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 Curves, length, fractal dimension

 1. Introduction

 For the sake of simplicity, we limit our attention to bounded, simple curves in
 the plane. Our main goal is to relate the study of finite-length (rectifiable)
 curves to that of infinite-length (fractal) curves. As usual, this relationship can
 be established with the help of the notion of orders of growth for functions (to
 0 or -foo). For a parametrized curve, the length (in the rectifiable case) is, in
 general, the integral of the velocity but this approach is not easily adapted to
 fractal curves. The parameter induces, in both cases, a local analysis which gives
 deep insight into the structure of the curve.

 Notation [a, 6] is the parameter interval (a < b), t the parameter, 7 : [a, b] - ►
 R2 a continuous , one-to-one function (the parametrization) , T = 7 ([a, 6]) the
 curve , and for any a < t' < t2 < b, j(ti) ^ j(t2) = t([*i,*2]) is an arc ofT, of
 measure t2 - t'. The Hausdorff distance between two compact sets E 1, E2 of the
 plane is denoted dist(E'i E2).

 2. Relating velocity and length

 For any sequence ( Pn ) of polygonal curves, having same endpoints as T, whose
 vertices belong to T, and such that dist(Pn, T) - ► 0, the length of T is defined as

 (1) L(r) = limL(Pn) = sup L(Pn).
 n n

 If 7 is continuously differentiate over [a, 6], there exists at all x - 7 (ż) of V a
 speed v(t)} defined as

 (2) »(1) w = lim ^'(T(<-r),7(' + r)) w r->o 2 r
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 Then, the formula

 (3) L(T)= í v(t)dt
 Ja

 is obtained through a standard exchange limit-integral. Formula (3) is no longer
 valid when v(ť) does not exist everywhere; existence almost everywhere on [a, b]
 is not sufficient.

 Example 1 The devil's straircase (figure 1) is the graph of an increasing , con-
 tinuous function. Using the abcissa as the parameter , one sees that v(t) ex-
 ists (and is equal to 1) everywhere in [0,1] but on the Cantor set C. We get

 f v(t)dt = 1, but L(T) = 2.

 r^i 1, 1/2

 1/4

 0 1/3 2/3 1

 Figure 1: The devil's staircase

 It is possible to transform (3) into a general formula for the length, by avoid-
 ing to take a limit in (2). First, define the two- variables function

 {dist(y(a),y(a dist(j(b dist(j(t - - r), 2 r), j(t + y(b)) 2 4- r)) r)) if ifa<ť if t b - < t t + < - r. a {dist(y(a),y(a dist(j(t - r), j(t 4- r)) ifa<ť - r<ť + r<6 dist(j(b - 2 r), y(b)) if b < t + r.
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 1 [h
 Then dT = 7

 0- a Ja
 is an averaged local velocity.

 Theorem 1 For any simple , bounded curve T,

 (4) L(r) = (b-a) lim ^
 (length = time x velocity ).

 The proof uses the relationship between Riemann sums and the integral.

 3. Orders of growth and fractal dimension

 Let r(e) = {1 G M2 I dist(x,T) < e}, and Ae be the area of r(e). When T has
 finite length, L(T) may be obtained by

 A
 (5) £(r) = lim (Minkowski's definition of length).

 The curve T has infinite length if

 lim ř_o- = -foo ( in .. this case lim^n ę - - is also -f 00).

 Using a way of thinking inspired by E. Borei, F. Hausdorff, G. Bouligand and
 others, one tries to characterize T by the order of growth of the function A€
 when e decreases to 0. When the family of power functions ta , a > 0, is the
 reference scale of functions, the order of growth of A€ is the limit (when it
 exists) of logv4e/loge. In order to get a limit which increases from 1 to 2 when
 r becomes more and more irregular (Ae is slower to reach 0), one defines the
 fractal dimension of T as

 <6>

 Use lim when this does not converge. For the sake of simplicity, we will assume
 throughout this paper that A(r) is always a limit.

 For practical applications, the fractal dimension is difficult to handle, and it
 would be interesting to relate it to the sequences (L(Pn)), as in (1), or to the
 local velocity, as in (4). This is what we will investigate now.
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 4. How to relate A(r) and ( L(Pn ))?

 Following Section 2, let us define Pe a polygonal curve, with same endpoints as
 r, whose vertices belong to T, and such that every steplength (except perhaps
 the last one) is equal to e. Take Lt = L(Pe). A reasonable guess (the one which
 was made by almost everyone during the 80's!) is the following:

 <7> A(r)=;Lmo(i+ra)-
 This formula is only true for self-similar curves (see Section 2). In general, it is
 a false guess , as proven by the two following examples:

 Example 2 Take the atirador of an iterated function system , as in Figure 2.
 This is a well-known curve whose fractal dimension is |. By construction , a
 sequence of approximating polygons arises directly:

 • Po is a segment , of length '/2.

 • Pn is made up with 4n segments of length en = 2~ny/l + 4~n.

