Real Analysis Exchange Vol. 18(1), 1992/93, pp. 270-275

Ján Borsík*, Matematický ústav SAV, Grešákova 6, 040 01 Košice, Czechoslovakia

Limit of Simply Continuous Function

Let X be a topological space and let (Y,d) be a metric space. For a subset A of a topological space let $C\ell A$ and Int A denote the closure and interior of A, respectively. The letters \mathbb{N} , \mathbb{Q} and \mathbb{R} stand for the set of natural, rational and real numbers, respectively. If $\mathcal{F} \subset S^Y$ is a class of functions defined on X with values in Y, we denote by $U(\mathcal{F}), D(\mathcal{F})$ and $P(\mathcal{F})$ the collection of all uniform, quasiuniform and pointwise limits of sequences taken from \mathcal{F} , respectively.

Recall that a sequence (f_n) , $f_n : X \to Y$, converges quasiuniformly to $f : X \to Y$ (See [13], page 143.) if it converges pointwise to f and $\forall \varepsilon > 0 \forall m \in \mathbb{N} \exists p \in \mathbb{N} \forall x \in X : \min\{d(f_{m+1}(x), f(x)), \ldots, d(f_{m+p}(x), f(x))\} < \varepsilon$. Evidently $U(\mathcal{F}) \subset D(\mathcal{F}) \subset P(\mathcal{F})$.

The aim of this paper is to investigate the sets $U(\mathcal{F})$, $D(\mathcal{F})$ and $P(\mathcal{F})$ for the class of simply continuous functions. We recall that a function $f: X \to Y$ is simply continuous (See [1].) if $f^{-1}(V)$ is a simply open set in X for each open set V in Y. A set A is simply open if it is the union of an open set and a nowhere dense set. A function $f: X \to Y$ is cliquish at a point $x \in X$ (See [11].) if for each $\varepsilon > 0$ and each neighborhood U of x there is a nonempty open set $G \subset U$ such that $d(f(y), f(z)) < \varepsilon$ for each $y, z \in G$. A function $f: X \to Y$ is said to be cliquish if it is cliquish at each point $x \in X$. A function $f: X \to Y$ is quasicontinuous at a point $x \in X$ (See [11].) if for each neighborhood U of x and each neighborhood V of f(x) there is a nonempty open set $G \subset U$ such that $f(G) \subset V$. Denote by Q_f the set of all points at which f is quasicontinuous. If $Q_f = X$, then f is said to be quasicontinuous.

Denote by Q, S, K and \mathcal{B} the set of all functions which are quasicontinuous, simply continuous, cliquish and have the Baire property (with X as the domain and Y as the range), respectively. Evidently $Q \subset S \subset \mathcal{B}$ and $Q \subset \mathcal{K} \subset \mathcal{B}$. In [12] it is shown that if X is a Baire space and Y is a separable metric space, then $S \subset \mathcal{K}$. Example 1 in [5] shows that these assumptions cannot be omitted. It is shown in [11] that $U(\mathcal{K}) = \mathcal{K}$ and that $P(\mathcal{B}) = \mathcal{B}$. If X is a Baire space, then $D(\mathcal{K}) = \mathcal{K}$. (See [7].) Proposition 1 in [6] shows that this is not true for arbitrary X. In [8] it is shown that $P(\mathcal{K}) = \mathcal{K}$ for $X = Y = \mathbb{R}$ and in [9] for

^{*}Supported by Grant GA-SAV 367/91

Received by the editors April 15, 1992

 $X = \mathbb{R}^m$ and $Y = \mathbb{R}$. We shall show that this assertion holds for an arbitrary topological space X and a separable metric space Y.

Lemma 1 Let $f: Y \to Y$ be such that the set $X \setminus Q_f$ is nowhere dense. Then f is simply continuous.

