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On the Descriptive Definition of the Burkill
Approximately Continuous Integral

Bullen [1] gave various equivalent definitions of the Burkill approximately
continuous integral, which we shall denote by P;,. In this paper, we will point
out that the D}, integral or a descriptive definition of P, defined in [1] is really
not equivalent to the P;  integral, but more restricted than the latter. If we
replace [ACG?,] as in [1fby ACG?, defined as in [4] (Definition 22.6), we will
get another version of the Dy, integral. Let it be denoted by D;;. D37 is more
restricted than Dj, because ACG},, is more restricted than [ACG?,].

All of this nonequivalence is caused by the very definition of AC;, in [1],
and that in [4]; the latter will be denoted by AC;;. The adequate definition
of AC;, is essential. The author is working on a paper on this topic, and the
recent works [2] and [5] have contributed to the theory. We shall assume that
the reader is familiar with the relevant definitions involving the integral in [1]
and [4].

1. Prerequisites

For definitions of the Pj -integral, the I} -integral and their equivalence see [1].
The next 2 definitions are repeated without change from [1] while the 3rd
definition is taken from [4].

Definition 1 Let F : [a,b] — R be given.

(a) Let E be a closed subset of [a,b]. Then F € AC;,(E), closed, if and
only if (i) F € AC(E), (i) for all X\, 0 < X < 1, there exists, on
each closed contiguous interval of E, [a,,b,], a set E) and an M* > 0,
|EX > (1 = A)(bn — ay), such that for all z, € E),

D IF(xn) = Fan)| < M*, and Y |F(bn) — F(za)] < M.
neN neN
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(b) F € [ACG},] on [a,b] if and only if there exist closed sets En,n =1,2,. ..
such that [a,b] = UpenEyn, and F € AC;,(E,), n €N.

Definition 2 If f : [a,b] = R, then f € D;,, f is Dj,-integrable, if and only if
there exists F' € Cqp([a,b]), F € [ACGy,) and Fy, = f almost everywhere; then

]:f = F(z) - F(a).

Here Cqp([a, b]) denotes the family of all approzimately continuous functions on
[a, b].

Definition 3 Let X be closed in [a,b]. A function F : [a,b] — R is said to
be AC;(X) if and only if for every € > 0 there exists an n > 0 such that for
all oy < By < a3 < ... < By, points of X, if 3 %_,(Bx — ax) < 7, then for
every A € (0,1) there exist measureable E} C [a, k] with ax,Br € E} and

|EX > (1 = A)(Br — ak) for 1 < k < p and satisfying
P
zw(F; E}) <,
k=1

where w(F; E}) = sup{|F(z) — F(y)|; z,y € E}}. A function F is said to be
ACG3;([a, b)) if and only if [a,b] = U2, X; where each X; is closed and F is

AC;;(X;) for each i.See [{], page 139, Definition 22.6.)

Correspondingly, we define the Dy} integral.

In Theorem 4.5 of [1], page 245 it is asserted that AC;, and AC};. But
Theorem 4.5 is not correct because the é chosen is not independent of A\. Actually
AC3; is stronger than AC;,. We will prove later that this condition together
with Cyp is 1o less than AC*.

In Theorem 4.10 of [1] it is asserted that D, is equivalent to Py,. But the
proof of Theorem 4.10 is not valid because in the theorem of Tolstoff [7], the
portion @ of a perfect set P depends on €, but what we need in the definition of
[ACG?,] is that @ must be independent of €. (See [7] page 657.) We will prove
in the following that D75 C Dj, C P;, and both inclusions are proper.

2. The nonequivalence of D},

D;, and P,
For the definition of AC*(X) see [4].

