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 Because the limit process behaves nicely when combined with

 the arithmetic operations, many classes of functions one encounters

 in analysis are closed under multiplication. The integrals of

 Newton, Riemann, Lebesgue and Denjoy, for example, have this pro-

 perty. However, the corresponding classes of integrands do not.

 The problem of determining conditions under which the product

 of two derivatives is a derivative was first attacked in 1910 by

 W. H. Young [24], so it seems fitting to begin this survey with the

 following excerpt from his introduction.

 Recent research has provided us with a set of
 necessary and sufficient conditions that a function
 may be an indefinite integral, in the generalised
 sense, of another function, and the way has thus
 been opened to important developments. The corre-
 sponding, much more difficult, problem of deter-
 mining necessary and sufficient conditions that a
 function may be a differential coefficient, has
 barely been mooted; indeed, though we know a
 number of necessary conditions, no set even of suf-
 ficient conditions has to my knowledge ever been
 formulated, except that involved in the obvious
 statement that a continuous function is a differen-

 tial coefficient. The necessary conditions in
 question are of considerable importance and inter-
 est. A function which is a differential coeffi-

 cient has, in fact, various striking properties.
 It must be pointwise discontinuous with respect to
 every perfect set; it can have no discontinuity of
 the first kind; it assumes in every interval all
 values between ffis upper and lower bounds in that
 interval; its value at any point is one of the
 limits on both sides of the values in the neigh-
 bourhood; its upper and lower bounds, when finite,
 are unaltered if we omit, any set of points of con-
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 tent zero, and, in the general case, are unaltered,
 if we omit . the values at any countable set of
 points; the points at which it is infinite form an
 inner limiting set of content zero. From these
 necessary conditions we are able to deduce much
 valuable information as to when a function is cer-

 tainly not a differential coefficient. They enable
 us to realise the very special characteristics of a
 function which is a differential coefficient. It

 is clear that, for example, a function which is a
 differential coefficient . ceases to be a differen-
 tial coefficient if its value be altered at a sin-

 gle point. These conditions do not, however, ren-
 der us any material assistance, even in answering
 the simple question as to whether the product of
 two differential coefficients is a differential

 coefficient, and this not even in the special case
 in which one of the differential coefficients is a

 continuous function.

 It is with this last-named case that the pre-
 sent paper is concerned. In view of the importance
 of the problem in the theory of the differentiation
 of infinite series and of improper integrals -
 where the property of being a differential coeffi-
 cient presents itself naturally as the necessary
 and sufficient condition which must hold in order

 that such differentiation may, on certain assump-
 tions, bè permissible - as well as in other appli-
 cations, it is hoped that the results here obtained
 will be regarded as of interest.

 The purpose of this survey is to give as complete an account

 as possible of the progress that has been made on the problem of

 products of derivatives since Young1 s paper. The results and

 examples are grouped in what, it is hoped, the reader will find

 to be a reasonable mathematical order. Although the chronolog-

 ical development of the subject suffers somewhat from this, it

 is easily recaptured from publication dates.

 For an account of the progress made on the more important

 problem raised in Young's introduction, that of characterizing

 the class of derivatives, the reader is referred to [1] and [2].
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 §1. Preliminary Remarks

 Throughout this survey all functions will be defined on [0,1]

 and will assume finite real values unless otherwise noted.

 The problem of determining conditions under which the product

 of two functions, f and g, which belong to a class Q is a-

 gain a member of Q can be approached in two ways. The first is

 to find conditions on f alone which will insure that its product

 with each member of Q also belongs to Q.

 i

 Definition 1.1. For a class of functions Q, its multiplier

 class M(Q) is the set of all functions f such that g 6 Q im-

 lies fg € Q.

 It is clear that M(Q) is always closed under multiplication,

 that 1 € Q implies that M(Q) CI Q and that if Q is closed un-

 der addition, so is M(Q) .

 The second approach is to place less restrictive conditions

 on each of the functions. The first method does have the advantage

 that M(Q) can often be characterized, whereas the second yields

 only sufficient conditions.

 It was noted in the introduction that the integrals of Newton,

 Riemann, Lebesgue and Denjoy are closed under multiplication. For

 the Newton integral (antidif f erentiation) this is just the product

 rule. For the others it suffices to note that the classes of abso-

 lutely continuous (AC) , generalized absolutely continuous in the

 restricted sense (ACG^) and generalized absolutely continuous (ACG)

 functions are closed under multiplication. (A reader unfamiliar

 with the restricted sense Denjoy integral (D^) and the wide sense

 9



 Denjoy integral (D) is referred to [18, Chs. VII and VIII].)

