Real Analysis Exchange Vol. 18(1), 1992/93, pp. 253-260

Kecheng Liao, Department of Mathematics and Statistics, Auckland University, Auckland, New Zealand

On the Descriptive Definition of the Burkill Approximately Continuous Integral

Bullen [1] gave various equivalent definitions of the Burkill approximately continuous integral, which we shall denote by P_{ap}^* . In this paper, we will point out that the D_{ap}^* integral or a descriptive definition of P_{ap}^* defined in [1] is really not equivalent to the P_{ap}^* integral, but more restricted than the latter. If we replace $[ACG_{ap}^*]$ as in [1] by ACG_{ap}^* defined as in [4] (Definition 22.6), we will get another version of the D_{ap}^* integral. Let it be denoted by D_{ap}^{**} . D_{ap}^{**} is more restricted than D_{ap}^* because ACG_{ap}^* is more restricted than $[ACG_{ap}^*]$.

All of this nonequivalence is caused by the very definition of AC_{ap}^{*} in [1], and that in [4]; the latter will be denoted by AC_{ap}^{**} . The adequate definition of AC_{ap}^{*} is essential. The author is working on a paper on this topic, and the recent works [2] and [5] have contributed to the theory. We shall assume that the reader is familiar with the relevant definitions involving the integral in [1] and [4].

1. Prerequisites

For definitions of the P_{ap}^* -integral, the R_{ap}^* -integral and their equivalence see [1].

The next 2 definitions are repeated without change from [1] while the 3rd definition is taken from [4].

Definition 1 Let $F : [a, b] \to \mathbb{R}$ be given.

(a) Let E be a closed subset of [a, b]. Then $F \in AC^*_{ap}(E)$, closed, if and only if (i) $F \in AC(E)$, (ii) for all λ , $0 < \lambda < 1$, there exists, on each closed contiguous interval of E, $[a_n, b_n]$, a set E_n^{λ} and an $M^{\lambda} > 0$, $|E_n^{\lambda}| > (1 - \lambda)(b_n - a_n)$, such that for all $x_n \in E_n^{\lambda}$,

$$\sum_{n \in \mathbb{N}} |F(x_n) - F(a_n)| < M^{\lambda}, \text{ and } \sum_{n \in \mathbb{N}} |F(b_n) - F(x_n)| < M^{\lambda}.$$

Received by the editors February 3, 1992

(b) $F \in [ACG_{ap}^*]$ on [a, b] if and only if there exist closed sets $E_n, n = 1, 2, ...$ such that $[a, b] = \bigcup_{n \in \mathbb{N}} E_n$, and $F \in AC_{ap}^*(E_n)$, $n \in \mathbb{N}$.

Definition 2 If $f : [a, b] \to \mathbb{R}$, then $f \in D_{ap}^*$, f is D_{ap}^* -integrable, if and only if there exists $F \in C_{ap}([a, b])$, $F \in [ACG_{ap}^*]$ and $F'_{ap} = f$ almost everywhere; then

$$\int_a^x f = F(x) - F(a).$$

Here $C_{ap}([a, b])$ denotes the family of all approximately continuous functions on [a, b].

Definition 3 Let X be closed in [a, b]. A function $F : [a, b] \to \mathbb{R}$ is said to be $AC_{ap}^{**}(X)$ if and only if for every $\varepsilon > 0$ there exists an $\eta > 0$ such that for all $\alpha_1 < \beta_1 \leq \alpha_2 < \ldots < \beta_p$, points of X, if $\sum_{k=1}^{p} (\beta_k - \alpha_k) < \eta$, then for every $\lambda \in (0, 1)$ there exist measureable $E_k^{\lambda} \subset [\alpha_k, \beta_k]$ with $\alpha_k, \beta_k \in E_k^{\lambda}$ and $|E_k^{\lambda}| > (1 - \lambda)(\beta_k - \alpha_k)$ for $1 \leq k \leq p$ and satisfying

$$\sum_{k=1}^{p} \omega(F; E_k^{\lambda}) < \varepsilon,$$

where $\omega(F; E_k^{\lambda}) = \sup\{|F(x) - F(y)|; x, y \in E_k^{\lambda}\}$. A function F is said to be $ACG_{ap}^{**}([a, b])$ if and only if $[a, b] = \bigcup_{i=1}^{\infty} X_i$ where each X_i is closed and F is $AC_{ap}^{**}(X_i)$ for each i.See [4], page 139, Definition 22.6.)

