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Limit of Simply Continuous Function

Let X be a topological space and let (Y, d) be a metric space. For a subset
A of a topological space let C£A and Int A denote the closure and interior of A,
respectively. The letters N, Q and R stand for the set of natural, rational and
real numbers, respectively. If 7 C SY is a class of functions defined on X with
values in Y, we denote by U(F), D(¥) and P(F) the collection of all uniform,
quasiuniform and pointwise limits of sequences taken from F, respectively.

Recall that a sequence (fn), fn : X — Y, converges quasiuniformly to
f : X — Y (See [13], page 143.) if it converges pointwise to f and Ve >
0Ym e N3 pe NVr € X: min{d(fm+1(2), f(2)),...,d(fm+p(z), f(2))} < €.
Evidently U(F) C D(¥) C P(F).

The aim of this paper is to investigate the sets U(F), D(F) and P(F) for
the class of simply continuous functions. We recall that a function f: X — Y
is simply continuous (See [1] ) if f~}(V) is a simply open set in X for each
open set V in Y. A set A is simply open if it is the union of an open set and
a nowhere dense set. A function f : X — Y is cliquish at a point £ € X (See
[11].) if for each € > 0 and each neighborhood U of z there is a nonempty open
set G C U such that d(f(y), f(2)) < € for each y,z € G. A function f: X - Y
is said to be cliquish if it is cliquish at each point 2 € X. A funciton f: X - Y
is quasicontinuous at a point z € X (See [11].) if for each neighborhood U of
z and each neighboorhood V of f(z) there is a nonempty open set G C U such
that f(G) C V. Denote by Q; the set of all points at which f is quasicontinuous.
If @y = X, then f is said to be quasicontinuous.

Denote by @, S, K and B the set of all functions which are quasicontinuous,
simply continuous, cliquish and have the Baire property (with X as the domain
and Y as the range), respectively. Evidently @ C S C Band Q C K C B. In
[12] it is shown that if X is a Baire space and Y is a separable metric space,
then S C K. Example 1 in [5] shows that these assumptions cannot be omitted.
It is shown in [11] that U(K) = K and that P(B) = B. If X is a Baire space,
then D(K) = K. (See [7].) Proposition 1 in [6] shows that this is not true for
arbitrary X. In [8] it is shown that P(K) = K for X = Y = R and in [9] for
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X = R™ and Y = R. We shall show that this assertion holds for an arbitrary
topological space X and a separable metric space Y.

Lemma 1 Let f: Y — Y be such that the set X \ Qy is nowhere dense. Then
f is simply continous.

Proof. Let V be an open set in Y. Then by [4] Q; N (f~}(V) \ Int f~1(V)) is
nowhere denseand hence the set f=1(V)\Int f=}(V)) C ((f~(V)\Int f~1(V))N
Qs) U (X \ Qy) is nowhere dense. Therefore f is simply continuous.

Theorem 1 Let X be a topological space and let (Y,d) be a separable metric
space. Then P(S) =

Proof. Let f € B. By [10] there are disjoint open sets C and D such that
Cis a Baire space, D is of the first category and C U D is dense in X. Then
D = U2, D;, where each D; is a nowhere dense set and D; C Djy; for each
i€ N. Smce f has the Baire property, there is a set A of the first category such
that f|x\4 is continuous. Then C N A = U2, A;, where each A; is a nowhere
dense set and A; C A;4; for each i € N. Set g = f|x\ 4.