 Then if I? is the integral of f and G is the integral of g,

 one can easily show that (Fg + f G) is integrable in the appro-

 priate sense and that FG is its integral •

 The fundamental theorem states that the derivative of a

 Riemann, Lebesgue or a restricted sense Denjoy integral exists and

 equals the integrand almost everywhere (and that the same is true

 for the approximate derivative of a wide sense Denjoy integral).

 This raises the question of products of functions which are al-

 most everywhere the derivative of a continuous function- However,

 a theorem of Lusin [18, p. 217] asserts that every measurable func-

 tion is almost everywhere the derivative of a continuous function.

 Thus this class is closed under multiplication and we shall re-

 strict our attention to functions which are derivatives at each

 point of [0,1]. Consequently, the fundamental theorem takes the

 following form for the purposes of this survey.

 Theorem 1.1. A function is a_ summable derivative if and only

 if it is the derivative of its Lebesgue integral .

 Theorem 1.2. A function is derivative if and only if it

 is the derivative of its restricted sense Denj o y integral.

 Theorem 1*3. A function is the approximate derivative of ja

 continuous function if and only if it is the approximate deriva-

 tive of its wide sense Denjoy integral.

 We conclude this section with a slight modification of an

 ex?.i?ple given in [7] which shows the need for the parentheses in
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 the expression (Fg + fG) when asserting that it is integrable

 and which points out the pathological behavior of products of

 derivatives.

 Example 1.1. There exist functions F and G such that

 F and G are everywhere differentiable (and therefore inte-

 grable) such that FG' and F'G fail to be integrable (in any

 of the senses under consideration) and are, therefore, not deriv-

 atives.

 Construction. For x € (0,1], we define the functions

 F(x) = x^ sin(x "*) ; g(x) = x ^ sin(x "*) ;

 x

 G(x) = (l/5)x^ cos(x ^) - (2/5) J t cos(t ^)dt ;
 0

 and

 H(x) = (l/10)x^ sin(x 5)cos(x "*) + l/2x^

 x

 - (2/5) ļ t^ sin(t "*)cos(t "*)dt
 0

 Set F(0) = G(0) = g(0) =0. It is easily verified that F is

 differentiable, that G1 (x) = g(x) on [0,1] and that H' (x) =

 F(x)g(x) on (0,1], Since lim H(x) = +», F(x)g(x) is not
 X~*0

 integrable in any of the above senses. But since (Fg + F'G) is

 a derivative by the product rule, it is integrable and it fol-

 lows by linearity that FfG is not integrable.

 We conclude this section by noting that Theorem 4.4 shows

 that neither F nor G can have summable derivatives.
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 §2, Products of Integrable Functions

 Let R denote the class of Riemann integrable functions on

 [0,1]. Then f belongs to R if and only if it is bounded and

 its discontinuities form a set of measure 0, Since these proper-

 ties are closed under multiplication, we have

 Theorem 2.1. M(R) = R.

 The following characterization of the multipliers for the

 class of suramable functions L, important in its connection to

 the fact that Lœ is isomorphic to the dual space of L^, is
 due to Lebesgue [16].

 Theorem 2.2. The class M(L) is. the set of measurable and

 essentially bounded functions'*

 In 1948 W.L.C. Sargent [19] gave the following description

 of the multiplier class for the restricted sense Denjoy integrable

 functions and the wide sense Denjoy integrable functions D.

 This result provides a starting point for the investigation of the

 multipliers of derivatives and approximate derivatives of contin-

 uous functions not only in its connection with the fundamental

 theorem, but also because it indicates the importance of the vari-

 ation of a multiplier.

 From the integration by parts formula for and D [18, p.246],

 one sees that if F is of bounded variation or agrees almost every-

 where with a function of bounded variation, then F belongs to

 M(D J and. M(D) .

 Sargent defines the essential oscillation and essential
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 variation of a function F on an interval and shows that F

 agrees almost everywhere with a bounded variation function if

 and only if the essential variation of F is finite. Assuming

 the essential variation to be infinite, a function g € CZ D

 is constructed such that Fg is not in nor in D.

 Theorem 2.3« M(D^) = M(D) = {F | F jLs of essential bounded

 variation}.

