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 Nowhere Monotone Functions

 Let M denote the class of functions of a real variable

 which are monotone on a measurable set of positive measure.

 Burkill and Mirsky asked in [1, p. 408 J whether there is a dif-

 ferentiable function which is not in M. Motivation for this

 question comes from [2] where it is shown that every contin-

 uous function is monotone on some perfect set, from [3 , p. 412]

 where a dif ferentiable function which is not monotone on any

 interval is constructed, and from [5] where, for every e > 0,

 it is shown that there is an infinitely dif ferentiable func-

 tion which is not monotone on any set with measure greater

 than e . That every dif ferentiable function belongs to M

 is a consequence of the theorems below. An example of a con-

 tinuous function not in M is given in [5] by constructing a

 continuous function which is nowhere approximately derivable

 and proving that any function which is almost everywhere not

 approximately derivable is not. in M. That there exist func-

 tions of bounded variation which are not in M is shown by

 the example below. However, it follows from Theorem 2 that

 any bounded variation function which is not in M must be

 singular (i.e., its derivative is equal to 0 almost every-

 where) .

 Theorem 1. If f (x) is continuous and satisfies Lusin's
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 condition (N) on an interval I (i.e., the image of every

 set of measure 0 is of measure 0) , then f (x) is mono-

 tone on a perfect set of positive measure.

 Theorem 2. If f (x) is a function of a real variable, let

 = {x|f'(x) exists and 0 < |f'(x)| < «»}. Then is

 measurable and, if E^ is of positive measure, then f (x)
 is monotone on a subset of of positive measure.

 Remark . If f is not a constant function, but is differen-

 tiable, then f satisfies the hypotheses of both of these

 theorems. Hence, dif f erentiable functions are always mono-

 tone on sets of positive measure.

 Proof of Theorem 1. If f is not identically constant, there

 exist a,b £ I such that f takes on its minimum at a and

 its maximum at b. Without loss of generality, a < b. For

 each y € f([a,b]) , let x(y) = inf{x £ [a,b]: y = f(x)}.

 Let A = {x|x = x(y)}. Following [4,p.283], A = [a,b]'U E^
 n

 where

 En={x 6 [a + ^/b]: 3t € [a,b] with f(t)=f(x) and x-t >

 From the continuity of f , it follows that each E^ is closed
 and thus A is measurable. Again, from the continuity of f ,

 it follows that f is monotone increasing on A. For if

 x^,x2 € A, x^ < *2' an<^ *^xi^ - ~(x2^ ' tlien by the inter-

 mediate value property it follows that 3x^ € [a,x^] such
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 that f(x^) = f(x2). But this contradicts the fact that

 x2 = inf{x € [a,b]: f (x) = f(x2>).

 Since f (A) = f([a,b]) is of positive measure and f satis-

 fies Lusin's condition (N) , it follows that. A is of posi-

 tive measure. Thus the theorem is proved.

 Proof of Theorem 2. That E^ is measurable follows from the
 fact that for every function f of a real variable,

 Df(x) = lim f(x+h)-f(x) and Df (x) = lim f(x+h)-f(x)
 h-»-0 h h-0 h

 are measurable functions. . (cf . [4 ,p. 112] . Then

 E^p - {x I Df (x) - Df (x) and Df (x) € (-•», 0) U (0 ,«•) }

 is Lebesque measurable. Without loss of generality, suppose

 E+ = {xļ0 < f ' (x) < -} is of positive measure. For each

 natural number n and integer k , let E ^ be the set of
 "4" If 1r4- 1

 x € E fi ķ-, - - ] which satisfy f (x) -f (y) >'/n
 x-y

 whenever |x-y| 5 1/n. Then, for x^,x2 í Ekn' X1 x2 ^m~
 plies |xļ-x2f 5 1/n which in turn implies that
 f(x2) - f (x^) > (x2~:XjL)/n. Thus f is monotone increasing
 on each E, . Since E+ = U U E. it follows that one of

 kn . k n kn
 the Ej^n is of positive measure. Thus f is monotone on a
 set of positive measure and the theorem is proved.

 Example . A continuous function of bounded variation defined
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 on [0,1] which is not monotone on any measurable set of

 positive measure.

 Construction. Let C be the Cantor ternary set; i.e.,

 C » {x € [0,1]; X = 2 x^/31 where each x^ = 0 or 2}.

 Let c (x) be the Cantor singular function; i.e., if x € C

 and x = 2 x^/31 , then c(x) = 2 x^/21 and c (x) is linear
 on intervals contiguous to C. Let

 rQ if x = 2 X./3 where x. = 0 or x. = 2
 y.ix) = < 3 i 1 1

 ļ_l if x = 2 Xj/3J where x^ = 1
 Let h(x) = min(c(x), l-c(x)) and extend h(x) to the entire

 real line so that h(x) = h(x-^l). Let f^(x) = 8 ^*y^ (x) *h (3^x) .

 It is readily observed that each f^ (x) is continuous. Fur-

 thermore, since y^ (x) = 0 except on 31 intervals, it fol-

 lows that f^ (x) has variation in [0,1] of magnitude 2-8 1*31.

 Thus Var(f^) = 2- (3/8)^". Let f (x) = 2 f^ (x) . Then

 Var(f) < 2 Var(f^) = 2-3/5 < Let P be a set of positive
 measure, E be the set of real numbers which have infinitely

 many l' s in their ternary expansion, and P' = PPIE. Then,

 since |eC| = 0, |P'|=|P|. Let x be a point of density of
 P ' and let

 I = [a,b] = [.x,x_...x 0, .X.X-...X 1] 12 n 12 n

 satisfy x € I and ļP'fllļ > 8/9 ļ I ļ - Then, by the construc-

 tion of f. , for i = l,2,...n ' each f. is constant on I. i , ' x
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 Since I P' ill I > 8/9 |l I there are points i P' such

 that

 a^ € (a + 1/9 d, a + 2/9 d)

 € (a + 1/3 d, a + 2/3 d)

 a3 € (a + 7/9 d, a + 8/9 d)

 where d = b-a. Then = ^n+1^3^ an(*

 fn+l(a2' " fn+l(al> = ' 8"n_1- Hence
 00 • -

 |f(a ) - f(a )| < 2 • 2 8-1 = 2/7 . 8~n_X
 n+2

 and
 m m

 |f(a2) - fla^J > | 8~n_1 -2 2 8_1 m = 5/14 • 8"11"1.
 n+2

 It follows that f is not monotone on P and since P was

 an arbitrary perfect set of positive measure, it follows that

 f is not monotone on any measurable set of positive measure.
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