
 CLUSTER SETS OF ARBITRARY REAL FUNCTIONS:

 A PARTIAL SURVEY

 C. L. BELNA

 Much of the general theory of cluster sets has been develop-

 ed by Sir Edward Foyle Collingwood, and so it seems appropriate

 to begin this article with the following paragraph which

 Collingwood wrote [11, Footnote #2, p. 1242] concerning the origin

 of the theory of cluster sets of arbitrary real functions and its

 development prior to 1960.

 The theory of the cluster sets of arbitrary real
 functions originated with W. H. Young. The story
 begins with his paper [22] , in which he showed that
 the points of inequality of right and left upper
 and lower limits of a function of a single variable
 are enumerable. This was followed by a number of
 papers, some in collaboration with G. C. Young, of
 which the most important are [24], in which he
 proved that for a function of a single variable the
 points of inequality of right and left cluster
 sets, although not under that or any other compen-
 dious name, are enumerable, with analogous theorems
 for several variables; and [25] which completes
 and summarizes his theory. Young considered only
 real functions and was evidently unaware of
 Painlevé's definition of a cluster set (domaine
 d'indétermination) which had been formulated in
 1895 for complex functions. Perhaps for lack of a
 suitable terminology and notation to give point to
 the ideas Young's theorems attracted little notice
 and, so far as I can discover, have not hitherto
 been mentioned by writers on complex function
 theory. I am myself indebted to his daughter, Dr.
 R. C. H. Tanner, for calling my attention to them.
 The work of H. Blumberg ([7] and [9]), who had in-
 dependently discovered Young1 s theorem of 1908 on
 discontinuities [5], developed Young's Theory of
 arbitrary real functions a good deal further and
 gave rise to the theorems of Jarník [17] and
 Bagemihl [1] whose well known ambiguous point
 theorem has important implications for complex
 function theory.
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 It is the purpose of this article to attempt to give an ex-

 plicit and orderly account of the results alluded to in this state-

 ment of Collingwood , and then to trace up to the present time sub-

 sequent developments related to these results. Even though the

 original statements of many of these results were made without the

 terminology of cluster sets, such terminology will be used exclu-

 sively here.

 Also, the reader is alerted to the fact that each result giv-

 en here is stated only for functions that are real-valued, and that

 most of these results are true for more general functions; in fact,

 each result is true when Q is replaced by an arbitrary compact,

 2° countable topological space, with the exception of those results

 that make reference to the ordering of the points in R.

 SI. CLUSTER SETS AND ESSENTIAL CLUSTER SETS.

 Let f be a mapping from the real line R into the extended

 real line ft, and let .x be a point on R. Then the following

 ordinary and essential cluster sets of . f will be used throughout :

 (i) The right cluster set C^Cf ,x) of_ f a£ x is the set

 of all points w € fl for which f~* (U) <"»(x,x+r) ^ 0 for each

 r > 0 and each open neighborhood U of tu. The left cluster set

 C (f,x) o£ f a£ x is defined analogously, and the cluster set

 of f at x is the set

 C(f,x) « C+(f,x)UC (f,x)

 (ii) The right essential cluster set C*(f,x) of f a£ x

 is the set of all points u € Ū for which f"1 (U) has positive

 upper right exterior density at x for each open neighborhood U

 of u. The left essential cluster set Cg(f ,x) is defined simi-
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 larly , and the essential cluster set of f a_t x is the set

 Ce(f,x) = C*(f,x)UC~ (f,x)

 (lii) u € M(f,x) iff f~* (U) /~*(x-r,x+-r) has positive exteri-

 or measure for each r > 0 and each open neighborhood U of u.

 (iv) u € H(f,x) iff f-^U) has upper exterior density 1

 at x for each open neighborhood U of <■>.

 (v) at € HB(f,x) iff f~*(U) has exterior density 1 at x

 for each open neighborhood U of to.

 The sets M(f,x) and H(f,x) were recently introduced by

 L. Zajíček [26], and it seems that the set HB(f,x) is being in-

 troduced for the first time right here. The following result

 gives a relationship between the sets (ii) - (iv) :

 THEOREM (Zajíček [26]): If f : R Q is arbitrary, then

 the set {x: H(f,x) ^M(f,x)}, and hence the set

 {x: H(f,x) + Ce(f,x)> ,
 is of the first category on R.