 One can also establish this theorem by considering the func-

 tion F(x) = lim ap F(t). It follows from Theorem 2.2 that F is
 t-*x

 A

 measurable and essentially bounded. Thus F = F almost everywhere

 and one can construct the above mentioned counterexample g if

 this limit fails to exist at some point x G [0,1) or if the func-

 tion F fails to be of bounded variation [6, p. 12].

 We conclude this section by noting that it is possible to con-

 struct unbounded derivatives whose product with every derivative is

 in [6, p. 29] .

 §3. Products of Bounded Derivatives

 Let BD denote the class of bounded derivatives on the in-

 terval [0,1]. Young [24, Theorem 1] established the following

 sufficient condition for the product of two members of BD to

 belong to BD.

 Theorem 3.1. If f belongs to BD and g .is continuous,

 then fg belongs to BD.

 A more general sufficient condition and the characterization
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 of the multiplier class M(BD) were obtained in 1921 by W.

 Wilkosz [22].

 Theorem 3.2. If f and g belong to BD and if at each

 point X ait least one of them is upper (or lower) semicontinuous ,

 then fg belongs to BD.

 2
 Theorem 3.3. For f and f _to belong to BD , it_ is^ nec-

 essary and sufficient that f be_ a^ bounded approximately continuous

 function.

 Wilkosz then attributes the proof of the following result to

 Stephan Banach.

 2
 Theorem 3.4. If f, f and g belong to BD, then fg

 belongs to BD.

 The previous results actually characterize the multiplier

 class M(BD) since f € M(BD) implies f*l and then f*f are

 bounded derivatives.

 Theorem 3.5. A function f belongs to M (BD) if and only

 2
 if f and f belong to BD.

 Theorem 3.6. A function f belongs to_ M(BD) i£_ and only

 if f is bounded and approximately continuous.

 This last result was also established by J. Wolff [23] and

 M. losifescu [13]. losifescu obtains further descriptions of

 M(BD) by noting that the notions of approximate continuity,

 Lebesgue point of the first kind
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 x+h

 lim(l/h) [ |f(t) - f(x)|dt = 0
 h-K) '

 X

 and Lebesgue point of the second kind

 x+h

 lim(l/h) i (f(t) » f (x))2dt = 0
 h-K)

 X

 are equivalent for bounded measurable functions.

 The various proofs of Theorem 3.6 involve fixing a point x

 and showing that because f is approximately continuous at x,

 H is the derivative of its Lebesgue integral at x. Thus one

 obtains the following sufficient condition for the product of two

 members of BD to belong to BD. This theorem is given a direct

 proof in [13].

 Theorem 3.7. If f and g are bounded derivatives and if

 at each point of [0,1] at least one of them is approximately

 continuous, then fg belongs to BD.

 losifescu notes that approximate continuity is not a neces-

 sary condition since if

 f(x) = sin(l/x) and g(x) = cos(l/x)

 with f(0) = g(0) = 0, then f, g, and fg are derivatives but

 neither f nor g are approximately continuous at x=0. He also

 notes that since a bounded derivative cannot be upper or lower

 semicontinuous at a point without being approximately continuous

 there [15], Theorem 3.7 implies Theorem 3.2.

 We conclude this section by noting that f and g in the

 above example "look alike11 and yet fg is a derivative whereas

 ff arid gg are not. Thus a definitive solution to the. multi-
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 plication problem for bounded derivatives by placing conditions

 weaker than approximate continuity on each of the two functions

 seems unlikely unless, perhaps, a characterization for the class

 of bounded derivatives itself can be found.

 §4. Products of Summable Derivatives

 Let SD denote the class of summable derivatives on [0,1].

 It is of interest to note that the problem of characterizing

 M(SD) remains unsolved while the seemingly more difficult task

 of characterizing the multiplier class for all (finite) deriv-

 atives is complete [Theorem 5.5].

 Problem 4.1. Characterize M(SD) .

 Throughout most of his paper, Young assumes the summability

 of the derivatives with which he is working. This is primarily

 due to the fact that the D^ integral, the necessary tool for

 working with derivatives, was not defined until 1912 [5]. We

 shall see in Section 5 that the assumption that f is summable

 is unnecessary in the following result [24, Theorem 2].

 Theorem 4.1. If f belongs to SD and g i£ ji continuous

 function of bounded variation, then fg belongs to SD.