Correspondingly, we define the D_{ap}^{**} integral.

In Theorem 4.5 of [1], page 245 it is asserted that AC_{ap}^{**} and AC_{ap}^{**} . But Theorem 4.5 is not correct because the δ chosen is not independent of λ . Actually AC_{ap}^{**} is stronger than AC_{ap}^{*} . We will prove later that this condition together with C_{ap} is uo less than AC^{*} .

In Theorem 4.10 of [1] it is asserted that D_{ap}^* is equivalent to P_{ap}^* . But the proof of Theorem 4.10 is not valid because in the theorem of Tolstoff [7], the portion Q of a perfect set P depends on ε , but what we need in the definition of $[ACG_{ap}^*]$ is that Q must be independent of ε . (See [7] page 657.) We will prove in the following that $D_{ap}^{**} \subset D_{ap}^* \subset P_{ap}^*$ and both inclusions are proper.

2. The nonequivalence of D_{ap}^{**} , D_{ap}^{*} and P_{ap}^{*}

For the definition of $AC^*(X)$ see [4].

Proposition 1 If $F \in C_{ap}([a, b])$ and $AC_{ap}^{**}(X)$ where X is closed in [a, b], then $F \in AC^{*}(X)$.

254

Proof. According to 3, for every $\varepsilon > 0$, there exists $\eta > 0$, such that for $\alpha_1 < \beta_1 \le \alpha_2 < \beta_2 \le \ldots \le \alpha_p < \beta_p$, points of X, if $\sum_{k=1}^{p} (\beta_k - \alpha_k) < \eta$, then for $\lambda = 1/2^n$ where $n = 1, 2, \ldots$ there exists $E_k^{1/2^n}$ such that $E_k^{1/2^n} \subset [\alpha_k, \beta_k]$, $\alpha_k, \beta_k \in E_k^{1/2^n}, |E_k^{1/2^n}| > (1-2^{-n})(\beta_k - \alpha_k), k = 1, 2, \ldots, p$ and satisfying

$$\sum_{k=1}^{p} \omega(F; E_k^{1/2^n}) < \varepsilon.$$

Put $E_k = \bigcup_{i=1}^{\infty} \bigcap_{n=i}^{\infty} E_k^{1/2^n}$, then we have

$$|E_k| = \beta_k - \alpha_k$$

Hence there exists $E_k \subset [\alpha_k, \beta_k], \alpha_k, \beta_k \in E_k$, and $|E_k| = \beta_k - \alpha_k, k = 1, 2, ..., p$ such that

$$\sum_{k=1}^p \omega(F; E_k) \leq \varepsilon.$$

It follows that $\sum_{k=1}^{p} \omega(F; [\alpha_k, \beta_k]) \leq 2\varepsilon$. Otherwise, there exist $y_1, y_2 \in [\alpha_K, \beta_K]$ for some $K \in \{1, 2, ..., p\}$ and such that $|F(y_1) - F(y_2)| > 2\varepsilon - \sum_{k \neq K} \omega(F; E_k)$. But since F is approximately continuous at y_1, y_2 , there exist $x_i \in D_{y_i} \cap E_K$ with D_{y_i} having density 1 at $y_i, i = 1, 2$, such that $|F(x_i) - F(y_i)| < \varepsilon/2$. Hence

$$|F(x_1) - F(x_2)| \ge |F(y_1) - F(y_2)| - \varepsilon > 2\varepsilon - \sum_{k \neq K} \omega(F; E_k) - \varepsilon = \varepsilon - \sum_{k \neq K} \omega(F; E_k).$$

That means $\sum_{k=1}^{p} \omega(F; E_k) > \varepsilon$ which is a contradition.

Proposition 2 $D_{ap}^{**} \subset D_{ap}^{*}$ and the inclusion is proper.

Proof. The inclusion is because of Proposition 1, while the properness of the inclusion will be proved by the following Example 2.

Proposition 3 $D_{ap}^* \subset P_{ap}^*$ and the inclusion is proper.

Proof. The inclusion is proved in [1]. We prove the properness by giving in Example 1 a function satisfying P_{ap}^* but not D_{ap}^* .

Example 1 We denote Cantor's ternary set on [a, b] by P, and we describe associated intervals as follows.

