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 On the Descriptive Definition of the Burkill
 Approximately Continuous Integral

 Bullen [1] gave various equivalent definitions of the Burkill approximately
 continuous integral, which we shall denote by P*p. In this paper, we will point
 out that the D*ap integral or a descriptive definition of P*p defined in [1] is really
 not equivalent to the P* integral, but more restricted than the latter. If we
 replace [ACGlp] as in [if by ACG*ap defined as in [4] (Definition 22.6), we will
 get another version of the D*p integral. Let it be denoted by D*ļ. D*ap is more
 restricted than D*p because ACG*ap is more restricted than [ACG*p].

 All of this nonequivalence is caused by the very definition of AC*p in [1],
 and that in [4]; the latter will be denoted by AC*ļ. The adequate definition
 of AC*p is essential. The author is working on a paper on this topic, and the
 recent works [2] and [5] have contributed to the theory. We shall assume that
 the reader is familiar with the relevant definitions involving the integral in [1]
 and [4].

 1. Prerequisites

 For definitions of the P^-integral, the 7?*p-integral and their equivalence see [1].
 The next 2 definitions are repeated without change from [1] while the 3rd

 definition is taken from [4].

 Definition 1 Let F : [a, 6] - ► M be given.

 (a) Let E be a closed subset of [a, 6]. Then F G AC*p(E), closed , if and
 only if (i) F £ AC(E)f (ii) for all A, 0 < A < 1, there exists , on
 each closed contiguous interval of E, [an,6n], a set E„ and an Mx > 0,

 > (1 - A)(6n - an), such that for all xn G E„,

 J2'F(xn)~ F(an)'< M' and £ |F(6„) - F(x„)| < Mx.
 nÇN nÇN
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 (b) F G [ ACG*p ] on [a, 6] if and only if there exist closed sets Enin = 1,2,...
 such that [a, 6] = Un€N£n, an d F G AC2p(En), n G N.

 Definition 2 /// : [a, 6] - ► K, ť/ien / E -DJp, / is D*ap-integrable} if and only if
 there exists F G Cflp([a,6]), F G [^CGJļp] and F'ap = / almost everywhere; then

 f f=F(x)-F(a). Ja

 Here Cap([a,&]) denotes the family of all approximately continuous functions on
 [a,b].

 Definition 3 Let X be closed in [a, 6]. A function F : [a, 6] - ► R is said to
 be AC*ļ{X) if and only if for every e > 0 there exists an rj > 0 such that for
 all a i < ß' < Of2 < . . . < ßp, points of X , if Yfk= i(ßk ~ a*) < iļ, then for
 every A G (0,1) there exist measureable E £ C [a*,/?*] or^ , G and
 ļ^l > (1 - A)(/?jfc - ak) for 1 < k < p and satisfying

 ¿u>(F;E¿)<e,
 k = l

 where üj(F ; E$) = sup{|F(x) - F(y)|; x,y 6 ££}. >1 function F is said to be
 ACG**([a, b]) if and only ¿/[a, b] = U^X,- where each X{ is closed and F is
 AC*£(Xi) for each i.See [4], page 139, Definition 22.6.)

 Correspondingly, we define the D*aļ integral.
 In Theorem 4.5 of [1], page 245 it is asserted that AC*p and AC**. But

 Theorem 4.5 is not correct because the S chosen is not independent of A. Actually

 AC** is stronger than AC*p. We will prove later that this condition together
 with Cap is no less than AC* .

 In Theorem 4.10 of [1] it is asserted that D*p is equivalent to P*p. But the
 proof of Theorem 4.10 is not valid because in the theorem of Tolstoff [7], the
 portion Q of a perfect set P depends on £, but what we need in the definition of
 [ACG*ap] is that Q must be independent of e. (See [7] page 657.) We will prove
 in the following that D*ap C D*ap C P£p and both inclusions are proper.

 2. The nonequi valence of D*a*p, D*p and P*p

 For the definition of AC*(X) see [4].