 Then using L(Pn) = y/l + 4n ~ 2n , one gets

 logLÇ^)
 + I logen I

 Example 3 Take a parameter b < ^ģ Inside an original isocel triangle, of basis
 J, of height h, construct a chain of 6 isocel triangles of basis 1/4, of height
 fib and so on. The n-th step consists in 6n isocel triangles (embedded in the
 previous ones), of basis 4~n; of height hbn . With L(Pn) = 6n4~n = (3/2)n, and
 €n = 4~n, one gets

 logL(Pn) log 3/2
 |logen| log 4

 On the other hand,

 A(r) = 1 +
 I logii

 depends actually on the parameter b. The self-similar case is obtained for b =
 1/4; the two formulas coincide only in this case.

 It is easy to see why formula (7) is a false guess in these examples: in (7), we
 should replace e (the steplength of P€) by the Hausdorff distance dist(Pe, T), in
 order to get the "good" result. The Hausdorff distance between the two curves
 must be, locally, the same all along T. This may help to understand the following
 sections.
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 Figure 2: First steps of the construction of a self- affine function

 5. Expansive curves

 Let H denote the set of all compact sets in M2, and, forallE G 7ť,diam(£')
 denote its diameter, K(E ) its convex hull and b(E) the breadth of K(E).

 A size function , defined on ?ť, has the 3 following properties:

 1. There exists 2 constants 0 < c' < ci such that

 c' diam (E) < siz e(E) < c^ diam(JE');

 2. Ei C E2 => size(£'i) < size(i?2);

 3. lim dist(£^n , jE7) = 0 <=> lim siz e(En) = size(i£).
 n-+oo n->0

 Example 4 The diameter, the perimeter of K(E), the diameter of the circum-
 scribed circle , are all size functions ( for different constants ci and C2).

 A deviation function , defined on ?ť, has the 3 following properties:

 1. There exists 2 constants 0 < ci < ci such that

 cib(E) < dev(E) < c2b(E );
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 Figure 3: Construction of a 6-sided polygonal curve inside an isocel triangle

 2. Ei C E2 dev(jE'i) < dev(i?2);

 3. lim dist(£n, x E) = 0 <=> lim dev(J£n) = dev(E). n-+oo x n-+0

 Example 5 The breadth of K(E), the inner diameter of K(E), the Hausdorff
 distance of E to a diameter of E, are all deviation functions.

 Proposition 1 For any size and deviation functions ,

 A(K(E)) ~ size(E) d ev(E).

 These two set functions may be chosen according to the geometry of the problem.
 We will now assume that a choice has been made.

 Proposition 2 For any curve T, and for any e < dev(r), one can define a
 covering (I7)i<,-<jv of Y by arcs of deviation e, such that

 Vi, 1 < i < N - 2, 17 H r?+2 = 0
 r¡nr¡+l = {Ai+1}

 where Ai+i is the only common point between T¡ and T¿+1.

 Definition 1 A curve T is expansive if there exists a constant c > 1, and , for
 all e < dev(r), a covering (T¡) ofT, such that

 (i) V¿, - < dev(r¿) < e
 c
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 Figure 4: A uniform deviation procedure along the curve

 (xi) £>(A'(I7)) < c^(ļjA-(n)).
 i i

 Property (i) indicates that the covering of T is a uniform deviation procedure
 along the curve. Property (ii) indicates that the local convex hulls do not overlap
 too much; intuitively, at any scale the curve does not come back on itself.

 6. Uniform deviation procedures on T

 Now we can relate the fractal dimension A(r) to the order of growth of some
 sequence (L(Pe)); the condition is that the steps of P€ have constant deviation.
 Let us recall that, for every covering (I') of a curve T, the index of (r¿) is the
 largest of all integers n such that there exists n arcs in (r¿) whose intersection
 contains more that one point.

 Theorem 2 Lei T it be an expansive curve, c be a constant and uj an integer ,
 both greater than 1. For every e < dev(r), let (I'-) be a covering of V whose
 index is < w, and for all i,

 - < dev(r¿) < e.
 c

 Then

 ( log^diam(I'-)^
 (8) A(r) = lim 1 +

 |logf| ¡
 V

 The main argument of the proof consists in showing that ^*4(A'(r¿)) is equiv-
 alent to *4(r(e)).
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 7. Examples

 In Example 2 of Section 5., at stage n, T is covered by 4n arcs whose deviation
 has the order 4~n (breadth of the fundamental rectangles covering T), each

 having size ~ 2~n. Take cn = 4""n, ^ diam(F¿n) ~ 2n, to get
 ť

 A(r) v ; = i + ļ^| 4 = ļ. 2 v ; + log 4 2
 In Example 3 of Section 4, T is covered by 6n arcs of size ~ 4~n, deviation ~ bn.
 Then

 A(r)=i+^iïï-
 This converges to 1 as 6 - ► 0, and to ?°^ as b - ► 1/4.