Step 1. Let I_1 be the middle open third of [a, b]; let O_1 be the center of I_1 ; let J_{11}, J_{12} be the other closed thirds of [a, b] at the left and right of I_1 respectively.

Step 2. Let I_{11} be the middle open third of J_{11} with centre O_{11} ; let J_{111}, J_{112} be the other thirds of J_{11} at the left and right of I_{11} respectively, and likewise we get $I_{12}, O_{12}, J_{121}, J_{122}$.

Continuing this procedure, in general, after *n* similar steps, we have got $J_{1\alpha_1\alpha_2...\alpha_n}$, let $I_{1\alpha_1\alpha_2...\alpha_n}$ be the middle open third of $J_{1\alpha_1\alpha_2...\alpha_n}$ with centre $O_{1\alpha_1\alpha_2...\alpha_n}$; and $J_{1\alpha_1\alpha_2...\alpha_n\alpha_{n+1}}$ be the other thirds of $J_{1\alpha_1\alpha_2...\alpha_n}$ at the left or right of $I_{1\alpha_1\alpha_2...\alpha_n}$ according to whether α_{n+1} is 1 or 2.

Finally let $K(\alpha_1, \alpha_2, ..., \alpha_n)$ be the number of " α_i 's" in $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ equal to 2. Define

$$F(x) = \begin{cases} 1 & x \in O_1 \\ \frac{1}{n+1} & x \in O_{1\alpha_1\alpha_2...\alpha_n}; \alpha_i = 1, 2, i = 1, 2, ..., n; n \in \mathbb{N}; \\ 0 & x \in [a, b] \setminus \cup (L_{\alpha_1\alpha_2...\alpha_n}, R_{\alpha_1\alpha_2...\alpha_n}); \text{ where} \\ L_{\alpha_1\alpha_2...\alpha_n} = O_{1\alpha_1\alpha_2...\alpha_n} - (1/2^{K(\alpha_1,\alpha_2,...\alpha_n)+1})|I_{1\alpha_1\alpha_2...\alpha_n}|, \\ R_{\alpha_1\alpha_2...\alpha_n} = O_{1\alpha_1\alpha_2...\alpha_n} + (1/2^{K(\alpha_1,\alpha_2,...\alpha_n)+1})|I_{1\alpha_1\alpha_2...\alpha_n}|, \\ \alpha_i = 1, 2 \text{ for } i = 1, 2, ..., n; n \in \mathbb{N}. \end{cases}$$

Extend F to [a, b] by requiring it to be linear on $[L_{\alpha_1\alpha_2...\alpha_n}, O_{1\alpha_1\alpha_2...\alpha_n}]$ and on $[O_{1\alpha_1\alpha_2...\alpha_n}, R_{\alpha_1\alpha_2...\alpha_n}]$.

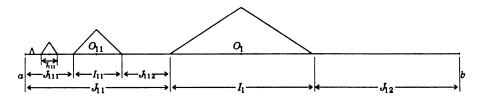
For example $F(O_{12122112}) = 1/8$; F linear on

 $[O_{12122112} - (1/2^5 \cdot 3^8), O_{12122112}]$ and $[O_{12122112}, O_{12122112} + (1/2^5 \cdot 3^8)];$

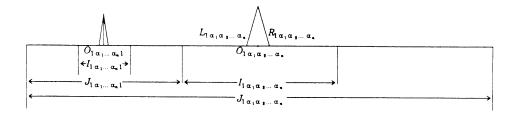
F(x) = 0 when x is the points of $I_{12122112}$ other than the above-mentioned points.

Or we illustrate F(x) as follows.

On $I_1, I_{11}, I_{111}, \ldots, I_{11\dots 1}, \ldots$, the graph of F consists of triangles with bases of length $|I_1|, |I_{11}|, \ldots, |I_{11\dots 1}|$ and heights $1, 1/2, 1/3, \ldots, 1/n$ respectively,



On each of the intervals $I_{1\alpha_1...\alpha_n}$, $I_{1\alpha_1...\alpha_n1}$, $I_{1\alpha_1...\alpha_n11}$, ..., $I_{1\alpha_1...\alpha_n11...1}$, ... that are extracted from $J_{1\alpha_1\alpha_2...\alpha_n}$ as the above intervals are from [a, b], the graph of F consists of a triangle with that interval as base and height 1/(n+k), where k is the number of 1's following the sequence $1\alpha_1...\alpha_n$ that defines the base.



