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 ON THE SPACE BSV^ajb]

 The statement that f has bounded slope variation

 with respect to m over [a,b] means that f is a func-

 tion whose domain includes [a,b], m is a real- valued

 increasing function on [a,b] , and there exists a non-

 negative number B such that if i=0 is a subdivi-
 sion of [a,b] with n > 1, then

 (1) - f(xi) fui) - fiB.
 Z__.jm(x1+1) - m(Xļ) m(x¿) - mix^)

 The least such number B is called the slope variation

 of f with respect to m over [a,b] and is denoted by

 v£(df/dm). [Notes v£(df/dm) = 0.] BSV^a.b] is the
 8paoe to which f belongs if and only if f has bounded

 slope variation with respect to m over [afb].

 In case m is continuous on [a,b], then BSV^ajb]

 is the space to which P belongs if and only if there

 is a function f in BV[a,b] such that, for each x in

 [a,b], F(x) = J f dm + F (a), where the integral is
 the Stielt jes integral ([2], Theorem 3). No such

 characterization has been obtained for the case when

 m is not continuous on [a,b].

 Theorem 2 of [3] shows that BSV^ a,b] is a subset

 m



 of BV[a,b] . However, BSTP[a,b] with the BV-norm ||f |Ļ

 = V*(f) + |f( a) I is not complete.

 THEOREM 1. BSV^Ujb] with norm ||filaV = v£(df/dm)

 + |D^f(b)| + ļf(a)| is a Banach space, where D~f(b) de-
 notes the left-hand derivative of f with respect to m

 at b.

 ïf m is an increasing function on [a,b], an m-

 polygonal function on [a,b] is a generalization of a

 polygonal function obtained by replacing straight line

 segments with arcs of the curve y = m(x) . Every m-

 polygonal function on [a,b] belongs to BSV^ajb].

 THEOREM 2. . If f is in BSV^ajb] , there exists an

 infinite sequence {©n} of m-polygonal functions on
 [a,b] which converges to f on [afb] (If f is continu-

 ous on [a,b] , the convergence is uniform. ) and such

 that as n -*■ oo , the infinite sequences {v^(d©n/dm)} ,

 {Va<9n)}; (Í (dSnlVam} and {j ©n ām} converge re-
 spec ti vely to V^(df/dm), V^(f ) , (df )^/dm and

 /ļ> a f dm, where r b (df) o a f dm, where (df) /dm i£ the Hellinger integral
 and Ja f dm is the mean Stleltjes integral .

 It is a consequence of Theorem 2 of £33 that a

 Cauchy sequence in BSV^atb] with norm IH£t is also

 a Cauchy sequence in BV[a,b] with norm ||*jļv. In fact,
 a slight modification of the proof of Theorem 1 gives

 the following result.
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 THEOREM 3. BSV®[a,b] with norm ||f||3vm = v£(df/dm)

 + Va(f) + lf(a)l 81 va^df/dm^ + HfIĻ â Banach space»

 Roberts and Varberg [53 and G. P. Webb [73 have

 considered the special case m(x) = x and have shown

 BSVm[a,b] is a Banach space with a norm which, in each

 case, differs from both IMlsv 811(1 N* JĻvm*
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