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 Limit of Simply Continuous Function

 Let X be a topological space and let ( Y, d ) be a metric space. For a subset
 A of a topological space let CÍA and Int A denote the closure and interior of A ,
 respectively. The letters N, Q and R stand for the set of natural, rational and
 real numbers, respectively. If T C SY is a class of functions defined on X with
 values in y, we denote by D(T) and P{T) the collection of all uniform,
 quasiuniform and point wise limits of sequences taken from T, respectively.

 Recall that a sequence ( /n), fn : X - ► Y, converges quasiuniformly to
 / : X -+ Y (See [13], page 143.) if it converges pointwise to / and Ve >
 0VmGN3p€NVa:6l: min{d(/m+i(z), /(x)), . . . , d(/m+p(x), /(*))} < e.
 Evidently UĻ T) C D(T) C PÇF).

 The aim of this paper is to investigate the sets D(F) and P(T) for
 the class of simply continuous functions. We recall that a function / : X - ► Y
 is simply continuous (See [1].) if is a simply open set in X for each
 open set V in Y . A set A is simply open if it is the union of an open set and
 a nowhere dense set. A function f : X -+ Y is cliquish at a point x G X (See
 [11].) if for each e > 0 and each neighborhood U of x there is a nonempty open
 set G C U such that d(f(y)1 f(z)) < e for each y, : G G. A function f : X -+ Y
 is said to be cliquish if it is cliquish at each point x G X. A funciton / : X - ► Y
 is quasicontinuous at a point x E X (See [11].) if for each neighborhood U of
 x and each neighboorhood V of f(x) there is a nonempty open set G C U such
 that f(G) C V. Denote by Qj the set of all points at which / is quasicontinuous.
 If Qj = X, then / is said to be quasicontinuous.

 Denote by Q, S , K and B the set of all functions which are quasicontinuous,
 simply continuous, cliquish and have the Baire property (with X as the domain
 and Y as the range), respectively. Evidently Q C S C B and Q C /C C B. In
 [12] it is shown that if X is a Baire space and Y is a separable metric space,
 then S C /C. Example 1 in [5] shows that these assumptions cannot be omitted.
 It is shown in [11] that U(K) = K and that P(B) = B. If X is a Baire space,
 then D{K) = K. (See [7].) Proposition 1 in [6] shows that this is not true for
 arbitrary X. In [8] it is shown that P(K) = K, for X = Y = IR and in [9] for
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 X = Mm and Y = M. We shall show that this assertion holds for an arbitrary
 topological space X and a separable metric space Y .

 Lemma 1 Let f : Y - ► Y be such that the set X ' Qj is nowhere dense. Then
 f is simply continous.

 Proof. Let V be an open set in Y . Then by [4] Qj fl ( f~l(V ) ' Int /_1(V)) is
 nowhere denseand hence the set /~1(V)'Int /~1(V)) C ((/_1 (V)'Int /"'1(V))n
 Qj)'J(X 'Qf) is nowhere dense. Therefore / is simply continuous.

 Theorem 1 Let X be a topological space and let (Y, d ) be a separable metric
 space. Then P(S) = B.

 Proof. Let f £ B. By [10] there are disjoint open sets C and D such that
 Cis a Baire space, D is of the first category and C U D is dense in X. Then
 D = U^Ą, where each Di is a nowhere dense set and D, C A+i for each
 ¿EN. Since / has the Baire property, there is a set A of the first category such
 that f'x'A is continuous. Then C fi A = where each Ai is a nowhere
 dense set and Ai C j4,-+i for each i G N. Set g = f'x'A-
 Let nÇN. Since Y is separable, Y = £■), where {uj : j £ N} is

 a countable dense set in Y . (5(ií, e) is the open sphere of radius e > 0 about
 u.) Since g is continuous, for each k G N there is an open set T J1 in C such that

 9'l{S{u^ 1)) = Tp ' A. Put Wf = T? and Wp = Tf ' UļlļTp for j > 1 and
 B" = Int Wp for each j G N. Since each Tp is open, each Wp is simply open
 and hence each K j1 = Wp ' Vp is nowhere dense. Evidently the sets VJ1 are
 pairwise disjoint. Set Wn = U (pĻl'Vpi Vn - U JLļVJ1 and Kn = U JL1Kp.