 Proposition 1 If F G CaP([a,ò]) and AC**(X) where X is closed in [a, b], then
 F G AC*(X).
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 Proof. According to 3, for every e > 0, there exists t) > 0, such that for
 <*i < ßi < <*2 < /?2 < - - - < <Xp < ßPi points of X , if Yfk^iißk - <**) < T), then

 for A = l/2n where n = 1,2, . . . there exists ElJ2 such that ElJ2 C [<**,/?*],
 <*t,ßk € El13 ,| E]/2 I > (1 - 2~n)(ßk - a*), t = 1,2,.. .,p and satisfying

 t-CiíT)«-
 k = l

 Put /£* = U^ļ fl£Lt- É'j2 , then we have

 'Ek' - ßk - <**.

 Hence there exists £* C [orjb, <**,/?* € and |£?fc| = /?*-<**, k = 1,2, . . .,p
 such that

 p

 < e.

 Ar = l

 It follows that Y%=1W(F'< (a*> ßk]) < 2e. Otherwise, there exist yi , j/2 € [<**,/?*-]

 for some A' € {1,2, ...,p} and such that |F(yi)-F(y2)| > 2e-¿t?ÍJf w{F' Ek).
 But since F is approximately continuous at 2/1,2/2, there exist x¡ € Dyi fl Ek
 with Dyi having density 1 at yit i = 1, 2, such that |F(x,) - F(y,)l < e/2. Hence

 |F(*i)-.F(*a)| > |F(yi)-F(î/2)|-e > It- Y I w(F; Ek)-e = e- £ w(F; £*).

 That means XU=i Ek) > s which is a contradition.

 Proposition 2 D*ļ C an^ the inclusion is proper.

 Proof. The inclusion is because of Proposition 1, while the propemess of the
 inclusion will be proved by the following Example 2.

 Proposition 3 D*p C Pļp and the inclusion is proper.

 Proof The inclusion is proved in [1]. We prove the propemess by giving in
 Example 1 a function satisfying Pļp but not D*p.

 Example 1 We denote Cantor's ternary set on [a, 6] by P% and we describe
 associated intervals as follows.

 Step 1. Let 1' be the middle open third of [a, 6]; let 0' be the center of /j; let
 Jiiy J'2 be the other closed thirds of [a, 6] at the left and right of I' re-
 spectively.
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 Step 2. Let In be the middle open third of Jn with centre On' let «/m, J112 be
 the other thirds of Jn at the left and right of In respectively, and likewise
 we get /12, O12, «/121, J'22-

 Continuing this procedure, in general, after n similar steps, we have got
 «/lai a3...an, hcuai - dn be the middle open third of Jiaia2...an with centre
 1 o 1 Of 3 . . .o? u ) and J' o» j Qf 2 . . . o? n of 1 be the other thirds of J'q io?2...on the left or

 right of I iQla2...an according to whether an+i is 1 or 2.
 Finally let K(a' , c*2, . . . , an) be the number of "a,- 's" in {ai,a2, . . .,an}
 equal to 2. Define

 1 X € Oi

 n-f 1 ® £ ^l or i Qr 2 • • • Or n ) - 1)2, Z - 1,2,... ,71, Tí Ç M,

 F(x) V' = 0 aj€[a,61'U(Laia3...an,ßaia3...an); where
 F(x) V' = ) ^,»,...«- = Oi«.«a...a.-(l/2^0"0î--0-)+l)|/i«,«a...a.|,

 Ä«,aa...a. = 0laiaa...a. +

 a, = 1,2 for i = 1, 2, . . . , n; n € N.

 Extend F to [a, 6] by requiring it to be linear on [LQlQ2 Ctn , OļaiCra...an] and on
 1 Of ! Of 2 ... Of n ) -Ra1a3...orn]-

 For example F(Oi2i22ii2) = 1/8; F linear on

 [O12122112 - (l/25.38), O12122112] and [O121221 12> O12122112 -I- ( 1 /25 • 38)];

 F(x) = 0 when x is the points of /12122112 other than the above-mentioned
 points.

