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 App r ox ima t e ly Diff erentiahle Functions :
 lhe r" Topology

 Rather than treating this article as an elongated

 abstract the author feels it would be more in the spirit

 of the Real Analysis Exchange to trace the development

 of the paper. The discussion is deliberately informal.

 The problem first originated in the study of approx-

 imate derivatives. From joint work with Clifford Weil,

 [5], it became apparent that if an approximate deriva-

 tive was equal to zero in every neighborhood where it

 was a derivative then it must be identically zero.

 Stated differently this implies that if f is an approx-

 imately diff erentiable function which is constant in

 every neighborhood where it is diff erentiable then f

 must be identically a constant. Thus it is clear that

 if- an approximately differenti able function is zero in

 a dense set it is always zero.

 Now switching to the density topology [2] there are

 two interesting facts. First in this topology every set

 of measure zero is closed. Second given any density

 closed set X and Euclidean closed set Y, with X fi Y = (ļ),

 there is an approximately continuous function g with

 0 < g < 3- -, g(X) = 0 and g(Y) -- 1. Thus given any count-

 able dense set X, such as the rationals, and a point
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 Xq, not in X, there is an approximately continuous func-
 tion separating them. However the discussion above shows

 there is not an approximately differentiable function

 doing the same job.

 Now the density topology was generated to have

 exactly as many open sets as were necessary to make

 approximately continuous functions continuous. The

 above seemed to the author to point out that the approx-

 imately differentiable functions did not require as many

 sets be added to the Euclidean topology. Thus the

 question became "Is the density topology the coarsest

 topology for which the approximately differentiable

 functions are continuous?".

 Assuming the answer was no the author had to decide

 what open sets to drop out. Alternately this leads to

 the consideration of how the structure of approximately

 differentiable functions differs from that of approxi-

 mately continuous functions. Further the question came

 up to the effect that "If the density topology is the

 wrong one can it be expected that , as with the density

 topology, the correct topology, r, will have the pro-

 perty that f is r-continuous if and only if f is approxi-

 mately differentiable?"

 This last question is answerable even before the

 others. Obviously every ordinary continuous function

 would still be continuous in the new topology and, since

 these functions are not all approximately differentiable ,
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 the answer is no. Therefore if there is a different

 topology to be found it would need a new subclass of

 approximately continuous functions properly containing

 the approximately diff erentiable.

 One property that had been useful in studying

 approximately differenti able functions suggested itself

 naturally as perhaps the device needed to form this new

 subclass. Namely in [6] Tolstòff shows that if f is

 approximately differentiable then every perfect set

 contains a portion on which f is continuous. The author

 took this property and called functions having it Baire *1.

 Then the question becomes, "Is the density topology the

 coarsest topology making the approximately continuous

 Baire *1 functions continuous?".

 In turn this led the author to study Baire *1 Dar-

 boux functions f [14]- They viere found to have the

 interesting property, NEI, that for every a {x: f(x) > a}

 and {x: f(x) < a} have nonempty Euclidean interior.

 Therefore returning to approximately continuous Baire

 *1 functions the author looked at A = {S: 3 f and a such

 that S = [f > a] and f is approximately continuous Baire

 *l}. The collection A forms a subbasi s for the desired

 topology; it vías not hard to show that À actually formed

 a basis. Therefore since the FEI property would be pre-

 served under arbitrary unions the main question was

 answered. The density topology was not the proper top-

 ology, which the author called t . However this in no
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 way actually told what the r topology was. That is say-

 ing that r is the topology generated by using A as a

 basis doesn't say much about r. In trying to give

 alternate characterizations to what sets were in A,

 without reference to a function f , the author observed

 that all the sets had to be F 's because the functions
 a

 were of Baire class 1. However it could also be shown

 that they had to be G^. Thus it was logical to study
 the class of sets which were both F 1 s and Gt 1 s at the

 a o

 same time. Historically it seems that these sets are

 called ambiguous of class 1, or resolvable l3h or

 bivalent [1], The author took the liberty of calling

 such sets ambivalent (partly as a compromise, partly

 due also to the feeling that study of these sets gener-

 ates after awhile.) Functions having {x: f(x) > a} and

 {x: f(x) < a} ambivalent for every a were naturally

 called ambivalent.

 Finally it was shown that the r topology is the one

 generated by the basis of sets B = {u: u is density open

 and ambivalent}. Therefore it seems that the sets which

 are open in the density topology but not ambivalent have

 to be dropped out. However this is not exactly true.

 There are r-open sets which are not ambivalent. It is

 still an open question exactly which are the r-open sets.

 Further, though this is not explicitly " done in the

 paper, the r-continuous functions are not precisely the

 approximately continuous ambivalent functions. Thus
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 exactly which are the r- continuous functions is also

 an open question. On the positive side it is shown

 that the r -topo logy is "near" normal in the sense that

 if X is a r-closed set and Y is a Euclidean closed set

 with X D Y = (j), then there is an approximately differ-

 entiable function g with 0 < g < 1 and g(X) = 0 and

 gOO = 1.
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