Now let us prove the following.

- (1) $F'_{ap}(x) = f(x)$ nearly everywhere, $f \in P^*_{ap}$ and $F(x) = P^*_{ap} \int_a^x f(y) dy$.
- (2) F is not $[ACG_{ap}^*]([a, b])$, so $F'_{ap}(x)$ cannot be D^*_{ap} -integrable on [a, b].

Proof of (1) F(a) = 0. For every $x \in I_{1\alpha_1\alpha_2...\alpha_n}$ except $O_{1\alpha_1\alpha_2...\alpha_n}$, $L_{\alpha_1\alpha_2...\alpha_n}$, and $R_{\alpha_1\alpha_2...\alpha_n}$, $F'_{ap}(x)$ exists, since F(x) is linear there, and $F \in C_{ap}(I_{1\alpha_1...\alpha_n})$. For every $x \in P$, except the endpoints of any $I_{1\alpha_1...\alpha_n}$, there exists a sequence $J_{1\alpha_1}, J_{1\alpha_1\alpha_2}, \ldots, J_{1\alpha_1\alpha_2...\alpha_n}, \ldots$ including x as their interior point, and we will prove $F'_{ap}(x)$ exists and equals 0.

Lemma 1 Let $x \in P$ and suppose x is not the end point of any $I_{1\alpha_1...\alpha_n}$. Then

$$\lim_{n\to\alpha} K(\alpha_1,\alpha_2,\ldots,\alpha_n) = \infty \text{ and } \lim_{n\to\infty} [n-K(\alpha_1,\alpha_2,\ldots,\alpha_n)] = \infty,$$

where for each n, x is an interior point of $J_{1\alpha_1\alpha_2...\alpha_n}$.

Proof. If $\lim_{n\to\infty} K(\alpha_1, \alpha_2, \ldots, \alpha_n) \neq \infty$, then there is p such that $\alpha_p = 2$ and $\alpha_k = 1$ for k > p. Then x is the right end point of $I_{1\alpha_1\alpha_2\ldots\alpha_{p-1}}$, giving a contradition. Likewise for $\lim_{n\to\infty} [n - K(\alpha_1\alpha_2\ldots\alpha_n)]$.

For every above mentioned x, we will show $F'_{ap}(x) = 0$ by taking for our set D_x of density 1 at x the set $\{y : F(y) = 0\}$. To show that $\{y : F(y) = 0\}$ does indeed have density 1 at x, let $J_{1\alpha_1\alpha_2...\alpha_n}$ be as in Lemma 1 such that $K(\alpha_1, \alpha_2, ..., \alpha_n) > M + 1$ for any given $M \in \mathbb{N}$. Then for every neighbourhood U of x with $U \subset J_{1\alpha_1\alpha_2...\alpha_n}$, U only includes points belonging to P or to intervals $I_{1\alpha_1\alpha_2...\alpha_n\alpha_{n+1}...\alpha_{n+p}}$ with

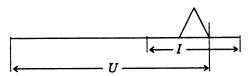
$$K(\alpha_1, \alpha_2, \ldots, \alpha_n) > M + 1.$$

When $y \in U \cap P$, we have F(y) = 0. When y belongs to the intersection of U and any $I_{1\alpha_1...\alpha_n\alpha_{n+1}...\alpha_{n+p}} \subset J_{1\alpha_1...\alpha_n}$, let I denote $I_{1\alpha_1\alpha_2...\alpha_n\alpha_{n+1}...\alpha_{n+p}}$, and K denote $K(\alpha_1, \alpha_2, ..., \alpha_n) > M + 1$; then

$$|\{y: y \in I, F(y) \neq 0\}| = 2^{-K(\alpha_1, \dots, \alpha_n, \alpha_{n+1}, \dots, \alpha_{n+p})}|I| \le 2^{-K}|I|.$$

Now, let us estimate $|\{y : y \in I \cap U, F(y) = 0\}|/|I \cap U|$. It reaches its minimum when U just includes $\{y : y \in I, F(y) \neq 0\}$ and half of $\{y : y \in I, F(y) = 0\}$, as shown below