 Or we illustrate F(x) as follows.
 On /1 , / n, / m, . . . , / u. ..1, . . . , the graph of F consists of triangles with bases

 of length |/i I , |/n|, . . . , I /1 1 ... 1 1 and heights 1, 1/2, 1/3, . . ., 1/n respectively,

 "iQ ļ^N - a « - Jin - *'< - /11 - * « - «A12 - > b
 <

 On each of the intervals IiQl...an, hafani, hal...aniiì /ittl...aÄii...i, .. .
 that are extracted from J icna3 ..<*» 215 ^e above intervals are from [a, 6], the
 graph of F consists of a triangle with that interval as base and height l/(n + k),
 where k is the number of Ts following the sequence lai •••»n that defines the
 base.
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 ^ a, a a,y^'^l a, a a,
 pxx; Œià t ... a.
 1^1 a,... a, 1"»

 * a i... a, 1 * ' * A a i a t ... a, *
 < ~~ ~^la,a,...o, " >

 Now let us prove the following.

 Í1) Kp(x) = /(*) nearly everywhere, / € P*p and F(x) = P*p - /* f(y)dy.

 (2) F is not [ACG*p]([a, 6]), so F'ap{x ) cannot be D*p-integrable on [a, 6].

 Proof of (1) F(a) = 0. For every x G IiQla2...an except OiaiCř2 an, LaiQ2^an
 and Raict2..an, F'ap{x) exists, since F(x) is linear there, and F G Cap(I iftl...an)-
 For every x G P, except the endpoints of any hQl.. an, there exists a sequence
 «Acri , J'axa2, • • • 5 J'axa2 .. an > • • • including x as their interior point, and we will

 prove F'ap{x) exists and equals 0.

 Lemma 1 Let x G P and suppose x is not the end point of any I'Ql.. an- Then

 lim K(a' , û2, . . . , an) = oo and lim [n - K(a' , c*2, . . . , c*n)l = oo,
 n--a n- ►oo

 where for each n,x is an interior point of J'ax0t2...an •

 Proof If limn_*oo A'(ari, c*2, . . . , orn) / oo, then there is p such that ap = 2
 and a* = 1 for fc > p. Then x is the right end point of I'aia2 ...av~i » giving a
 contradition. Likewise for limn-ootn - Â'(aic*2 . . .<*„)]. □

 For every above mentioned x, we will show F'ap{x ) = 0 by taking for our
 set Dx of density 1 at x the set {y : F(y) = 0}. To show that {y : F(y) = 0}
 does indeed have density 1 at x, let Jiaia2...an be as in Lemma 1 such that
 A'(c*i , a 2, • • . , c>n) > M + 1 for any given M G N. Then for every neighbourhood
 U of x with U C J'axa2 . a*) U only includes points belonging to P or to intervals
 hala2...anan+i...an+p with

 A'(ai,c*2, . . .,an) > M + 1.

 When y G U fi P, we have F (y) = 0. When y belongs to the intersection of U
 and any /iori...anan+i • orn+p C J'a'...ani let I denote /iaria2...anorn+i...orn+p j and
 K denote A'(c*i, c*2, . . . , c*n) > Af + 1; then

 '{y : y G J, F (y) ¿ 0}| = 2~K ^
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 Now, let us estimate '{y : y € I DU, F(y) = 0}|/|/fl U |. It reaches its minimum
 when U just includes {y : y £ /, F(y) ^ 0} and half of {y : y € I, F(y) = 0}, as
 shown below

 i - ^
 <

 In this case,

 |{y : y € I C'U, F(y) = 0}| _
 'mu'

 9-K"(ai,af3,...,an,an+1,...,orn+p)'
 o-M/in

 2-1|/|(l + 2"#f(Qřl'-'ar*»ar»+l'-»0řw+i»))

 > (1 - 2~K)/(l + 2~K) = (1 + 2~k - 2~k+1)/(1 + 2~k) =

 1 - (2~K+l/' + 2~k) > 1 - 2~k+1 > 1 - 2~m

 . Hence, whenever I D U ^ <£, in every case, we have
 '{y:yemu, F(y) = 0}|/|/n U' > 1 « 2-M.

 Now

 u = (unp)u{u(inu)}i

 the union in the second parentheses being over all above mentioned intervals /,
 these intervals being nonoverlapping.

