T.G. McLaughlin and R.C. Woodcock, Department of Mathematics, Texas Tech University, Lubbock, Texas 79409

Some Uniform Pathology for Borel Measures

The results pointed out here constitute a natural "soft extension" of the main content of [2]; details will shortly appear in an appendix section of the first author's forthcoming joint monograph [1] with H.R. Bennett. In what follows, T is a second countable topological space of cardinality 2^{\aleph_0} (e.g., the real line), μ is a complete, regular, sigma-finite, nonatomic Borel measure in T such that $\mu(T) > 0$, μ * is the outer measure induced by μ , and μ_* is the customary inner measure. P(T) denotes the set of all subsets of T. For information concerning Martin's Axiom, see [3].

Definition. <u>A function $\mathcal{V}: P(T) \rightarrow P(T)$ is well</u> <u>behaved if (a) $\mathcal{N}(\bigcup X_{i}) = \bigcup \mathcal{N}(X_{i})$ (so that \mathcal{N} is</u> <u>iel</u> <u>iel</u> <u>iel</u> <u>determined by its action on singletons), (b) $\mathcal{N}(\emptyset) = \emptyset$, <u>and (c) ($\mathcal{V}X$) ($\mathcal{V}Y$) [($\mathcal{N}(X) \subseteq X \& X \cap Y = \emptyset$) => $X \cap \mathcal{N}(Y) =$ </u> \emptyset]. \mathcal{N} is small if card($\mathcal{N}(X) \leq \underline{X}_{0} \cdot \text{card}(X)$ holds for <u>all $X \subseteq \underline{T}$. A set $X \subseteq \underline{T}$ is \mathcal{N} -invariant if $\mathcal{V}(X) \subseteq \underline{X}_{0}$.</u></u>

Examples of small well-behaved functions which are of interest in classical measure theory are (1) the \mathscr{X} arising from rational translation on the line and (2) the \mathscr{X} arising from allowing disagreement at finitely many coordinates in the space $\{0,1\}^{\mathbb{Z}}$. Of course, the identity function on P(T) is also small and well behaved.

Theorem 1 (cf. [2]). Suppose T and μ satisfy the additional condition: $(\forall X \subseteq T) [(\mu(X) \text{ defined and } > 0)$ $=> \operatorname{card}(X) = 2^{\aleph_0}]$. Let \mathscr{U} be a small well behaved function from P(T) into P(T); and let A be an \mathscr{U} -invariant subset of T such that $\mu(A)$ is defined and is > 0. Then there exists an \mathscr{U} -invariant set $B \subseteq A$ such that A-B is \mathscr{U} -invariant, $\mu^*(B) = \mu^*(A-B) = \mu(A)$, and $\mu_*(B) = \mu_*(A-B) = 0$.

Theorem 2. Assume no additional condition on T and μ , but assume Martin's Axiom. Let A be an χ -invariant subset of T such that $\mu^*(A) > 0$, where \forall is small and well behaved. Then there exists an χ invariant subset B of A such that A-B is χ -invariant, $\mu^*(B) = \mu^*(A-B) = \mu^*(A)$, and $\mu_*(B) = \mu_*(A-B) = 0$.

References

 H.R. Bennett and T.G. McLaughlin, A Selective Survey of Axiom-Sensitive Results in General Topology, Texas Tech University Math Series, No. 12, to appear.

- J. Rosenthal, Nonmeasurable invariant sets, Amer. Math. Monthly, Yol. 82, 1975, 488-491.
- J.R. Shoenfield, Martin's axiom, Amer. Math. Monthly, Vol. 82, 1975, 610-617.

Received December 19, 1975