Proof. Let V be an open set in Y. Then by [4] $Q_f \cap (f^{-1}(V) \setminus \text{Int } f^{-1}(V))$ is nowhere denseand hence the set $f^{-1}(V) \setminus \text{Int } f^{-1}(V) \subset ((f^{-1}(V) \setminus \text{Int } f^{-1}(V)) \cap Q_f) \cup (X \setminus Q_f)$ is nowhere dense. Therefore f is simply continuous.

Theorem 1 Let X be a topological space and let (Y, d) be a separable metric space. Then P(S) = B.

Proof. Let $f \in \mathcal{B}$. By [10] there are disjoint open sets C and D such that C is a Baire space, D is of the first category and $C \cup D$ is dense in X. Then $D = \bigcup_{i=1}^{\infty} D_i$, where each D_i is a nowhere dense set and $D_i \subset D_{l+1}$ for each $i \in \mathbb{N}$. Since f has the Baire property, there is a set A of the first category such that $f|_{X\setminus A}$ is continuous. Then $C \cap A = \bigcup_{i=1}^{\infty} A_i$, where each A_i is a nowhere dense set and $A_i \subset A_{i+1}$ for each $i \in \mathbb{N}$. Set $g = f|_{X\setminus A}$.

Let $n \in \mathbb{N}$. Since Y is separable, $Y = \bigcup_{j=1}^{\infty} S(u_j^n, \frac{1}{n})$, where $\{u_j^n : j \in \mathbb{N}\}$ is a countable dense set in Y. $(S(u, \varepsilon)$ is the open sphere of radius $\varepsilon > 0$ about u.) Since g is continuous, for each $k \in \mathbb{N}$ there is an open set T_j^n in C such that $g^{-1}(S(u_j^n, \frac{1}{n})) = T_j^n \setminus A$. Put $W_1^n = T_1^n$ and $W_j^n = T_j^n \setminus \bigcup_{i=1}^{j-1} T_j^n$ for j > 1 and $B_j^n = \operatorname{Int} W_j^n$ for each $j \in \mathbb{N}$. Since each T_j^n is open, each W_j^n is simply open and hence each $K_j^n = W_j^n \setminus V_j^n$ is nowhere dense. Evidently the sets V_j^n are pairwise disjoint. Set $W^n = \bigcup_{j=1}^{\infty} W_j^n$, $V^n = \bigcup_{j=1}^{\infty} V_j^n$ and $K^n = \bigcup_{j=1}^{\infty} K_j^n$.

If $x \in C \setminus A$, then there is $u \in \mathbb{N}$ such that $x \in g_{-1}(S(u_j^n, \frac{1}{n}))$ and hence $x \in T_j^n$. Therefore $C \setminus A \subset W^n$ and hence W^n is dense in C. Since $W^n = \bigcup_{j=1}^{\infty} T_j^n$, the set W^n is open the set V^n is also open and hence the set K^n is simply open. However the set K^n is of the first category and hence Int K^n is the empty set; that is, K^n is nowhere dense. This yields that V^n is dense in C.

Now define a sequence of functions $f_n : X \to Y$ as follows:

$$f_n(x) = \begin{cases} u_j^n & \text{if } x \in B_j^n \setminus C\ell A_n \\ u_1^n & \text{if } x \in D \setminus C\ell D_n \\ f(x) & \text{otherwise.} \end{cases}$$

The set $F = (X \setminus (C \cup D)) \cup C\ell D_n \cup C\ell A_n \cup (C \setminus V^n)$ is nowhere dense and f_n is continuous on $x \setminus F$. Hence by 1, f_n is simply continuous. It is easy to see that the sequence (f_n) converges to f. Thus $\mathcal{B} \subset P(\mathcal{S})$.

Evidently $P(S) \subset P(B) = B$.

By [3] we have $U(S) \neq S$. In fact the following assertion is true.

Theorem 2 Let X be a Baire space and let (Y, d) be a separable metric space. Then D(S) = U(S) = K.