Let n € N. Since Y is separable, Y = U2, S(u?, 1), where {u? : j € N} is
a countable dense set in Y. (S(u,¢) is the open sphere of radius ¢ > 0 about
u.) Since g is continuous, for each k € N there is an open set T7 in C such that

971 (S(u}, 1)) = TP\ A. Put WP = T and W} = TP\ U2 ;T" for j > 1 and

B} = Int W" for each j € N. Since each i lS open, each W" is simply open
and hence each K? = WP\ V* is nowhere dense. Ev1dently the sets V;* are
pairwise disjoint. Set W" = U°° LW VE =052,V and K™ = U2 K7

If z € C\ A, then there is u € N such that z € g-l(S(u L)) and hence z €

. Therefore C\ A C W™ and hence W" is dense in C. Smce wn = us2, TP,

the set W" is open the set V" is also open and hence the set K™ is Slmply open
However the set K™ is of the first category and hence Int K™ is the empty set;
that is, K" is nowhere dense. This yields that V" is dense in C.

Now define a sequence of functions f, : X — Y as follows:

ul? ifz € B}\Ct A,
fa(z) = uf ifz e D\CtD,
f(z) otherwise.

The set F = (X \(CUD))UC¢ D,UCt A, U(C\ V") is nowhere dense and
fn is continuous on z \ F. Hence by 1, f, is simply continuous. It is easy to see
that the sequence (f,) converges to f. Thus B C P(S).

Evidently P(S) C P(B) =

By [3] we have U(S) # S. In fact the following assertion is true.
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Theorem 2 Let X be a Baire space and let (Y,d) be a separable metric space.
Then D(S) =U(S) =K.

Proof. Let f € K and let n € N. Then there is a countable dense set
{u? : j € N} in Y such that Y = Uj =1°S(u},L). For j € N put TP =
Int f~}(S(u?, L)), WP = TP \UiZ{T; and V;* = Int WP. If z € C; (Where
C} is the set of all points of continuity of f.), then there is j € N such that
f(z) € S(u},L). The continuity of f at z gives z € T}. Since X is a Baire
space, the set C; is dense in X. (See [7].) Similarly as in 1 we can show that
the set U2, V™ is dense in X.

Let

_ u? ifzeVy
falz) = { f(z)  otherwise.

Then f, is simply continuous by 1. Since for each z € X we have d(fa(z), f(z)) <
%, the sequence (f,) converges uniformly to f. Therefore K C U(S).
According to [12] and [7] we have U(S) C D(S C D(S) =K.

Theorem 3 Let X be a Baire space and let (Y,d) be a separable metric space.
Then K = U(K) = D(K) = U(S) = D(S) C B = P(S) = P(K) = P(B) =
D(B) =U(B).

By [11] we have U(Q) = Q. In [8] and [9] it is shown that P(Q) = K for
X=Rm™and Y =R. If X =Y = R, then by [12] D(Q) = K. Hence we have
the following.

Theorem 4 Let X =Y =R. Then Q=U(Q) CSC K=U(K)=D(K) =
U(S) = D(S) = D(Q) = P(Q) =C B= P(B) = D(B) = U(B) = P(K) = P(S).

We will now show another manner in which functions having the Baire prop-
erty can be approximated by simply continuous functions.

Theorem 5 Let (Y,d) be a locally compact separable metric space. Then f :
X — Y has the Baire property if and only if f(z) # g(z)} is of the first category.

Proof. Let f € B. First let us assume that X is a Baire space. Then there
is a residual set A such that f|4 is continuous. Set

C(fa z, A) = nUeu,CK f(A n U)
(Where U, is the family of all neighborhoods of z.) and
E={zeX:C(f,z,A) =0}



Limit of Simply Continuous Function 273

Let z € A. Since Y islocally compact, there is a closed compact neighborhood W
of f(z). Then there is an open neighborhood U of z such that f|4(U;) = f(AN
Ug) CW. Then Cf f(ANU,;) C W. Let u € U;. Then (C? f(ANU NU.))veu.
is a family of closed subset of W with the finite intersection property. Hence
Nueu,(CL F(ANU NU,NU) # @ and therefore C(f,u, A) # 0. This yields
UzsNE = 0. therefore

(1) ANCLE =0.

Since A is dense, E is nowhere dense. For z € X'\ E choose z* € C(f, z, A) and
define g: X — Y as

o(z) = { fi.f) ifzeE

otherwise.