011



In this case,

$$\frac{|\{y: y \in I \cap U, F(y) = 0\}|}{|I \cap U|} =$$

$$2^{-1}|I|(1 - \frac{2^{-K(\alpha_1, \alpha_2, \dots, \alpha_n, \alpha_{n+1}, \dots, \alpha_{n+p})})}{2^{-1}|I|(1 + 2^{-K(\alpha_1, \dots, \alpha_n, \alpha_{n+1}, \dots, \alpha_{n+p})})}$$

$$\geq (1 - 2^{-K})/(1 + 2^{-K}) = (1 + 2^{-K} - 2^{-K+1})/(1 + 2^{-K}) =$$

$$1 - (2^{-K+1}/1 + 2^{-K}) > 1 - 2^{-K+1} > 1 - 2^{-M}$$

. Hence, whenever $I \cap U \neq \phi$, in every case, we have $|\{y: y \in I \cap U, F(y) = 0\}| / |I \cap U| > 1 - 2^{-M}.$ Now

$$U = (U \cap P) \cup \{ \cup (I \cap U) \},\$$

the union in the second parentheses being over all above mentioned intervals I, these intervals being nonoverlapping.

Hence

$$|\{y: y \in U, F(y) = 0\}|/|U| =$$

$$(|U \cap P| + \sum |\{y : y \in I \cap U, F(y) = 0\}|) / (|U \cap P| + \sum |I \cap U|) \ge \sum |\{y : y \in I \cap U, F(y) = 0\}| / \sum |I \cap U| > 1 - 2^{-M}$$

and that means D_x has density 1 at x and hence $F'_{ap}(x) = 0$. Since $\lim_{n\to\infty} \max\{F(x); x \in I_{1\alpha_1\alpha_2...\alpha_n}\} = 0$ for any sequence $\{I_{1\alpha_1\alpha_2...\alpha_n}\}$, and F(x) = 0 in P, F is C_{ap} on [a, b], and even continuous on [a, b].

Summing up the above, we have $F \in C_{ap}([a, b])$, $F'_{ap}(x) = f(x)$ exists n.e. (except a countable set) on [a, b], so $F \in M_f^{\#}$ as well as $M_{\#, f}$ and hence

$$F(y) = P_{ap}^* - \int_a^y f(x) dx.$$

Proof of (2) (i.e. F is not $[ACG_{ap}^*]([a, b])$, so $F'_{ap}(x)$ cannot be D^*_{ap} -integrable on [a, b].

Lemma 2 $F \in [ACG_{ap}^*]$ on [a, b], if and only if for every perfect R there exists a portion Q of R such that $F \in AC_{ap}^*(Q)$.

The proof of the Lemma is word for word the same as that involving ACG^* in Saks [6].

Suppose, to obtain a contradition, that $F \in [ACG_{ap}^*]$ on [a, b]. By Lemma 2, there is a portion Q of P with $F \in AC_{ap}^*(Q)$. If (c, d) is the smallest interval including Q, then there exists a $J_{1\overline{\alpha}_1\overline{\alpha}_2...\overline{\alpha}_n} \subset (c, d)$ and $(c, d) \setminus Q$ will include all $I_{1\overline{\alpha}_1...\overline{\alpha}_n,11...1}$ with every suffix following $\overline{\alpha}_n$ being "1".

Given any $I_{1\overline{\alpha}_1...\overline{\alpha}_n,11...1}$, denoted by (ℓ, r) and any $\lambda < 2^{-K(\overline{\alpha}_1,...,\overline{\alpha}_n)-1}$, suppose $E^{\lambda}_{(\ell,r)} \subset [\ell, r]$ is taken to be as in the definition of AC^*_{ap} . Now

$$|E_{(\ell,r)}^{\lambda}| > (1-\lambda)|(\ell,r)|,$$

and the length of the base of the triangle that graphs F(x) in (ℓ, r) is equal to $2^{-K(\overline{\alpha}_1,\ldots,\overline{\alpha}_n)}|(\ell,r)| > 2\lambda|(\ell,r)|$; hence there exists y belonging to $E_{(\ell,r)}^{\lambda}$ as well as to the central half of the base of the above triangle. Hence $F(y) > 2^{-1}(n+p+1)^{-1}$, where p is the number of "1's" following $\overline{\alpha}_n$, and so we have

$$|F(\ell) - F(y)| > 2^{-1}(n+p+1)^{-1}.$$

And so

$$\sum |F(\ell) - F(y)| > \sum_{p=1}^{\infty} 2^{-1} (n+p+1)^{-1} = \infty,$$

the sum being for all $I_{1\overline{\alpha}_1...\overline{\alpha}_n 1...1}$. Hence F is not $AC^*_{ap}(Q)$, giving a contradiction, i.e. F is not $[ACG^*_{ap}]$, and $F'_{ap}(x) = f(x)$ is not D^*_{ap} -integrable, completing Example 1, and proving Proposition 3.