 Henry Blumberg established the following relationship between

 the sets (ii) and (v) :

 THEOREM (Blumberg [8]); If f : R ft i£ arbitrary , then

 the set

 {x: HB(f,x) -f Ce(f,x)>
 is of measure zero on R.

 It is noted that there exists a measurable function f: R -*• ft

 for which the set {x: HB(f,x) 4 ' C (f,x)} is residual on R: Let ' e

 T be a residual subset of R having measure zero. Then, accord-
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 ing to Casper Goff man [14] there exists a measurable subset S of

 R such that the density of S exists at no point of T. Hence,

 if f is the characteristic function of S, then HB(f,x) 8 0

 for each x 6 T, and f is the desired function.

 §2. SYMMETRY THEOREMS.

 In 1907, W. H. Young [22] proved the following theorem: If

 f : R ■+■ fi i£ an arbitrary one- or many-valued function, then

 sup C (f ,x) - sup C+ (f ,x) and inf C (f,x.) = inf C*"(f,x)

 for all but countably many points x € R. Referring to this result,

 Collingwood wrote [12, p. A]:

 This appears to have been the first theorem to be
 explicitly stated for arbitrary functions. Young
 announced it at the meeting of the British Associa-
 tion held at Leicester in 1907. He used to refer

 to it as the Leicester theorem. A year later, at
 the Rome congress of 1908, he announced what he
 called the Rome theorem [23] .

 YOUNG'S ROME THEOREM: If f : R fi is an arbitrary one- or

 many-valued function, then

 C+(f,x) » C~(f,x)

 for all but countably many points x € R.

 In 1924, S. Kempisty established the first known relationship

 between the left and right essential cluster sets of an arbitrary

 function.

 THEOREM (Kempisty [18]): If f : R Q is arbitrary, then

 sup Ce(f,x) i inf C*(f ,x) and sup C*(f ,x) > inf Ce(f,x)

 for all but countably many points x € R.
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 This result furnishes a partial essential cluster set anal-

 ogue to the theorems of Young; some time later, Z. Zahorski

 posed the question as to whether the exact essential cluster set

 analogues are true. In 1960, L. Bélowska answered this question

 in the negative.

 THEOREM (Belowska [4]): There exists si measurable function

 f: R ■+■ ft for which sup C*(f,x) < sup Ce(f,x) at uncountably
 many points x € R.

 In the same year, M. Kulbacka showed that there is a limit

 to the "size" of the set of points x at which the inequality in

 Belowska' s theorem can occur; this result also furnishes a nice

 essential cluster set analogue of Young's Rome theorem.

 THEOREM (Kulbacka f 201) t If f : R -»• ft is arbitrary, then

 the set of points x € R at which C*(f,x) ^ C¡e(f,x) is of the
 first category and measure zero on R.

 The proofs of Belowska and Kulbacka are rather lengthy, but

 Casper Goffman [15] has given short and simple proofs of both re-

 sults.

 Just recently, using the concept of o-porosity which was

 first introduced by E. P. Dolzhenko [13] in his work on complex-

 valued functions defined in the open unit disk, L. Zajíček gave

 the following improvement of Kulbacka* s result.

 THEOREM (Zajíček [26]): If f : R ft arbitrary, then the

 set of points x € R ďt which C*(f ,x) =f C (f ,x) i£ ¿ o-porous

 set of the type
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 (A set PCR is porous at the point x € R provided that

 lim sup r >o , e-*o sup r e

 where y(x,£,P) is the length of the largest open interval in

 the complement of P which is entirely contained in the interval

 (x-e,xfe). Then P is a porous set if it is porous at each of

 its points, and it is a g-porous set if it is the countable union

 of porous sets. Such a set is. both of the first category and of

 measure zero, but not every set of measure zero is a-porous.)

 Zajíček has also proven the following result which contains

 the result of Kempisty mentioned above.

 THEOREM (Zaj íček [ 26 ] ) i If f : R -*■ ß is arbitrary, then the

 set of points x at which

 C+(f,x)nC~(f,x) = 0
 e e

 is countable.

 S3. MEMBERSHIP OF f(x) IN THE CLUSTER SETS OF f AT x.

