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 Does Every Borei Function Have a Somewhere
 Continuous Modification?

 Is it possible to place any limits on the roughness of a Borei measurable
 function from the set of real numbers into itself? One answer to this question
 is provided by Lusin's theorem (see, for example, §8.29 of [9]): if / : M - ► M is
 Borei, then for every e > 0 there is a continuous function g : M - ► M such that
 A({ar : f(x) -fi p(x)}) < e, where A is Lebesgue measure. In some sense, Lusin's
 theorem is the best possible result of this type. It is certainly not the case that
 any Borei function is equal almost everywhere to a continuous function, as shown
 by the trivial example

 f(X) = S1' ifx^°-
 JO, otherwise.

 What happens, however, if we look in a different direction and ask whether
 an arbitrary Borei function is almost everywhere equal to a function that is
 continuous at at least one point? That the answer to this question is negative
 is implied by a striking example of Carathéodory ([5], §§427 - 428) that exhibits
 a Borei function with the following remarkable property.

 Definition. A Borei function f : IR - * M has the property (Car) if for every
 non-empty, open set A C M and every non-empty , open set B C M, the set
 f'ì(A) fi B has non-zero Lebesgue measure .

 It is clear that if / is any function with property (Car) and x is an arbitrary
 point in M, then there is no function g such that / = g almost everywhere and
 g is continuous at x.

 Carathéodory's construction is quite involved and uses some relatively deep
 facts about singularities of functions of a complex variable. Berman [2] offers
 another, somewhat simpler, construction of a function with the property (Car).
 Indeed, Berman shows that his example displays the following, even more erratic,
 behaviour.
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 Definition. A Borei function f : M - ► M has the property (Ber) if for every set
 A C M with non-zero Lebesgue measure and every non-empty , open set B C M,
 the set f~x(A) fi B has non-zero Lebesgue measure.

 Unfortunately, Berman's example is a little unsatisfying in that he does not
 construct such a function explicitly. Instead, he finds a Gaussian stochastic
 process such that with probability one the sample paths of the process will be
 functions with property (Ber). We are grateful to the referee for pointing out
 that Carathéodory's example also satisfies (Ber), although this is not explicitly
 stated in [5], Our aim here is to give a simple, concrete example of a function
 with property (Ber), and hence with property (Car).
 Let (Ber*) be the analogue of property (Ber) for Borei functions from [0, 1[

 into M; and note that if we are able to construct a function with property (Ber*),
 then the periodic continuation of such a function to M will have property (Ber).
 For n G N, define a function cn : [0, 1[- ► M by

 € (x'= ~~ / + 1' if2L/2»<*<(2*+l)/2», i = 0, 1, ... , 2n_1 - 1,
 ~~ 1-1, if (2k + l)/2n < X < (2k + 2)/2n, k = 0, 1, ... , 2n~1 - 1.

 The function en, or some minor variant thereof, is usually called the n-th Rade -
 mâcher function. It is well-known that if we equip the interval [0, 1[ with
 Lebesgue measure, then the Rademacher functions form a sequence of inde-
 pendent, identically distributed random variables with common distribution

 A{en = 4-1} = A{en = -1} = 1/2,

 (see, for example, [8] or Chi of [3] for a detailed discussion of this observation
 and its consequences). As remarked by Feller ([6], §V.3a), this fact "... has been
 utilized since the beginnings of probability theory."
 Given a sequence of real numbers {an}£Li> ^ follows from Kolmogorov's

 "three series" criterion for the convergence of a sum of independent random
 variables (see, for example, Theorem IX. 9. 3 of [6]) that the sum ancn
 converges almost everywhere if and only if the sum a' converges (see also
 §2.5 of [8] for a more elementary proof due to Paley and Zygmund and some
 comments on Rademacher's original proof). In particular, the sum 52^°- 1 n_l£n
 converges almost everywhere. Define / : [0, 1[- ► M by

 _ J2*" E~=i "_1fn(a;), if n~1€„(x) converges,
 1^0, otherwise.

 Claim. The function J has the property (Ber*).
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 To see why this is so, let us first look at the following statement, which is
 the simplest instance of the sort of thing we have to prove.

 Subclaim. For all Borei sets icM with A(^4) > 0, we have X(f~l(A)) > 0.