Note If we replace $\frac{1}{n+1}$ by $1/(n - K(\alpha_1, \alpha_2, \ldots, \alpha_n) + 1)$ when $x = O_{1\alpha_1 \ldots \alpha_n}$; then F also satisfies P_{ap}^* but not D_{ap}^* , and at the left end points of $I_{1\alpha_1\alpha_2 \ldots \alpha_n}$, F is only approximately continuous but not continuous.

Proof of Proposition 2 By giving the following Example 2.

Example 2 Let P, $I_{1\alpha_1\alpha_2...\alpha_n}$ and $O_{1\alpha_1\alpha_2...\alpha_n}$ be given as in Example 1, and define

$$F(x) = \begin{cases} 1 & x \in O_1 \text{ or } x \in O_{1\alpha_1\alpha_2\dots\alpha_n}; \alpha_i = 1, 2, i = 1, 2, \dots, n, n \in \mathbb{N} \\ 0 & x \in [a, b] \setminus \cup \left(O_{1\alpha_1\dots\alpha_n} - \frac{|I_{1\alpha_1\dots\alpha_n}||}{2^{n+1}}, O_{1\alpha_1\dots\alpha_n} + \frac{|I_{1\alpha_1\dots\alpha_n}||}{2^{n+1}} \right) \end{cases}$$

Extending F to [a, b] by requiring it to be linear on the intervals contiguous to the set consisting of all above mentioned points.

It is easy to prove that F'(x) is D_{ap}^* integrable but not D_{ap}^{**} integrable. First, the structure of F shows that it is C_{ap} on [a, b], and then F is AC_{ap}^* on every closure of $I_{1\alpha_1\alpha_2...\alpha_n}$. Lastly, for proving F to be AC_{ap}^* on P (the Cantor ternary set in [a, b]), for every $\lambda \in (0, 1)$, there exists $N \in \mathbb{N}$ such that $(1/2^N) < \lambda$. For every interval $I_{1\alpha_1\alpha_2...\alpha_n}$ contiguous to P let us denote it by $[\ell, r]$, and denote

$$E^{\lambda}_{[\boldsymbol{\ell},\boldsymbol{r}]} = \{\boldsymbol{x}; \boldsymbol{x} \in [\boldsymbol{\ell},\boldsymbol{r}], F(\boldsymbol{x}) = 0\}.$$

We have $|E_{[\ell,r]}^{\lambda}| > (1-\lambda)|[\ell,r]|$ for every $I_{1\alpha_1\alpha_2...\alpha_n}$ with $n \ge N$ and the number of those $I_{1\alpha_1\alpha_2...\alpha_n}$ with n < N is finite. Hence

$$\sum \omega(F; E_{[\ell,r]}^{\lambda}) < \infty$$

and F is AC_{ap}^* on P. So we have proven the D_{ap}^* integrability of F'(x). On the other hand, by the theorem corresponding to our Lemma 2 in §9, Chapter VII of Saks [6], we know that F is not ACG^* on [a, b]. Hence F'(x) is not D_{ap}^{**} -integrable.

References

- P. S. Bullen, The Burkill approximately continuous integral, J. Austral. Math. Soc. (Series A), 35 (1983), 236-253.
- [2] R. Gordon, The inversion of approximate and dyadic derivatives using an extension of the Henstock integral, Real Anal.Exchange 16 (1990-91), 154-168.
- [3] R. IIenstock, Lectures on the Theory of Integration, World Scientific, 1988.
- [4] Lee Peng Yee, Lanzhou Lectures on Henstock Integration, World Scientific, 1989, 135-145.
- [5] Ma Zheng-Min and Lee Peng Yee, On the primitives of the AP integral, (preprint).
- [6] S. Saks, Theory of the Integral, 2nd ed., Warsaw, 1937.
- [7] O. Tolstoff, Sur l'integrale de Perron, Mat. Sb., 5 (1939), 647-659.

260