 If a derivative is bounded above or below, then it is a sum-

 2
 mable derivative [18, p. 242]. Also if f and f are deriva-

 2 2
 tives, then both are summsble since f 2 >0 and ļfļ < max{f 2 ,1}.

 Young obtained the following theorem as a corollary to [24,

 Theorem 5] which, as we shall see in Section 7, is not correct.
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 Thus a direct proof is supplied.

 Theorem 4.2. If f i£ derivative with an upper or lower

 bound and g i£ continuous, then fg belongs to SD.

 Proof. We may assume that f(x) > 0 and g(x) i 0. Fix x

 in [0,1] and set = sup{|g(t) - g (x) ļ : |t - x| < h}. Then

 -»■ 0 as h -»• 0. Noting that

 x+h x+h

 (1/h) ļ f (t)g(t)dt and (1/h) | f(t)dt
 x x

 are positive for both positive and negative values of h, we have

 x+h x+h

 (g(x) - eh)(l/h) J f (t)dt S (1/h) j f (t)g(t)dt
 x x

 x+h

 * (g(x) + e^) (1/h) j f (t)dt .
 X

 Since f belongs to SD,

 x+h

 lim (1/h) I f(t)dt = f (x) ,
 h+0 J

 x

 and hence f(x)g(x) is the derivative of its integral.

 The proof of Theorem 4.2 raises the question as to whether

 one could replace the continuity of g by approximate continuity

 and boundedness by taking approximate limits on the inequality.

 If so, this would show that fg is the approximate derivative of

 its integral and since its integral is an increasing function,

 the approximate derivative reduces to an ordinary derivative [11].

 However, the following example shows that this is not the case.

 17



 Example 4.1. There exist derivatives f and g such that

 f is_ positive, g i£ bounded and approximately continuous and

 f g ij3 not a. derivative.

 Construction. Let I = [l/n+l,l/n] and let J = [a ,b ]

 be any closed subinterval of 1^ such that 0 is a point of
 dispersion of the union of the (One can show that it suf-

 fices to choose J such that 1 |j I = e II I where e ->-0.) n 1 n' n1 n1 n

 Let K be a closed interval contained in the interior of J .
 n n

 On K define f to be the two equal sides of an isosceles
 n

 triangle whose base is and whose area is equal to l*nl#
 Set f(x) = 0 on (0,1]'K and set f(0) = 1. Since f is con-

 n

 tinuous on (0,1], we need only show that it is the derivative

 of its integral at x=0 in order to show that it is a derivative.

 But since for all n,

 1/n

 I f(t)dt = l/n ,
 0

 it follows that if X belongs to 1^, then

 X

 n/(n+l) < (1/x) J f(t)dt Š (n+l)/n
 0

 and f(0) =1 is the derivative of the integral.

 Then set g(x) = 1 on K^, g(x) = 0 on (bn+i»an) and at
 x=0. Define g to be linear on the remaining intervals so as to

 be continuous on (0,1]. It is easily verified that g is approx-

 imately continuous at 0 and that f(x)g(x) = f(x) on (0,1].

 Since f(0)g(0) = 1*0, fg differs from a derivative at only one
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 point and cannot be a derivative.

 It follows from the construction of f that the approximate

 limit of f at 0 equals 0 and, therefore, f is not approx-

 imately continuous. The next theorem is an easy corollary to

 Theorem 7.6 which is due to Zahorski [25, p. 30] .

 Theorem 4*3* If f jL£ an approximately continuous deriv-

 ative which is bounded above or below and g ijs a. bounded deriv-

 ative , then fg belongs to SD.

 The following example which further illustrates the hypoth-

 eses of Theorems 4.1 and 4.2 is due to J. Wolff [23]. He comments

 that due to this example, "we cannot expect any progress worth

 mentioning in this train of thought.11

 Example 4.2. For x E (0,1], define the functions

 f(x) = (l//ic)sin(l/x) and g(x) « /x sin(l/x) ,

 and let f(0) - g(0) = 0. Then g is continuous, f is a sum-

 mable derivative but f g i£ not a^ derivative.

 The following result is also due to Wolff [23].

 Theorem 4.4. If f belongs to SD and g has finite

 derivates at each point x (g jls locally Lipschitz) , then f g

 belongs to SD.