Proposition 1 If F € Cap([a,b]) and AC;;(X) where X is closed in [a,]], then
F € AC*(X).
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Proof. According to 3, for every € > 0, there exists > 0, such that for
ay <Py Lar<Pr<...<ap <Py, points of X, if Y h_,(Br — ax) < 7, then
for A = 1/2" where n = 1,2,... there exists E,:/? such that El/2 C [ak, B,
ag, B € E1/2 IE'I/2 | > (1 =2"")B: —ar), k =1,2,...,p and satisfying

Zw(F E'I/2 ) <Ee.

Put Ep = U2, N, E',lc/zn, then we have
|Ex| = Br — ax.

Hence there exists Ex C [ak, B], ak,Bx € Ex, and |Ex| = fr—ar, k=1,2,...,p
such that

P
Z:w(F; Ey) <e.
k=1

It follows that 3} _, w(F'; [ak, Bi]) < 2¢. Otherwise, there exist y1,y2 € [ak, Ak]
for some K € {1,2,...,p} and such that |F(y;) - F(y2)| > 26— =2 kzk W(F; Ex).
But since F is approximately continuous at y;,ys, there exist z; E Dy; N Ex
with Dy, having density 1 at y;, ¢ = 1,2, such that |F(z;) — F(%)| < 6/2 "Hence

|F (1)~ F(22)| 2 |F (1)~ F(v2)|—€ > 26— 3 w(F; Bx)—¢ = e= 3 w(F; Ey).
k£K k£K

That means Y} _, w(F; Ex) > ¢ which is a contradition.
Proposition 2 D;; C D;, and the inclusion is proper.

Proof. The inclusion is because of Proposition 1, while the properness of the
inclusion will be proved by the following Example 2.

Proposition 3 D;, C P;, and the inclusion is proper.

Proof. The inclusion is proved in [1]. We prove the properness by giving in
Example 1 a function satisfying P;, but not Dj,.

Example 1 We denote Cantor’s ternary set on [a,b] by P, and we describe
associated intervals as follows.

Step 1. Let I be the middle open third of [a,b]; let O; be the center of I; let
J11,J12 be the other closed thirds of [a,b] at the left and right of I re-
spectively.
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Step 2. Let I}, be the middle open third of J;; with centre Oy,; let Jyqy, J112 be
the other thirds of Jy; at the left and right of I, respectively, and likewise
we get 12,012, J121, J122-

Continuing this procedure, in general, after n similar steps, we have got
Jiaias...any 1€t I1aa;...a, be the middle open third of Jiq,a,..a, With centre
Oraras...an; 30d J1a,as...anany, D€ the other thirds of Jia,a,. .a, at the left or
right of I14,q,...a, according to whether a4, is 1 or 2.

Finally let K(aj,a2,...,a,) be the number of “o;
equal to 2. Define

(1

s” in {a1,a2,...,an}

z €0
z € O10y0;..00;20i =1,2,1=1,2,...,n; n € N;
F(z) = z € [a,b]\U(Layas...an, Rajay..a.); Where

La.a,...a.. = 010107...0'; - (1/2’((01'0" 'a")+l)][lala3...a,.|;
Ralag...a.. = 010107...0.\ + (1/2}((01'02" 'u")+l)“1axa;...a,.|;
a;=1,2fori=1,2,...,n; neN.

1
.
n+l

0

Extend F to [a, b] by requiring it to be linear on [Lo,a; a..Olaja,..a,) and on

[Ola,a;u.a,‘, Ralag.‘.a,. .
For example F(Oj2122112) = 1/8; F linear on
[O12122112 — (1/2°.38), O12122112) and [Oi12122112, O12122112 + (1/25 - 38)];

F(z) = 0 when z is the points of Ij3122112 other than the above-mentioned

points.

Or we illustrate F(z) as follows.