 If X G C' A, then there is u G N such that x G g^'{S{u^ ^ ^)) and hence x G
 Tp. Therefore C ' A C Wn and hence Wn is dense in C. Since Wn = p,
 the set Wn is open the set Vn is also open and hence the set Kn is simply open.
 However the set Kn is of the first category and hence Int Kn is the empty set;
 that is, Kn is nowhere dense. This yields that Vn is dense in C.

 Now define a sequence of functions fn : X -+ Y as follows:

 ( u ? if x G B* ' Ci An
 fn(x)=< ti? if xeD'C£Dn

 ļ f(x) otherwise.

 The set F = ( X '(CU D )) U Ci Dn U Ci An U (C ' Vn) is nowhere dense and
 fn is continuous on x ' F. Hence by 1, fn is simply continuous. It is easy to see
 that the sequence (/n) converges to /. Thus B C

 Evidently P{S) C P(B) = B.
 By [3] we have U (S) S. In fact the following assertion is true.
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 Theorem 2 Let X be a Baire space and let (Y, d ) be a separable metric space.
 Then D(S) = U(S) = ÌC.

 Proof. Let / G fC and let n G N. Then there is a countable dense set
 { u J : j G N} in Y such that Y = U j = 1°°S( u", ~). For j G N put Tp =
 Int i)), W? = T? ' 1>¡I¡Tí and V/1 = Int Wf. If x G C} (Where
 Cf is the set of all points of continuity of /.), then there is G N such that
 f{x) G S(u^ , ^). The continuity of / at x gives x G Tp. Since X is a Baire
 space, the set Cf is dense in X. (See [7].) Similarly as in 1 we can show that
 the set UJLļVJ1 is dense in X.

 Let

 f / >1 _ / if x e V/1
 _ - ļ otherwise.

 Then/n is simply continuous by 1. Since for each x G X we haved(/n(x), f(x)) <
 the sequence (/n) converges uniformly to /. Therefore K C U(S).
 According to [12] and [7] we have U(S) C D(S C D(S) = /C.

 Theorem 3 Let X be a Baire space and let (Y, d) be a separable metric space.
 Then K = U(K) = £>(£) = t^(5) = D(5) C B = P(5) = P(/C) = P(ß) =
 D(ß) = U(B).

 By [11] we have U(Q) = Q. In [8] and [9] it is shown that P(Q ) = K for
 X - Mm and Y = M. If X = Y = M, then by [12] D(Q) = K. Hence we have
 the following.

 Theorem 4 Let X = Y = R. Then Q = U(Q) C S C K = ř/(/C) = D(/C) =
 i/(5) = D(5) = D(Q) = P(Q) =c ß = P(ß) = ZJ(ß) = U(B) = P{K) = P(5).

 We will now show another manner in which functions having the Baire prop-
 erty can be approximated by simply continuous functions.

 Theorem 5 Let (Y, d) be a locally compact separable metric space. Then f :
 X - ► Y has the Baire property if and only iff(x) ^ ¿/(z)} 15 of the first category.

 Proof. Let / G B. First let us assume that X is a Baire space. Then there
 is a residual set A such that f'¿ is continuous. Set

 C(/, x, A) = C'u£UxCi f(A fi U)

 (Where Ux is the family of all neighborhoods of x.) and

 £={«GX:C(/,«,i4) = 0}.
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 Let X E A. Since Y is locally compact, there is a closed compact neighborhood W
 of f(x). Then there is an open neighborhood Ux of x such that f' a(Ux) = f(AC'
 UX)CW. Then Ci f(An Ux) C W. Let u G Ux. Then (Ci f{AD U fi Ux))ueuu
 is a family of closed subset of W with the finite intersection property. Hence
 ^u^uu{Ci f(A fi U fi Ux fi U) ^ 0 and therefore C(fìu,A) ^ 0. This yields
 Ux H E = 0. therefore
 (1) And E = 0.

 Since A is dense, E is nowhere dense. For x G X'E choose x* G C(/, x, A) and
 define g : X - ► V as

 giX)=( v ' W Ìf XeE v ' ' x* otherwise.