Evidently {z € X : f(z) # g(z)} is of the first category. We will show that g is
simply continuous.

Let £ € A and let T be a neighborhood of g(z). Let V be a neighborhood
of g(z) such that C£ V C T. Then there is an open neighborhood H of z
such that f(AN H) C V. Then according to (1) U = H \ C¢ E is an open
neighborhood of . Let u € U. Then u ¢ E and hence g(u) € C(f,u, A). Thus
g(u) € CL f(ANU) C CLV C T. This yields

(2) AcCCg.

Now let £ € X \ E. Let U be a neighborhood of z and let W be an open
neighborhood of f(x). Then f(UNA)YNW # 0. Let t € f(U N A)N W. Then
there is a y € U N A such that f(y) =t. By (2), y € Cy and f(y) = g(y). Hence
there is an open set G such that U € G C Y and f(G) C W; that is, z € Q,.
Therefore X \ E C Qg and the set X \ @, is nowhere dense. By 1, g is simply
continuous.

If X is an arbitrary topological space, then by [10], there are disjoint open
sets C and D such that C is a Baire space, D is of the first category and C U D
is dense in X. Let a € Y and let A : C — Y be a simply continuous function
such that {x € C : h(z) # f(z)} is of the first category. Then the function
g : X — Y defined by

_ | k(=) ifzeC
9(z) = { a otherwise,
is a simply continuous function such that {z € X : g(z) # f(z)} is of the first
category. On the other hand, if g: X — Y is a simply continuous function and
f: X — Y is a function such that {z € X : f(z) # g(z)} is of the first category,
then f has the Baire property.
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The following example shows that the assumption “Y is locally compact”in

5 cannot be omitted.
Example 1 Let X = R (with the usual metric) and let Y = IR with the (sepa-
rable) metric d :

|z =yl ifz,ye R\Q
d(z,y) = 0 fr=y
max{l, |z — y|} otherwise.

Let f: X — Y, f(z) = « for each £ € X. Then f has the Baire property. Let
g : X — Y be a simply continuous function such that {z € X : f(z) # g(z)} is
of the first category. We will show that g cannot be simply continuous.

If g(z) € Q for each £ € Q, then since Q is open in Y, g~1(Q) must be a
dense set of the first category in X and hence it is not simply open. So suppose
g(z) € R\ Q for some £ € Q. If V is an open neighborhood of g(z) and U
is a “small” neighborhood of z, then g=!(V) is dense in U and hence by [4]
Int g~}(V)NU # 0. This yields z € Q,. However, if g(z) € R\ Q, then for
a= Mf%'—”' > 0 we have g(S(z,a) \ Q)N S(g(z),a) = 0; that is, = ¢ Q,.

Remark 1 IfY is a compact separable metric space, thenthe function g from §
is quasicontinuous.

Remark 2 From the proof of § it follows that the function g is such that X\ Q,
is nowhere dense. This is stronger than simple continuily. (The function f :
R — R, f(z) = r(z)+z, where r is the Riemann function, is simply continuous
by [3]. However R\ Qy is dense in R.) From the proofs of 1 and 2 it follows that
a function with the Baire property (cliquish function) is the pointwise (uniform)
limit of functions f, such that X \ Cy, are nowhere dense sets. This is not true
for 5. The function f :R— R, f(z) =3, 27" (Where Q= {q1,92,- -} is
a one-to-one sequence.) is quasicontinusous. However for each function g : R —
R such that R\ Cy is nowhere dense, the set {x € R : f(z) # g(x)} contains a
nonempty open set.

Remark 3 Applying a well-known theorem due to Blumberg (See for ezample
[10], page 30.) to the proof of 5 we get the following assetion. Let X be a Baire
melric space and let f : X — R be an arbitrary (locally bounded) function. Then
there is a simply continuous (quasicontinuous) function g : X — R such that
{z € X : f(z) = g(z)} is dense in X.
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