On I, I1y, I111,...,I11...1, . .., the graph of F consists of triangles with bases
of length |I1|,|I11],...,|I11..1] and heights 1,1/2,1/3, ..., 1/n respectively,

AN /’l\

—dhir—> <——111—>L—an—>‘ L L’
L > 2 >

On each of the intervals Iia, . .an, l1ay...anl, Tay..anily - - l1ay. anll.. 1,
that are extracted from Ji4,qa,..a, as the above intervals are from [a, ], the
graph of F consists of a triangle with that interval as base and height 1/(n + k),
where k is the number of 1’s following the sequence la; ...a, that defines the
base.
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A Lﬂa,a.,v,u./\ @ ay.. a,

Olu,.ua..l Ola,u.,..a.
‘-Ilm ,,a.l')

|

i _
Jla|.,,u..l « ,la‘a,...a.

Jla.a,v.u.

Now let us prove the following.
(1) Fgp(z) = f(z) nearly everywhere, f € P;, and F(z) = P;, — [7 f(v)dy.
(2) Fis not [ACGYy,)([a,b]), so Fy,(z) cannot be Dy, -integrable on [a, b].

Proof of (1) F(a) = 0. Forevery € l1a,a;...a, €X¢ept O10,0;5.. ans Layas...an
and Ra,a;,..a., Fap() exists, since F(z) is linear there, and F € Cap(l1a,...a,)-
For every z € P, except the endpoints of any l14,. «,, there exists a sequence
Jrays J1arazs - - +» J1ayas...ans - - - including z as their interior point, and we will
prove F,,(z) exists and equals 0.

Lemma 1 Let x € P and suppose z is not the end point of any I, «,. Then
lim K (ay,as,...,an) =00 and lim [n — K (a1, as,...,a,)] = oo,
n—oa n—00

where for each n,z is an interior point of Jia,as...an -

Proof. If limy oo K(a1,2,...,a,) # 00, then there is p such that a, = 2
and ag = 1 for k > p. Then z is the right end point of Naya,..a,-,, giVing a
contradition. Likewise for lim,_.[n — K(a1a2...a,)]. a

For every above mentioned z, we will show F; (z) = 0 by taking for our
set D, of density 1 at z the set {y : F(y) = 0}. To show that {y: F(y) = 0}
does indeed have density 1 at z, let Jig,qa,...a, be as in Lemma 1 such that
K(ay,ag,...,a,) > M +1 for any given M € N. Then for every neighbourhood
U of £ with U C Jia,a,...a., U only includes points belonging to P or to intervals
[1ala;..Aa,.a,.+x...a,.+, with

K(al,ag,...,an)> M+1.

When y € U N P, we have F(y) = 0. When y belongs to the intersection of U
and any Ilalma..a..ﬂwa,..,., C Jlal,‘,a..; let I denote Ilalagl..a,.a”.l. , and
K denote K(ay,asz,...,a,) > M +1; then

%ntp

Hy:y €l Fy) # 0} =27 Flonmamamannl | < 97K 1),
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Now, let us estimate |{y: y € INU, F(y) = 0}|/|INU|. It reaches its minimum
when U just includes {y :y € I, F(y) # 0} and halfof {y : y € I, F(y) = 0}, as

shown below

le—1——

€ U >
In this case,
Hy:yelInU F(y) =0} _
[INnU|
-K(a1,032,...,0n,0n41,..,0n4p)
27111~ :

T  2-Klen wanri anss))

>(A-278)y/1+278) = (14 27K — 2K+ /(1 4 2-K) =

1- 27K+ /14 2°K)y 5 1 9K+l 5 | _9-M

. Hence, whenever INU # ¢, in every case, we have
Hy:y€INU F(y)=0}/|InU|>1-2"M,
Now
U=UnP)u{u(Inl)},

the union in the second parentheses being over all above mentioned intervals I,
these intervals being nonoverlapping.

Hence
Hy:ye U F(y) =0}|/|U| =

(IUNPI+Y Hy:yeInU,F(y) =0})/(UNP[+ > 1InU|) >

S Hy:velInU Fy) =0}/ S 1INUI>1-27M

and that means D; has density 1 at z and hence F; (z) = 0.