 Evidently {x G X : /(x) ^ y(^)} is of the first category. We will show that g is
 simply continuous.

 Let x G A and let T be a neighborhood of g(x). Let V be a neighborhood
 of g(x) such that Ci V C T. Then there is an open neighborhood H of x
 such that f(A fi H) C V. Then according to (1 ) U = H ' Ci E is an open
 neighborhood of x. Let u G U. Then u £ E and hence g(u) G C(/, u, A). Thus
 g(u) G Ci f(A HU) C CiV C T. This yields

 (2) A C CG .

 Now let x G X ' E. Let U be a neighborhood of x and let W be an open
 neighborhood of f(x). Then f(U fi A) fi W /0. Let t G f(U C'A)nW. Then
 there is a y G U D A such that f(y) = t. By (2), y G Cg and f(y) = g(y). Hence
 there is an open set G such that U G G C Y and f(G) C W' that is, x G Qg.
 Therefore X ' E C Qg and the set X ' Qg is nowhere dense. By 1, g is simply
 continuous.

 If X is an arbitrary topological space, then by [10], there are disjoint open
 sets C and D such that C is a Baire space, D is of the first category and CUD
 is dense in X. Let a E Y and let h : C - ► Y be a simply continuous function
 such that {x G C : h(x) ^ f(x)} is of the first category. Then the function
 g : X - ► Y defined by

 g (x)=íhix) iffGC
 I a otherwise,

 is a simply continuous function such that {x G X : g(x) ^ /(#)} is of the first
 category. On the other hand, if g : X - ► Y is a simply continuous function and
 / : X - ► y is a function such that {x G X : f(x) ± y(x)} is of the first category,
 then / has the Baire property.
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 The following example shows that the assumption "Y is locally compact" in
 5 cannot be omitted.

 Example 1 Let X = R (with the usual metric) and let Y = R with the (sepa-
 rable) metric d :

 {'x-y' max{l, 0 'x - y') otherwise. if ifx,yeR'Q X = y
 0 if X = y

 max{l, 'x - y') otherwise.

 Let / : X -+ Y, f(x) = x for each x G X. Then / has the Baire property. Let
 g : X - ► Y be a simply continuous function such that {iGl: f(x) ^ g{x)} is
 of the first category. We will show that g cannot be simply continuous.

 If g(x) G Q for each x G Q, then since Q is open in Y, g~1(Q) must be a
 dense set of the first category in X and hence it is not simply open. So suppose
 g(x) G R ' Q for some x G Q. If V is an open neighborhood of g(x) and U
 is a "small" neighborhood of x, then g~l(V) is dense in U and hence by [4]
 Int g~l(V) H U / 0. This yields x G Qg. However, if g{x) G R ' Q, then for
 a = > 0 we have g(S(xi a) ' Q) fl S(g(x), a) = 0; that is, x £ Qg .

 Remark 1 If Y is a compact separable metric space , thenthe function g from 5
 is quasicontinuous.

 Remark 2 From the proof of 5 it follows that the function g is such that X'Qg
 is nowhere dense. This is stronger than simple continuity. (The function f :
 R - ► R, f(x) = r(x) + x, where r is the Riemann function} is simply continuous
 by [3]. However R'Q / is dense in R.^ From the proofs of 1 and 2 it follows that
 a function with the Baire property (cliquish function) is the pointwise (uniform)
 limit of functions fn such that X'Cjn are nowhere dense sets. This is not true
 for 5. The function f : R - ► R, f(x) - J2n:gn<x 2~n (Where Q = {qi,q2, • • •} is
 a one-to-one sequence.) is quasicontinusous. However for each function g : R - ►
 R such that R'C^ is nowhere dense, the set {i G R : f{x) ^ ¿7(x)} contains a
 nonempty open set.

 Remark 3 Applying a well-known theorem due to Blumberg (See for example
 [10], page 30.) to the proof of 5 we get the following assetion. Let X be a Baire
 metric space and let f : X - ► R be an arbitrary (locally bounded) function. Then
 there is a simply continuous (quasicontinuous) function g : X - ► R such that
 {x G X : f(x) = g(x)} is dense in X.
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