davies, Department of Mathematics, University of Leicester, Leicester LE' 1 7RH (EngZand)
and, independently,
Fred Galvin, Department of Mathematics, University of Kansas, Lawrence Kansas 66045.
(Galvin's solution) The countable G_{δ} subsets of R can be characterized as the scattered sets, and the same is true for countable G_{δ} subsets of any complete separable metric space. Recall that a set is scattered if every nonempty subset has an isolated point. We first prove

1. In a metric space, every scattered set is a G_{δ}.
The characterization will then follow from the following well known results concerning scattered sets.
2. In a Baire space, every countable G_{δ} set is scattered.
3. In a hereditarily Lindelöf space, every scattered set is councable.

Proo. of 1.
Let $A_{0} \subseteq A_{1} \subseteq \cdots \subseteq A_{\xi} \subseteq \cdots \quad\left(\xi<\omega_{1}\right)$ be the CantorBendixson derivatives of a set A. For each a εA there is an ordinal. $\xi(a)$ such that a $\varepsilon A^{A} \xi(a)^{-A} \xi(a)+1$, i.e., a is an isclated point of $A_{\xi(a)}$. Choose $E(a)$ such that $0<\varepsilon(a)<1$ and

$$
S(a, \varepsilon(a)) \cap \Lambda_{\xi(a)}=\{a\}, \text { where } S(a, r)=\{x: d(x, a)<r\} .
$$

Then,
A $\prod_{n=1}^{\infty} U_{n} \quad$ where $\quad U_{n}=\bigcup_{a \varepsilon A} S(a, \varepsilon(a) / n)$.
Now, let $x \in \bigcap_{n=1} U_{n}$, and choose $a \approx A$ such that $x \in S(a, \varepsilon(a) / 2)$ and $\xi(a)$ is as small as possible. Let $\varepsilon>0$ and choose $n>2$ such that both $1 / n<\varepsilon$ and $1 / n<\varepsilon(a) / 2$. As $x \in U_{n}$, there is a $b \in A$ such that $x(b, \varepsilon(b) / n)$. But then,

$$
d(a, b)<d(a, x)+d(x, b)<\varepsilon(a) / 2+\varepsilon(b) / n<\varepsilon(a)
$$

It follows from the definition of ε (a) that $a=b$ and hence that the distance between x and a is less thar ε. As ε was arbitrary we can conclude that $x=a$ and the proof is complete.

Proof. Suppose $\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(y_{n}\right)_{n=1}^{\infty}$ are sequences in I_{ε} such that $x_{n} \uparrow x_{0}$ and $y_{n} \downarrow x_{0}$. If $x_{0}<z<x_{0}+\varepsilon$, then choose n such that $x_{0}<y_{n}<z$ and so obtain that $f\left(x_{0}\right)<f\left(y_{n}\right)<f(z)$. Similarly, if $x_{0}-\varepsilon<z<x_{0}$, then $f(z)<f\left(x_{0}\right)$. All but countably and below. Hence, $\bar{I}_{\varepsilon} \backslash I_{\varepsilon}$ is countable and so I_{ε} is a G_{δ}.

Note. If one sets

$$
J_{\varepsilon}=\left\{x \varepsilon R: \text { for } 0<x^{*}-x<\varepsilon, \operatorname{sgn}\left(x^{*}-x\right)=\operatorname{sgn}\left(f\left(x^{*}\right)-f(x)\right)\right\}
$$

then J_{ε} need not be measurable, Indeed, let E be an arbitrary subset of R and define

$$
f(x)=\left\{\begin{array}{l}
\operatorname{Tan}^{-1}(x) \text { if } x \in E \\
\pi / 2 \text { if } x \notin E
\end{array}\right.
$$

Then $J_{\varepsilon}=E$ for every $\varepsilon>0$.