 This theorem, which is also proved in [13], indicates why

 the solution to the multiplier problem for finite derivatives

 M(FD) does not provide a solution to M(SD). In the following

 section it will be shown that membership in M(FD) depends
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 entirely on the "good" behaviour of the variation of the multi-

 plier. However, it is easy to construct locally Lipschitz func-

 tions with "bad" variation. As a mild example, we note that

 2 -5
 F(x) = X sin(x ) of Example 1.1 belongs to M(SD) (as do all

 differentiable functions), but does not belong to M(FD) .

 2
 If f were an unbounded member of M (SD) , then f would

 also be an unbounded member of M(SD) . Then upon examination of

 the proof of [8, Theorem 8], one sees that the derivative g,

 constructed such that fg is not a derivative, is summable.

 Theorem 4.5. Members of M(SD) are bounded.

 This result shows that M(SD) is contained in M(BD) since

 2
 f and f must be bounded derivatives. Theorem 3.6 shows that

 g(x) = v^x sin(l/x) belongs to M(BD) and Example 4.2. shows that

 it does not belong to M(SD) .

 Theorem 4.6. M(SD) is properly contained in M(BD) .

 In the next section, we shall see that members of M(FD)

 are bounded. Since the product of a bounded function and a sum-

 mable function is summable, M (SD) contains M (FD) and F(x) =

 2 -5
 X sin(x ) shows that the containment is proper.

 Theorem 4.7. M(FD) is^ properly contained in M(SD) .

 We conclude this section with four theorems which give suf-

 ficient conditions for the product of two members of SD to belong

 to SD. The first is due to Wilkosz [22] and the last three are

 due to Iosifescu [13].

 2 0



 2 2
 Theorem A. 8. If f , f , g and g belong to SD , then

 fg belongs to SD.

 2 2
 Theorem 4.9. If f and f are summable, then f and f

 belong to SD if and only if each point x jLs^ Lebesgue point

 of the second kind for f.

 Theorem 4.10. If f and g belong to SD , then f g

 belongs to SD if each point x _is_ a_ Lipschitz point for at

 least one of f or g.

 Theorem 4 ¿11. Let f belong to BD and g belong to SD .

 Then f g belongs to SD provided that each point x i£

 Lipschitz point of f or a Lebesgue point of the first kind

 for g.

 §5. Products of Finite Derivatives

 Let FD denote the class of finite derivatives on the inter-

 val [0,1]. Our first result is again due to Young [24, Theorem 4].

 Theorem 5.1. If f belongs to FD and g ' is_ bounded ,

 then fg belongs to FD.

 Young's result is actually more general in that it allows f

 to assume the values -H» and -<=>. This theorem follows easily

 from Theorem 3.1 and the identity fg = (Fg) ' - Fg' where F' = f.

 Theorem 5.1 was also established by N. A. Selivanov [20] and J. C.

 Burkill [3]. Burkill proved it as a lemma to the integration by

 parts formula for the Cesaro-Perron integral.

 In 1973 J. Foran [10] obtained the following theorem.
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 Theorem 5.2. If f ±s_ absolutely continuous » then f

 belongs to M(FD).

 Foran's paper stimulated further research on products of

 derivatives which resulted in the solution of the problem in [7]

 and [8]. Professors M. Laczkovich and G. Petruska also obtained

 the characterization of M(FD) and the related examples (On the

 Multipliers of Derivatives , withdrawn). The priority of [7] and

 [8] is due to their author's access to Foran's paper two years

 before it appeared.

 The following generalization of Theorem 4.1 is obtained

 in [7].

 Theorem 5.3. If f belongs to FD and g ijs a continuous

 function of bounded variation > then fg belongs to FD.

 In answer to a question raised by Foran, the following exam-

 ple is constructed in [7].

 Example 5.1. There exists a. discontinuous member of M(FD) .

 The function f is constructed by erecting a spike of height

 1 on each of a. sequence of intervals that tend to 0 and satisfy

 certain restrictions on their length and distance to the origin,

 and by setting f(x) « 0 at the remaining points of [0,1]. An

 investigation of these restrictions and the corresponding limita-

 tions they impose on the variation of a multiplier led to the

 following definition which, in a slightly more restrictive form,

 appears in [8].
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 Definition 5*1. A function f is said to be of distant

 bounded variation from the right at x^ if there exist positive
 numbers M and 6 such that

 (i) if 0 < a < 6, then f is of bounded variation on

 (x +o,x +6),
 o o

 (ii) letting dW(t) denote the Lebesgue-Stieltjes measure

 induced on (x ,x +6) by J the total variation of f , o' ,x o J

 xo+6

 j (t - XQ)dW(t)
 X

 0

 exists as an improper Lebesgue-Stieltjes integral and

 (iii) for each x in (x^x^+6),

 x

 f (t - x )dW(t) ú M(x - x o ) . Jo o
 X

 0

 We abbreviate this condition by f€BVD+(xQ). Then we write

 f€BVD (x ) if f (l-x)€BVD+(l-x ); and if both conditions hold,
 o o

 we say J that f is of distant bounded variation at x and write
 J

 f€BVD(xQ).