 Translated into probabilistic language, the subclaim states that Lebesgue
 measure is absolutely continuous with respect to the distribution of the random
 variable /. The idea we use for the proof is found in [2] and hinges on the fol-
 lowing lemma. For completeness, we sketch the proof. We follow the convention
 that the characteristic function (that is, Fourier-Stieltjes transform) of a Borei
 probability measure /i on 1 is defined as fi(y) = f exp (iyx)fi(dx)} y E M.

 Lemma. Let fi be a Borei probability measure on R with characteristic function
 fi satisfying

 J exp(6|y|)|/i(y)|(iy < oo

 for some b > 0. Then fi is absolutely continuous with respect to A. Moreover,
 there is a function h defined on the strip {s + it £ C : |ź| < b} and analytic
 in that set, such that the restriction of h to the real axis is the Radon-Nikodym
 derivative dfi/dX. Consequently, A is also absolutely continuous with respect to
 fi.

 Proof. As f'jï(y)'dy < oo, it follows by Fourier inversion that fi is absolutely
 continuous with respect to A, with Radon-Nikodym derivative given by

 ^ļ(z) = (2it)-1 ļ exp(-izy)ß(y) dy, z G M.

 By hypothesis, the above integral also exists for any z £ S = {s+¿¿ € C : |ť| < 6}.
 Let h(z) denote the value of the integral. It follows easily from Lebesgue's
 dominated convergence theorem and our hypothesis that the function z h-»- h(z)
 is complex differentiate, and hence analytic, in S.

 To show that A is absolutely continuous with respect fi and complete the
 proof of the lemma, we need to show that dfi/dX > 0, A-almost everywhere.
 This, however, follows immediately from the fact that the set of zeroes of an
 analytic function that is not identically zero is a set without limit points (see,
 for example, §4.3.2 of [1]), and such a set is countable . □

 We can now complete the proof of the subclaim. The characteristic function
 of the distribution of the random variable en is

 [ 11
 V I exp{iyen(x))X(dx) = exp(iy).~ + exp(-i'y).- = cos(y);
 «/[0,1[ ¿ *
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 and hence, by the independence of the sequence {en}^=1, the characteristic
 function of the distribution of the random variable / is

 oo

 y ^ IT cos^iry/n).
 n = 1

 Observe that | cos(27ry/n)| < | whenever 4|y| < n < 6|y|. As the number of
 integers lying in the interval [4|y|,6|y|] is at least 2|y| - 2, we certainly have
 I n~i cos(27ry/n)| < 2~(2'yl~2). The subclaim now follows from the lemma.

 The proof of the claim is similar. It suffices to show that for every dyadic
 interval of the form [j/ 2m, ( j + l)/2m[, m € N, 0 < j < 2m - 1, and all Borei
 sets A C M with A(^4) > 0, we have X(f~1(A) fl [j/ 2m, ( j -f l)/2m[) > 0. Trans-
 lated into probabilistic language, it must be shown that Lebesgue measure is
 absolutely continuous with respect to the conditional distribution of the random
 variable / given the event

 [j/ 2m, ( j + l)/2m[= {x : en(x) = en(j/2m), 1 < n < m}.

 By the independence of the sequence {en}^=1, this conditional distribution is
 the same as the unconditional distribution of the random variable

 m oo

 «^2»E»-1en(i/2m)+ n~l€n(*)]-
 n=l n=m+l

 The characteristic function of this common distribution is

 m oo

 y ^ [Jļ exp(íj/2jren (i/2m)/n)][ Jļ cos(27 īy/n)'.
 n=l n=m+l

 The required result now follows from the lemma, as before.

 Remarks, i) There is an extensive body of literature on the general theme that
 smoothness of the measure Ao^"1 for a function g implies roughness of g itself.
 We refer the reader to [7] for an excellent survey.
 ii) In the course of the proof, we showed that the distribution of the random
 variable / is absolutely continuous with respect to Lebesgue measure. It is a con-
 sequence of Jessen and Wintner's "law of pure types" (see, for example, Theorem
 3.26 of [4]) that the distribution of any random variable of the form anen is
 either purely atomic, continuous but singular with respect to Lebesgue measure,
 or absolutely continuous with respect to Lebesgue measure.

 Acknowledgements. We would like to thank Jacob Feldman for arousing
 our interest in this question, and David Aldous, Joachim Rebholz and Donald
 Sarason for helpful conversations while preparing the paper.
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