Since limy oo max{F(z); £ € a,a,...a,} = 0 for any sequence {I1a,a;.. a,},
and F(z) =0in P, F is Cq4p on [a, b], and even continuous on [a, b].

Summing up the above, we have F' € Cyp([a,b]), F;,(z) = f(z) exists n.e.
(except a countable set) on [a,b],so F € Mf# as well as My ; and hence

F) =Py~ [ fe)da.
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Proof of (2) (i.e. F isnot [ACGY},)([a,b]),s0 Fg,(z) cannot be Dj,-integrable
on [a, b].

Lemma 2 F € [ACGY,] on [a,b], if and only if for every perfect R there exists
a portion Q of R such that F € AC;,(Q).

The proof of the Lemma is word for word the same as that involving ACG*
in Saks [6]. O

Suppose, to obtain a contradition, that F' € [ACG},] on [a,}]. By Lemma
2, there is a portion @ of P with F' € AC;,(Q). If (c,d) is the smallest interval
including @, then there exists a Jya,7,...a, C (¢,d) and (¢, d)\Q will include all
Iiw, . w,11...1 with every suffix following @, being “1”.

Given any Iiz, z,11..1, denotedby (¢£,r) and any A < 2~ K(@1,..@)=1 gy
pose E}, ) C [¢,7] is taken to be as in the definition of AC,. Now

[Eem) > (1= )6, 7)),

and the length of the base of the triangle that graphs F(z) in (¢,7) is equal
to 27K(@1an)|(¢,r)| > 2A|(¢,7)]; hence there exists y belonging to Ely .y as
well as to the central half of the base of the above triangle. Hence F(y) >
2=(n+p+ 1)~1, where p is the number of “1’s” following @,,, and so we have

|[F(€) — F(y)| > 2" Y(n+p+ 1)L
And so -
STIFO) - Fy)l>> 27 (n+p+1)"! = o0,

p=1

the sum being for all Iz, 7,1..1. Hence F is not AC;,(Q), giving a contradic-
tion, i.e. F'is not [ACGj,)], and Fg,(z) = f(z) is not Dj,-integrable, completing
Example 1, and proving Proposition 3. a

Note If we replace "1—+T by 1/(n— K(ay,as,...,an)+1) when z = O1q,..a.;
then F also satisfies Pg, but not Dj,, and at the left end points of I14,as. .an,
F is only approximately continuous but not continuous.

Proof of Proposition 2 By giving the following Example 2.

Ezample 2 Let P, I1o,0;..an and O14,a,...a, be given as in Example 1, and
define

Ila.

1 2z€0; or € O1aya5..0,;2i=1,2,i=1,2,...,n, n €N
F(l’) = 0 b o _ anll ay..anl
z € [0,]]\U (O1a,..an — =555, 010, .0, + —3h5e™>

Extending F to [a, b] by requiring it to be linear on the intervals contiguous
to the set consisting of all above mentioned points.
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It is easy to prove that F'(z) is Dy, integrable but not D77 integrable. First,
the structure of F' shows that it is Cap on [a,d], and then F is AC;, on every
closure of I14,a5...a,- Lastly, for proving F' to be AC;p on P (the Cantor ternary

set in [a, b]), for every A € (0, 1), there exists N € N such that (1/2V) < A. For
every interval I14,4,..a, contiguous to P let us denote it by [¢, 7], and denote

E&',] ={z;z €[¢,r]), F(z)=0}.

We have |E‘[’2 r]I > (1= M)|[¢, 7]| for every I14,a,...a, With n > N and the number
of those I1a,05...a, With n < N is finite. Hence
Zw(F; E[)}’,]) < 00

and F is AC;, on P. So we have proven the Dj, integrability of F'(z). On
the other hand, by the theorem corresponding to our Lemma 2 in §9, Chapter
VII of Saks [6], we know that F is not ACG* on [a,b]. Hence F'(z) is not
Dj;-integrable. a
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