 The following characterization of M(FD) is then obtained.

 Theorem 5.4. A function f belongs to M(FD) ¿f and only if

 (a) f is^ ja bounded derivative,

 (b) there exist at most finitely many points x in every

 neighborhood of which f Is^ of_ unbounded variation, and at such

 points

 (c) f€BVD(x) .
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 The conditions in Theorem 5.4 are not independent. The set

 of points at xvhich a function f is not of bounded variation is

 closed. If this set had a limit point xq, it is easily seen

 that f^BVD(xQ) and, consequently, the assumption of finiteness

 in (b) is unnecessary.

 The following result is established in [8].

 Lemma 5.1. If f jLs of_ bounded variation on the interval

 (a,b), then f€BVD(x) for each x in (a,b) and M may be

 chosen to be the total variation of f on (a,b).

 Thus if f belongs to M(FD) , then f€BVD(x) for each x

 in [0,1]. Moreover, if we choose M to be the largest of the

 constants corresponding to the points x at which f is of

 unbounded variation, then M holds for all x since we can

 choose 6 so small that the total variation of f on (x-6 ,
 x x

 x+6x) is less than M. We note, however, that if f is not of

 bounded variation, then 6 ^ cannot be chosen independently of x

 for (x-6 ,x+6 ) must exclude any point at which f is of un-
 X X

 bounded variation.

 Lemma 5.2. If f is a derivative and fGBVD(x), then f

 is bounded in a^ neighborhood of x.

 Proof. We may assume that x=0, that f(0) = 0 and that

 f€BVD+(0) . Then since f is a derivative,

 x

 lim(l/x) i f(t)dt = f(0) = 0 .
 X"K> J

 0
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 Thus we may choose 6 > 0 such that if 0 < x < 6,

 X

 I (l/x) f f (t)dti < 1
 0

 and

 x

 (l/x) ļ tdW(t) < H for some M > 1
 0

 If f is unbounded at 0, we may assume that l^m f(x) = -f".

 Choose b < ô such that f (b) = K > 8M.

 Case 1) f(x) > K/2 on [b/2,b]. Then

 b b/2 b

 (1/b) J f(t)dt = (1/2) (2/b) J f(t)dt + 1/b J f(t)dt
 0 0 b/2

 t -1/2 + (1/b) (b/2) (K/2) > 2H - (1/2) > M .

 Case 2) f(x) < K/2 for some x in [b/2,b]. Then the

 total variation of f on [b/2,b] is greater than K/2, that is,

 b

 I dW(t) > K/2 .
 b/2

 Then

 b b

 (1/b) J tdW(t) > (1/b) I (b/2)dW(t)
 0 b/2

 > (1/2) (K/2) > 2M

 Thus a contradiction is obtained in each case and the lenona is

 established.

 Thus if f is a derivative and f€BVD(x) for each x in

 [0,1], then f is bounded on [0>1] by the Heine-Borei Theorem.
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 These considerations show that Theorem 5.4 can be improved as

 follows.

 Theorem 5.5. A function f belongs to M(FD) if and only

 if f jls a_ derivative and f €BVD (x) for each x in [0,1].

 Before showing the independence of these two conditions, we

 note that the following theorem is an easy consequence of Theorems

 5.4 and 3.6 and Example 1.1.

 Theorem 5.6. M(FD) ļs properly contained in M(BD) . There-

 fore members of M(FD) are approximately continuous .

 2 -5
 The function F(x) = x sin(x ) of Example 1.1 is a deriva-

 tive but F^BVD+(0) . If it were, it would belong to . M(FD) by

 Theorem 5.5 since it is of bounded variation elsewhere on [0,1].

 Example 5.2. There exists ćl bounded function f such that

 f €BVD (x) for each x but f is^ not !i derivative.