 log 4

 8. Applications

 There are two main applications concerning fractal curves:

 • Let r be the graph of a nowhere differentiate function z(t ), t G [0, 1].
 We assume that z(t) is, uniformly on [0, 1], holderian with exponent H ,
 0 < H < 1. Let us, moreover, assume (as in Example 1) that, for all i and
 t £ [0, 1], there exists 1 1 and t<¿ in [/ - r, 1 4- r] , such that z(ti) = z(t 2), and
 1*1 - *2! > cr for some constant c. Then, the subarc of T of extremities
 (t - r, z(t - r)) and (ť + r, ¿(ż + r)) has deviation ~ r and size ~ th . With

 e = r and ^diamT,- ~ -eH , Theorem 2 gives
 i

 A(r) = 2 - tf,

 a well-known result for holderian functions.

 • Let T be a strictly self-similar curve, made up with N similarities of ratio
 p, 0 < p < 1. For any n, T can be covered by Nn similar arcs, of size ~
 deviation ~ pn . Then, Theorem 2 gives

 A(r) ^l) = 1 + logNf> = igiiï.
 A(r) ^l) = 1 + |log/>| = I log p'>

 again a well-known result. All the curves of Section 7 and Section 8 are
 expansive.
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 9. Uniform deviation curves

 All previous examples belong to the following class of curves:

 Definition 2 Let T be a parametrized curve ( notations in Section 1). We say
 that r has "uniform deviation" if there exists a function g(r) such that , for all
 r < b - a, every x € T belongs to an arc of measure r, and deviation ~ g(r).

 We can get the fractal dimension of such curves, when g(r) = r^:

 Theorem 3 Let T be an expansive curve , of uniform deviation with g{r) = .
 Let T(ť, r) be the size of the arc 7 (t - r) ^ 7 (t + r)} and

 T' = é-J!T^dl
 be the average local size. Then

 (9) A(r)=l + i-ì limisi.
 ß ß T- 0 log T

 Many mathematical models of curve have uniform deviation, because of the ho-
 mogeneity of their construction. However, at tractors of iterated affine functions
 systems do not have this property in general, at least not with respect to the
 parametrization induced by the construction. One question is in order here:

 Is it possible, for every simple curve T, to define a parametrization
 such that T has uniform deviation?

 10. The (a,/?) characterization of curves

 Formula (9) becomes a nice, compact formula when Tr ~ ra , for some parameter
 a > 0. Then

 (10)

 a formula which shows the relationship between fractal dimension and the two
 indices characterizing the local geometry of the parametrized curve T: a gives
 the average local size, and ß gives the local deviation. It is not too difficult to
 show that the pair (a,/?) must follow the three following conditions:

 0 < a < 1, a < /?, a + ß>l.
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 (use the continuity of 7, the inequality dev E < c diami? for some constant c,
 and the expansivity of T).
 Figure 5 shows a part of the 2-dimensional graph of A, as a function of a
 and ß. One can recognize the two main cases of Section 8: ß = 1, which gives
 A(r) = 2 - a, a having the meaning of an Holder exponant; and ß = a which

 gives A = - . To the last case belong all strictly self-similar curves. Conversely,

 we could define the non-strict (or statistical) self-similarity as follows:

 Definition 3 A parametrized curve T is statistically self-similar if it has uni-
 form deviation , and a = ß.

 When a = 1, then A(r) = 1: rectifiable curves belong to this case. When a
 curve is twice continuously different i ab le, then a = 1 et ß = 2.

 Problem Construct a curve such that a = 1 and ß is any parameter > 1.

 11. Fractal dimension, and the local velocity

 For a fractal curve, whose every subarc has infinite length, there is no such thing
 as speed (Section 2): such a curve is the trajectory of an object having infinite
 speed. But it is possible to use a local velocity, as in Section 2. It is only better
 to replace the distance d(ť,r) between the two endpoints of an arc of measure
 2r, by its size. Keeping in mind the principle of uniform deviation, we define, for
 every t E [a, 6], and for every e < dev(T), an arc T(ti c) of deviation e, containing
 the point 7 (t) of F (this may be done in several ways). Denote by /¿(r(/, e)) the
 measure of this arc, that is, the time passed in r(ť,č). Now to define a local
 speed we use the ratio

 size(T(ż, e))
 n(T(t,e))

 An approximate e-length of T is given by the integral

 fb size
 /
 Ja V

 We obtain the following generalization of (9):

 ( log /'
 (11) A(r)=lim 1 + - A-JÍ -

 e-0 I log e|
 V /
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 Figure 5: The 2- variable function A =

 but this is just a conjectural formula, equivalent to (9) in the case of uniform
 deviation (/¿(r(ť,e)) ~ c1^). It would be interesting to extend the validity
 of (11).

 References

 This is a survey of a part of the book "Curves and fractal dimension", to be
 published by Springer- Verlag (French and English versions).
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