 Hence

 '{y.yeU,F(y) = 0}'/'u' =

 ('u n p' + £ |{v ; y g / n u, F{y) = 0}|)/(|t/ n p' + £ |/n u') >

 XlKf : y G / ni/,F(y) = 0}|/]T|/ní7| > 1 -2"m

 and that means Dx has density 1 at x and hence F'ap{x) = 0.
 Since limn_oo max{F(x);x G /ial03...aB} = 0 for any sequence {Jiaitta...an},

 and F(x) = 0 in P, F is Cap on [a, 6], and even continuous on [a, 6].
 Summing up the above, we have F G Cap([a,6]), F'ap{x) = /(x) exists n.e.

 (except a countable set) on [a, 6], so F G as well as M#j and hence

 F(y) = p;p- l' f(x)dx.
 J a
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 Proof of (2) (i.e. F is not [ACG*p]([at 6]), so F'ap(x ) cannot be £>*p-integrable
 on [a, 6].

 Lemma 2 F G [ACG*p] on [a, 6], if and only if for every perfect R there exists
 a portion Q of R such that F G AC*p(Q).

 The proof of the Lemma is word for word the same as that involving ACG*
 in Saks [6]. □
 Suppose, to obtain a contradition, that F G [ ACG*p ] on [a, 6], By Lemma
 2, there is a portion Q of P with F G AC*p(Q). If (c, d) is the smallest interval
 including Q, then there exists a J'āxā2...ān C (c, d) and (c, d)'Q will include all
 hāi...ānii - i every suffix following ān being "1".

 Given any /iāi...ānii...i> denotedby (£, r) and any A < sup-
 pose E(lir)C[e,r] is taken to be as in the definition of ACļp. Now

 l4,r)|>(l-A)|(/,r)|,
 and the Jength of the base of the triangle that graphs F(x) in (£, r) is equal
 to 2~K(Ql' •' -,orn)|(ť, r)| > 2X'(£, r)|; hence there exists y belonging to E*t as
 well as to the central half of the base of the above triangle. Hence F{y) >
 2 ~1(n + p+ l)"1, where p is the number of "IV following ani and so we have

 |F(i)-F(y)|>2"1(n+p+l)-1.
 And so

 oo

 ^|F(i)-F(î/)|>^2-1(n + p+l)-1=ooJ
 p= 1

 the sum being for all /īāj . āni ..i. Hence F is not AC*p{Q), giving a contradic-
 tion, i.e. F is not [ACG*p], and F'ap{x) = f(x) is not D*p-integrable, completing
 Example 1, and proving Proposition 3. □

 Note If we replace ^ by l/(n - a2, . . . , <*„)+ l) when x = Oia,
 then F also satisfies P*p but not D*api and at the left end points of I'aia2...an^
 F is only approximately continuous but not continuous.

 Proof of Proposition 2 By giving the following Example 2.
 Example 2 Let P, /iaia2...0n and Oiaia2...an be given as in Example 1, and

 define

 F{X> -'0

 Extending F to [a, 6] by requiring it to be linear on the intervals contiguous
 to the set consisting of all above mentioned points.
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 It is easy to prove that F'x ) is D*ap integrable but not D** integrable. First,
 the structure of F shows that it is Cap on [a, 6], and then F is AC*p on every
 closure of I'aia^ ...an- Lastly, for proving F to be AC*p on P (the Cantor ternary
 set in [a, 6]), for every A 6 (0, 1), there exists N G N such that {'/2N) < A. For
 every interval Iiaxa2...an contiguous to P let us denote it by [¿, r], and denote

 E[i,r) = {«;* e [t,r',F{x) = o}.

 We have |^ r]| > (1 ~^)IK r]| ^or every /iaicr2...an with n > N and the number
 of those haia^...an with n < N is finite. Hence

 u(F'E[t,r]) <

 and F is AC*p on P. So we have proven the D*ap integrability of F'(x). On
 the other hand, by the theorem corresponding to our Lemma 2 in §9, Chapter
 VII of Saks [6], we know that F is not ACG* on [a, 6]. Hence F'(x ) is not
 D**-integrable. □
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