 Construction. Let I = [a ,b ] = [2 n,2 n+4 n] , J =

 [b .i>a 1 if n is even and K = [b ,-,a ] if n is odd. Set n+1 n n n+1 n

 f(x) =1 on J = kJ J , f(x) =0 on K = and define f(x)
 n n n n

 to be linear on 1^ so that it is continuous on (0,1]. We leave
 f(0) undefined. We note that the variation of f on J and K

 n n

 is 0 and on I it is 1. Thus,
 n

 b b
 n n

 jtdW(t) < j(2~n+4~n)dW(t) = 2~n+4"n .
 a a
 n n

 Then if a , - < x < a , n-rl , - n
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 a
 X n

 (l/x) ļ tdW(t) < (l/an+1) 1tdW(t)
 0 0

 < 2n+1 I (2"K+4"K) < 3 .
 K=n+1

 Thus f€BVD+(0) and since f is of bounded variation on closed

 intervals which do not contain 0, f€BVD(x) for each x in

 [0,1].

 It is easily verified that

 īīm |[0,h]nj|/h = Tim |[0,h]nK|/h > 1/2 .
 h-K) h~Hj

 Therefore, there is no value f(0) for which f is approximately

 continuous on [0,1]. By Theorem 5.6, f(x) cannot belong to

 M(FD) for any choice of f(0). By Theorem 5.5, f(x) cannot be

 a derivative for any choice of f(0).

 In the preceding section it was noted that there is a major

 difference between M(SD) and M(FD) due to the fact that locally

 Lipschitz functions can have variations which behave badly. We

 conclude this section with another example of this.

 Example 5.3. There exists ja function f which belongs to

 M(SD) such that the set of points x _at which f is^ not of

 distant bounded variation ¿s £f positive measure.

 Construction. Let P be a nowhere dense, perfect set of

 positive measure contained in [0,1]. Then let 1^ = (an>^n) ^'e

 the sequence of intervals contiguous to P. On 1^ erect the

 equilateral triangle whose base is 1^ and which lies above the

 x-axis. Define f on 1^ to be a piecewise linear, continuous
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 function such that f is of bounded variation on intervals of

 the form (a^+ójb^-ô) , the graph of f lies inside the triangle

 on 1^, and f^BVD+(an). Set f(x) = 0 on P. Then since the

 graph of f lies within the triangles on the 1^, f is locally
 Lipschitz and belongs to M(SD) • Since the set dense

 in P and since the set of points at which f is not BVD is

 closed, we have that f^BVD(x) on P and the example is complete,

 §6. Products of Approximate Derivatives

 Let ADC denote the class of functions which are the approx-

 imate derivative of a continuous function on the interval [0,1]

 and let AD denote the class of functions which are approximate

 derivatives on [0,1].

 The following characterizations of the multiplier classes

 are contained in [9]. (The proofs are sketched in the first issue

 of the Real Analysis Exchange. )

 Theorem 6.1. A function f belongs to M(ADC) jLf and only

 if f jLs of bounded variation and its total variation is locally

 Lipschitz.

 Theorem 6.2. A function f belongs to M(AD) juf and only

 if f is constant on [0,1].

 §7. Extended Real Valued Derivatives

 Let EVD denote the class of extended real valued functions

 f such that f is the derivative of a continuous function at

 each point x of [0,1].
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 The first problem one encounters with the class EVD is

 that it is not closed under addition since the sum (+°°) + (-00)

 is undefined and in order to make any claims concerning the dif-

 ference of two members of EVD, one must be certain that both do

 not assume an infinite value (with the same sign) at any point.

 A more serious difficulty is that the fundamental theorem

 breaks down in the following sense; if F' (x) is summable, its

 indefinite integral need not differ from F by a constant. (How-

 ever, if F' is summable, it is also the derivative of its indef-

 inite integral.) An example of such a function is constructed in

 [18, p. 205]. We circumvent this difficulty with the following

 convention: the statement "F* is summable (or D-integrable) "

 entails that F be its Lebesgue (or Denjoy) integral.

 Young [24] showed that under certain restrictions, the pro-

 duct rule still holds.

 Theorem 7.1. If F and G are differentiable in the

 extended sense, then (FG) ' = F'G + FG' provided that (i) F*

 and G' do not assume infinite values at the same point and

 (ii) the indeterminate forms (+»)•() and (-«*>) «0 are defined

 to be 0.