Proof. Let $f \in \mathcal{K}$ and let $n \in \mathbb{N}$. Then there is a countable dense set $\{u_j^n : j \in \mathbb{N}\}$ in Y such that $Y = \bigcup_j = 1^{\infty} S(u_j^n, \frac{1}{n})$. For $j \in \mathbb{N}$ put $T_j^n =$ Int $f^{-1}(S(u_j^n, \frac{1}{n}))$, $W_j^n = T_j^n \setminus \bigcup_{i=1}^{j-1} T_i$ and $V_j^n =$ Int W_j^n . If $x \in C_f$ (Where C_f is the set of all points of continuity of f.), then there is $j \in \mathbb{N}$ such that $f(x) \in S(u_j^n, \frac{1}{n})$. The continuity of f at x gives $x \in T_j^n$. Since X is a Baire space, the set C_f is dense in X. (See [7].) Similarly as in 1 we can show that the set $\bigcup_{j=1}^{\infty} V_j^n$ is dense in X.

Let

$$f_n(x) = \begin{cases} u_j^n & \text{if } x \in V_j^n \\ f(x) & \text{otherwise.} \end{cases}$$

Then f_n is simply continuous by 1. Since for each $x \in X$ we have $d(f_n(x), f(x)) < \frac{1}{n}$, the sequence (f_n) converges uniformly to f. Therefore $\mathcal{K} \subset U(\mathcal{S})$.

According to [12] and [7] we have $U(\mathcal{S}) \subset D(\mathcal{S} \subset D(\mathcal{S}) = \mathcal{K}$.

Theorem 3 Let X be a Baire space and let (Y, d) be a separable metric space. Then $\mathcal{K} = U(\mathcal{K}) = D(\mathcal{K}) = U(\mathcal{S}) = D(\mathcal{S}) \subset \mathcal{B} = P(\mathcal{S}) = P(\mathcal{K}) = P(\mathcal{B}) = D(\mathcal{B}) = U(\mathcal{B}).$

By [11] we have $U(\mathcal{Q}) = \mathcal{Q}$. In [8] and [9] it is shown that $P(\mathcal{Q}) = \mathcal{K}$ for $X = \mathbb{R}^m$ and $Y = \mathbb{R}$. If $X = Y = \mathbb{R}$, then by [12] $D(\mathcal{Q}) = \mathcal{K}$. Hence we have the following.

Theorem 4 Let $X = Y = \mathbb{R}$. Then $\mathcal{Q} = U(\mathcal{Q}) \subset \mathcal{S} \subset \mathcal{K} = U(\mathcal{K}) = D(\mathcal{K}) = U(\mathcal{S}) = D(\mathcal{S}) = D(\mathcal{Q}) = \mathcal{P}(\mathcal{Q}) = \subset \mathcal{B} = \mathcal{P}(\mathcal{B}) = D(\mathcal{B}) = U(\mathcal{B}) = \mathcal{P}(\mathcal{K}) = \mathcal{P}(\mathcal{S}).$

We will now show another manner in which functions having the Baire property can be approximated by simply continuous functions.

Theorem 5 Let (Y, d) be a locally compact separable metric space. Then $f : X \to Y$ has the Baire property if and only if $f(x) \neq g(x)$ is of the first category.

Proof. Let $f \in \mathcal{B}$. First let us assume that X is a Baire space. Then there is a residual set A such that $f|_A$ is continuous. Set

$$C(f, x, A) = \bigcap_{U \in \mathcal{U}_x} C\ell f(A \cap U)$$

(Where \mathcal{U}_x is the family of all neighborhoods of x.) and

$$E = \{x \in X : C(f, x, A) = \emptyset\}.$$

Let $x \in A$. Since Y is locally compact, there is a closed compact neighborhood W of f(x). Then there is an open neighborhood U_x of x such that $f|_A(U_x) = f(A \cap U_x) \subset W$. Then $C\ell f(A \cap U_x) \subset W$. Let $u \in U_x$. Then $(C\ell f(A \cap U \cap U_x))_{U \in U_u}$ is a family of closed subset of W with the finite intersection property. Hence $\bigcap_{U \in U_u} (C\ell f(A \cap U \cap U_x \cap U) \neq \emptyset$ and therefore $C(f, u, A) \neq \emptyset$. This yields $U_x \cap E = \emptyset$. therefore