 W. H. Young ([24] and [25]) was the first to establish a re-

 lationship between the values of f(x) and the set C(f,x). He

 proved : I£ f : R ft is an arbitrary one- or many-valued func-

 tion» then the set of points x a£ which some value of f (x) does

 not satisfy inf C(f,x) < f(x) < sup C(f,x) is countable. Some

 fifty years later, E. F. Collingwood gave the following improvement

 of this result.

 THEOREM (Collingwood [121); If f : R -»■ Ū is an arbitrary

 one- or many-valued function» then the set of points x at which

 some value of f(x) satisfies f(x) ^ C(f,x) is countable.
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 This says Chat at all but countably many points Ç each

 value of f (Ç) is approached by f(x) as x -»■ Ķ through some

 sequence of points. In 1923, Henry Blumberg proved that at almost

 every point Ç each value of f (Ç) is approached by f(x) as

 x Ķ through some set of points having exterior density 1 at

 Ç. In cluster set notation, this result is stated as follows.

 THEOREM (Blumberg [6]): If f : R ß is an arbitrary one-

 or many-valued function, then the set of- points x at_ which some

 value of f(x) satisfies f(x) ^ HB(f,x) is of measure zero.

 The characteristic function of any residual set of measure

 zero can be used to illustrate the fact that the exceptional set

 in the previous theorem can be residual even if f is assumed to

 be measurable and if HB(f,x) is replaced- by M(f,x).

 §4. BOUNDARY CLUSTER SETS.

 Here an example is given to illustrate how an important clus-

 ter set result of E. F. Collingwood concerning functions f map-

 ping. the open upper half plane H into fl can be proved using

 only cluster set results for functions I: R -*■ Ū.

 Let f: H -*■ Ū be arbitrary. The cluster set C(f,x) o£ f

 at x € R is the set of all points <■> € Ū for which there exists

 a sequence of points zfl € H with zß x and f (z^) u. Then

 the right boundary cluster set Cgr(f,x) o£ f at^ x is:
 C_ (f ,x) = O A(x,e)

 e>o

 where A(x,e) = C(f,y), and the bar denotes closure. The
 x<y<x+e

 left boundary cluster set Cnfl(f,x) is defined similarly. DjL
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 THEOREM (Collingwood Till); If fï H ß is arbitrary, then

 Cßr(f,x) " CB£^f,X^ * C^f,x^

 for all but countably many points x € R.

 Proof. Define the (many-valued) function I: R ■+• ß by

 f(x) = C(f,x)

 Then it is easy to see that

 C+(f,x) = CBr(f,x) and <f(£,x) » Cß£(f,x)

 According to the theorem of Collingwood cited in section 3, there

 exists a countable subset A of R such that, for every x € R-A,

 each value of f(x) is an element of C(f ,x) , that is,

 (1) C(f,x) CIC(f,x) (x € R-A)

 Also, according to Young's Rome theorem, there exists a countable

 subset B of R such that

 C+(f ,x) = C (f,x) = C(f,x)

 for each x € R-B. That is,

 (2) CBr(f,x) = CBA(f,x) = C(ř,x) (X € R"B)

 Then (1) and (2) combined with the trivial fact that Cßr(f,x)

 and C (f,x) are subsets of C(f,x) for each x yields
 DX*

 Cßr(f,x) « CBJŁ(f,x) » C(f,x)

 for each x € R - (AVJB), and the proof is complete.

 15. AMBIGUITY THEOREMS.

 A subset y of tí is called an arc at x 6 R if Y is a

 Jordan arc in H having one endpoint at x and the other end-

 point at a point of H. The cluster set C (f,x) of f : H -»■ ß

 along an arc y ât_ x is the set of all points to € ß for
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 which there exists a sequence of points z on y with z x
 n n

 and f (z^) -»■ u. Should y be a rectilinear segment emanating

 from x and baking the angle 8 with the positive real line»

 the cluster set of f along y is denoted by C(f,x,0).

 The function f : H •+■ R is said to be ambiguous at x € R

 if there exist two arcs a and ß at x with

 C a (f,x)ncfl(f,x) ß - 0 . a ß

 Also f is said to be rectilinearly ambiguous at x if there

 exist two directions 0^ and 02 with

 c(f .x.e^ncif ,x,e2) ■ 0 .

 In 1930, Henry Blumberg proved the first theorem dealing with

 the set of çoints at which a function is rectilinearly ambiguous.