 The next two theorems are also due to Young.

 Theorem 7.2, If f€EVD i£ the derivative of a_ continuous

 function of bounded variation F, and g' is finite and summable,

 then fg belongs to EVD.

 This theorem follows from Theorem 7.1 and the fact that Fg'
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 is a finite derivative by Theorem 4.1. Theorem 5.3 shows that

 the assumption that g is summable is unnecessary.

 Theorem 7.3. If f belongs to EVD and g ' jLs bounded,

 then fg belongs to EVD.

 This follows immediately from Theorem 7.1 and Theorem 3.1.

 Young's next result [24, Theorem 5] is incorrectly stated

 (unless we take it as a blanket assumption that the two functions

 do not assume infinite values at the same point) . He asserts that

 if f is a summable member of EVD which is bounded above or

 below and g is continuous, then fg belongs to EVD. The next

 example shows that this is not correct.

 Example 7.1. There exists a^ positive, summable function f

 which belongs to EVD and an absolutely continuous function g

 such that f g does not belong to EVD .

 Construction. For x in the interval [0,1/2) set

 f(x) = 1//-X +1/2 , g(x) = -2/-X +1/2 , F(x) = -2/-X + 1/2 .

 For x in (1/2,1], define

 f(x) = l//x - 1/2 , g(x) = /x - 1/2 , F(x) = 2/x - 1/2 .

 Set F(l/2) = g (1/2) ■ 0 and f(l/2) = +°». Then F and g are

 absolutely continuous and F'(x) = f(x) on [0,1]. Since

 f(x)g(x) = -2 on [0,1/2) and f(x)g(x) = 1 on (1/2,1], no

 matter what value one assigns to f (l/2)g(l/2) , fg^EVD.

 Our next objective is to state and prove an amended version

 of Young's theorem.
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 Theorem 7.4. If f _a summable member of EVD which is

 bounded below (or above) and g ijs a^ continuous function, then

 f g belongs to EVD provided that g satisfies ¿ Lipschitz con-

 dition at each point x for which f(x) = -H» (f(x) = -«) and

 g(x) = 0.

 Proof. We assume f is bounded below by A. Since f(x)g(x)

 belongs to EVD if and only if (f(x) - A)g(x) belongs to EVD

 (because Ag(x) is a finite derivative), we may suppose that

 f(x) ž 0. (We note that this theorem and the previous example

 show that one cannot remove a zero of g by considering

 f(x)(g(x) + B) which is done in [24].)

 Noting that fg is summable, we see that the proof of

 Theorem 4.2 shows that fg is the derivative of its integral at

 each point at which f is finite or g is not 0. Thus if

 f(x) = -H» and g(x) = 0, we must show that f(x)g(x) = (+»)•() = 0

 is the derivative of its integral. Since g satisfies a Lipschitz

 condition at x ,

 |[g(t) - g(x)]/(t-x)| = |g(t)/(t-x)| < N .

 Let = sup{|g(t)|: ļt - x| ¿ |h|}. Then since

 I g(t)/h| £ |g(t)/(t-x)| ś N for 0 < I t - x| ś ļhļ ,

 we have ļe^/hļ ¿ N, and since f(x) k 0,

 x+h x+h

 (1/h) I f(t)g(t)dt < (l/h)Eh I f(t)dt
 X X

 x+h

 < N* ļ f(t)dt
 x
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 Since f is suiranable, this last term tends to 0 as h tends

 to Ó and Theorem 7.4 is established.

 The following result is a corrected form of Theorem 6 in [24].

 Theorem 7.5. If f belongs to EVD and g f finite and

 bounded above or below, then fg belongs to - EVD.

 This result follows from Theorem 7.1 and the fact that fg1

 is a finite derivative by Theorem 4.2.

 It was noted in the introduction that Young's paper raises

 the more important problem of finding characterizations of the

 various classes of derivatives. Although the problem remains

 unsolved, it seems appropriate to end this survey with a result

 from the 1950 paper by Z. Zahorski [25, p. 30] which, in the opin-

 ion of this author, remains the most important paper on this

 problem.

 Theorem 7.6* If f is_ an approximately continuous deriva-

 tive such that 0 < f (x) , g .is ¿ derivative such that

 0 ś g(x) ^ 1, and {x|f (x)=+°°} H{x| g(x)=0} is void, then fg

 belongs to EVD.
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