Since A is dense, E is nowhere dense. For $x \in X \setminus E$ choose $x^* \in C(f, x, A)$ and define $g: X \to Y$ as

$$g(x) = \begin{cases} f(x) & \text{if } x \in E \\ x^* & \text{otherwise.} \end{cases}$$

Evidently $\{x \in X : f(x) \neq g(x)\}$ is of the first category. We will show that g is simply continuous.

Let $x \in A$ and let T be a neighborhood of g(x). Let V be a neighborhood of g(x) such that $C\ell V \subset T$. Then there is an open neighborhood H of x such that $f(A \cap H) \subset V$. Then according to (1) $U = H \setminus C\ell E$ is an open neighborhood of x. Let $u \in U$. Then $u \notin E$ and hence $g(u) \in C(f, u, A)$. Thus $g(u) \in C\ell f(A \cap U) \subset C\ell V \subset T$. This yields

Now let $x \in X \setminus E$. Let U be a neighborhood of x and let W be an open neighborhood of f(x). Then $f(U \cap A) \cap W \neq \emptyset$. Let $t \in f(U \cap A) \cap W$. Then there is a $y \in U \cap A$ such that f(y) = t. By (2), $y \in C_g$ and f(y) = g(y). Hence there is an open set G such that $U \in G \subset Y$ and $f(G) \subset W$; that is, $x \in Q_g$. Therefore $X \setminus E \subset Q_g$ and the set $X \setminus Q_g$ is nowhere dense. By 1, g is simply continuous.

If X is an arbitrary topological space, then by [10], there are disjoint open sets C and D such that C is a Baire space, D is of the first category and $C \cup D$ is dense in X. Let $a \in Y$ and let $h : C \to Y$ be a simply continuous function such that $\{x \in C : h(x) \neq f(x)\}$ is of the first category. Then the function $g : X \to Y$ defined by

$$g(x) = \begin{cases} h(x) & \text{if } x \in C \\ a & \text{otherwise,} \end{cases}$$

is a simply continuous function such that $\{x \in X : g(x) \neq f(x)\}$ is of the first category. On the other hand, if $g : X \to Y$ is a simply continuous function and $f : X \to Y$ is a function such that $\{x \in X : f(x) \neq g(x)\}$ is of the first category, then f has the Baire property.

The following example shows that the assumption "Y is locally compact" in 5 cannot be omitted.

Example 1 Let $X = \mathbb{R}$ (with the usual metric) and let $Y = \mathbb{R}$ with the (separable) metric d:

$$d(x,y) = \begin{cases} |x-y| & \text{if } x, y \in \mathbb{R} \setminus \mathbb{Q} \\ 0 & \text{if } x = y \\ \max\{1, |x-y|\} & \text{otherwise.} \end{cases}$$

Let $f: X \to Y$, f(x) = x for each $x \in X$. Then f has the Baire property. Let $g: X \to Y$ be a simply continuous function such that $\{x \in X : f(x) \neq g(x)\}$ is of the first category. We will show that g cannot be simply continuous.