 THEOREM (Blumberg f 7 ] ) : Let f: H + ß be arbitrary, and

 let 01 and two fixed directions. Then the set of points

 x at which sup C(f,x,0^) < inf C(f,x,02) is countable.

 Four years later, Mabel Schmeiser gave the following improve-

 ment of this result.

 THEOREM (Schmeiser f21ļ): If f : H il is arbitrary, then

 the set of points x€R for which there exist two directions 0^

 and ©2 with

 sup Cif.x,©^ < inf C(f,x,02)
 is countable.

 Then, in 1936, Vojtech Jarník completely determined the na-

 ture of the set of points at which an arbitrary function is recti-

 linearly ambiguous.
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 THEOREM (Jarník [17]): An arbitrary function f : H -*• ft is

 rectilinear ly ambiguous at only countably many points x € R.

 Finally, in 1955, modifying an idea due to Blumberg [9, pp.

 16ě17], Frederick Bagemihl [1] gave the final answer to the gener-

 al ambiguity question.

 BAGEMIHL 'S AMBIGUOUS POINT THEOREM; An arbitrary function

 f : H •* ft can be ambiguous at only countably many points x € R.

 With this settled, it is natural to ask what happens in the

 case of three arcs or three segments. To begin with, in his 1936

 paper, Jarník had already constructed a function f: H -»■ ft having

 the property that

 C(f ,x,ir/4)nc(f ,x,ir/2)nc(f ,x,3ir/4) = 0

 for each irrational point x in Cantor's middle-third set. Then,

 in 1959, F. Bagemihl, G. Piranian, and G. S. Young [2] established

 the existence of a function f : H ft with the property that to

 each x € R there correspond directions 0^, öj» 6^ for which

 (*) cíf.x.e^ncíf.x.epncíf.x.e^ = 0 ,

 that is, f has the 3-segment property at each x 6 R.

 Now suppose f : H -»■ ft is continuous. Then C(f,x,0) is

 connected for each x and each 6; hence, the set of points x

 at which f has the 3-segment property is countable since (*)

 implies that f is rectilinear ly ambiguous at x. It is noted

 that the case for complex-valued functions is not as easily re-

 solved. In their 1959 paper, Bagemihl, Piranian, and Young posed

 the following question: Does there exist a continuous complex-
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 valued function f in H having the 3-segment property at each

 point of ii set of positive measure or of second category on R?

 This question has never been answered.

 It remains to discuss the ambiguity theorems for essential

 directional cluster sets; the first of which was established by

 A. M. Bruckner and C. Goffman in 1966. (The symbol C^Cf ,x,8)
 is used to denote the essential cluster set of f at x in the

 direction 0.)

 THEOREM (Bruckner-Goffman [101): Let f : H •+• ft be continu-

 ous and let 0^ and 0£ b£ directions. Then the set of points
 x at which

 sup Ce(f,x,6ļ) < inf Ce(f,x,02)
 is of the first category on R.

 In their 1968 paper, C. Goffman and W. T. Sledd proved An

 interesting result (Theorem 2) of which the following generaliza-

 tion and extension of the Bruckner-Goffman theorem is a immediate

 consequence.

 THEOREM (Goffman-Sledd [16]): Let 0^,02». .. be a sequence

 of directions. If f : H -*• ft is_ measurable , then the set of points

 x a_t which

 He (f,x,e ) = 0
 n=l e n

 is of measure zero; furthermore, if f i£ continuous , then the

 set of such points x i_s ojf the first category.

 Goffman and Sledd also pointed out the fact that "continuous"

 can not be replaced by "measurable" in the statement of the pre-
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 vious theorem as shown by the characteristic function f of the

 set SxR*", where R* is the positive real line and S is any

 residual subset of R of measure zero. For such a function f ,

 C (f,x,ir/2)nc (f,x,0) - 0
 e e

 for each x € S and each 6 ^ */2.

 Using a construction of J. R. Kinney [19], the present author

 [3] proved the existence of a measurable function f: H 0 hav-

 ing the property that, at almost every x € R, there exists a di-

 rection 6 for which
 x

 Ce(f,x,ir/2)nCe(f ,x»8x) 88 0 •

 In view of this example and thé example given in the previous para-

 graph, it is clear that "no" essential cluster set analogue of

 Jarník* s theorem exists.
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