If $g(x) \in \mathbb{Q}$ for each $x \in \mathbb{Q}$, then since \mathbb{Q} is open in Y, $g^{-1}(\mathbb{Q})$ must be a dense set of the first category in X and hence it is not simply open. So suppose $g(x) \in \mathbb{R} \setminus \mathbb{Q}$ for some $x \in \mathbb{Q}$. If V is an open neighborhood of g(x) and U is a "small" neighborhood of x, then $g^{-1}(V)$ is dense in U and hence by [4] Int $g^{-1}(V) \cap U \neq \emptyset$. This yields $x \in Q_g$. However, if $g(x) \in \mathbb{R} \setminus \mathbb{Q}$, then for $\alpha = \frac{|g(x)-x|}{2} > 0$ we have $g(S(x, \alpha) \setminus \mathbb{Q}) \cap S(g(x), \alpha) = \emptyset$; that is, $x \notin Q_g$.

Remark 1 If Y is a compact separable metric space, then the function g from 5 is quasicontinuous.

Remark 2 From the proof of 5 it follows that the function g is such that $X \setminus Q_g$ is nowhere dense. This is stronger than simple continuity. (The function $f : \mathbb{R} \to \mathbb{R}$, f(x) = r(x) + x, where r is the Riemann function, is simply continuous by [3]. However $\mathbb{R} \setminus Q_f$ is dense in \mathbb{R} .) From the proofs of 1 and 2 it follows that a function with the Baire property (cliquish function) is the pointwise (uniform) limit of functions f_n such that $X \setminus C_{f_n}$ are nowhere dense sets. This is not true for 5. The function $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \sum_{n:q_n < x} 2^{-n}$ (Where $\mathbb{Q} = \{q_1, q_2, \cdots\}$ is a one-to-one sequence.) is quasicontinuous. However for each function $g : \mathbb{R} \to \mathbb{R}$ such that $\mathbb{R} \setminus C_g$ is nowhere dense, the set $\{x \in \mathbb{R} : f(x) \neq g(x)\}$ contains a nonempty open set.

Remark 3 Applying a well-known theorem due to Blumberg (See for example [10], page 30.) to the proof of 5 we get the following assetion. Let X be a Baire metric space and let $f: X \to \mathbb{R}$ be an arbitrary (locally bounded) function. Then there is a simply continuous (quasicontinuous) function $g: X \to \mathbb{R}$ such that $\{x \in X : f(x) = g(x)\}$ is dense in X.

References

 Biswas, N., On some mappings in topological spaces, Bull Calcutta Math. Soc 61 (1969) 127-135

- [2] Borsík, J., Quasiuniform limits of quasicontinuous functions, Math Slovaca, (to appear)
- [3] Borsík, J. and Doboš, J., A note on real cliquish functions, Real Anal. Exchange, 18 (1992-93), this issue.
- [4] Borsík, J. and Doboš, J., On simple continuity points, Real Anal. Exchange, 16 (1990-91), 552-558.
- [5] Doboš, J., Simple continuity and cliquishness, Casopis Pest mat., 112 (1987), 355-358.
- [6] Doboš, J., Some generalization of the notion of continuity and quasiuniform convergence, Časopis Pěst mat., 106 (1981), 431-434.
- [7] Doboš, J. and Salát, T., Cliquish functions, Riemann integrable functions and quasi-uniform convergence, Acta Math. Univ Comen., 40-41 (1982), 219-223.
- [8] Grande, Z., Sur la quasi-continuité et la quasi-coninuité approximative,, Fund. Math. 129 (1988), 167-172.
- [9] Grande, Z., Natkaniec, T. and Stronska, E., Lattices, algebras and Baire's systems generated by some families of functions, Real Anal. Exchange, 13 (1987–88), 61–66.
- [10] Haworth, R. C. and McCoy, R. A., Baire spaces, Dissertationes Math., 141, Warszawa, 1977.
- [11] Marcus, S., Sur les fonctions quasicontinues au sens de S. Kempisty, Colloq. Math. 8 (1961), 47-53.
- [12] Neubrunnová, A., On certain generalizations of the notion of continuity, Mat. časopis, 23 (1973), 374-380.
- [13] Sikorski, R., Real Functions I (in polish), PWN, Warszawa, 1958.