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 Let ( X , T) be a topological space. A real function / defined on X is said to
 be

 • T-quasi-continuous at a point xo G X iff for every e > 0 and for any
 neighbourhood U G T of the point xq there exists V G T such that 0 ^
 V C U and | f(x) - /(xo)| < e for every x G V,

 • T-cliquish at x0 G X iff for every e > 0 and for any neighbourhood U tT
 of the point xo there exists V G T such that 0 ^ V C U and oscvf < £•

 If T is the Euclidean topology on Mn, we will write "quasi-continuous", "cliquish"
 instead of "T -quasi-continuous" and "T -cliquish" .

 In the present paper we study the families of T -quasi-continuous functions
 and T-cliquish functions defined on M2 with some topologies of density type.

 I. S. Kempisty proved in [8] that if every x-section of / : M2 - ► M, fx(t) =
 f(x,t) and every y-section of /, fy(t) = /(*,y) is quasi-continuous then / is
 quasi-continuous, too. Note that the analogous theorem is not true for density
 topology d (see e.g. [2], p. 20, for definitions).

 Example 1 Under Martin's Axiom there exists a function f : M2 - ► M such
 that

 1. all fx and fy sections of f are d- quasi- continuous,

 2. f is not d x d'cliquish ( thus f is not d x d~ quasi- continuous),

 3. f is not measurable [6]

 The following Lemma is proved in [5], p. 13.
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 Lemma 1 A real function f defined on Mn (n = 1,2) is measurable iff for any
 e > 0 and for any measurable set A C Mn with positive measure there exists a
 measurable subset B of A with positive measure for which oscßf < s.

 Corollary 1 A function f : M - ► M is measurable iff it is d-cliquish [6].

 Neither implication holds in M 2 as is seen from Example 1 and the following

 Example 2 There exists a measurable function f : M2 - ► M which is not dxd-
 cliquish.

 Indeed, let Q denote the set of all rationals and A = {(#, y) : y = x + s for s G
 M' Q}. As is easily seen, both A and its complement are d x d -dense (this is
 a consequence of Steinhaus's Theorem [13], cf [1]), whence we may take / - the
 characteristic function of A.

 Let us recall that a function / : M - ► M has the property (G) iff for every
 e > 0 and for any perfect set A with positive measure there exists an open
 interval J such that m(A fl J) > 0 and osCintd^nj f < € [5]. Since every Baire
 1 function has the property (G), every cř-continuous function has this property.

 Theorem 1 Let f be a real function defined on 1R2. If each section fx has the
 property ( G ) and each section fy is d~ quasi- continuous, then f is d x d-cliquish.

 Proof. Fix (xo,yo) € M2 and cř-neigbourhoods I of xq and J of yo> s > 0 and
 6 = e/4. Let A be a perfect subset of J with m(A) > 0. Since fx has the
 property (G), for any there is an open interval Jx = (pxiqx) such that
 PxìQx € Q, rn(Jx fi ^4) > 0 and oscjxnintd^fx < S. Consequently, there exists
 an interval K for which the set B = {x G I : Jx - K } has positive outer
 measure. Fix x E B D <p*(B), where <p*(B) denotes the set of all points of outer
 density of B> and fix y G K fi int ¿(A). Since fy is cř-quasi-continuous, the set
 C = (/y)~1(/(a?> y) - /(®f y) + is measurable and m(Cf]B) > 0. Note that,
 by the d -quasi-continuity of /y, the (/-neighbourhood 7fl <p*(B) of x contains a
 d- open set D the sets D = I n C fi Moreover, E = K HAD intd(A ) is
 d-open and D x E C I x J. For (ť, u) G (B fi D) x E we have

 I fit, u) - f(x, y)' < I f(t, u) - f(t, y)' + I f(t, y) - f(x, j/)| < 26.

 Since p is d-quasi-continuous and B is d-dense in D, 'f(t, u ) - f(x, y)| < 2 6 for
 every (ź, u) G D x E and consequently, oscd^eÍÍ) < 46 = e.

 □

 Corollary 2 If all sections fx of a function f : M2 - ► M are d-continuous and
 all sections fy are d- quasi- continuous, then f is d x d-cliquish.
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 Example 3 There exists a function f : R2 - ► R such that each section fx is
 d-continuous and each section fy is d-cliquish but f is not d x d-cliquish [6],

 Example 4 There exists a function f : R2 - ► R for which all sections fx and
 fy are d-continuous and which is not d x d- quasi- continuous.

 Indeed, let g : R - ► [0, 1] be a d-continuous function such that g(x) = 0
 for x G Q and n^flT^O)) = 0 (see [16]). Let us put f{x,y) = g(y - x) for
 (x,2/) G M2. Evidently, all x and y sections of / are d- continuous. Fix x G R,
 s G 1'Q with g(s) ^ 0, a d x ¿/-neighbourhood I x J of (x, x-f s) and e = g(s)/2.
 By Steinhaus's Theorem we obtain that int(J' - I') ^ 0 for any non-empty
 d x cř-open subset I' x J' of I x J. Consequently, there exist ť G Q, v G Ji
 and u G /i such that v = w -h ť. Then we have f(uì v) = g(v - u) = 0 and
 I /(w, v) - /(x, x -f s)| = g(s) > €. Thus / is not d x cř-quasi-continuous.
 In the first version of this paper (which was written a few years ago) we

 posed the problem of measurability of d x d -quasi-continuous functions of two
 variables. W. Wilczyński has recently solved this problem in the negative.

 Example 5 There exists a non-measurable and d x d- quasi- continuous function
 f : M2 - ► R [15].

 II. O'Malley defined in [10] the dxy topology as the family of all measurable
 subsets U of M2 for which all sections Ux = {* : (^>0 G U} and Uy = {t :
 (t,y) G U} of U are cř-open. Of course, every non-empty, dxy- open set has
 positive measure. On the other hand, for every measurable set A G M2 having
 positive measure there exists an non-empty, dxy-open subset B of A (see [5]).
 Therefore we have the following

 Proposition 1 A function f : M2 - ► R is measurable iff it is dxy-cliquish.

 Let us recall that the collection of all sets of the form U ' /, where U is
 open and I has measure zero forms a topology on R. This topology is called the
 ♦-topology in the sense of Hashimoto for the cr-ideal of all measure zero sets [7].
 Thus we can define two new topologies on R2 of O'Malley type.

 • d*xy = W € dxy • Ux and Uy are * -open for all x,y G R},

 • dxy = {U G dxy : Ux and Uy are open for all x,y G R},

 Note that d°xy is a proper subclass of d*xy and d*xy is a proper subclass of dxy. Ad-
 ditionally, simple examples show that the classes Cq(dxy)i Cq(dļy) and Cq(dxy)
 of all cliquish functions (with respect to proper topologies) are pairwise distinct.
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 III. Now we shall construct some category analogue of dxy topology. We say
 that a set A C M is g-open iff A is of the form U ' /, where U is open and I
 is of first category. The class q of all q-open sets is equal to the *-topology of
 Hashimoto with respect to the ideal of all first category sets. Note that every
 second category set A having the Baire property contains an non-empty, q- open
 subset B C A. Moreover, the following theorem is proved in [4].

 Lemma 2 Let f be a real function defined on Mn, n = 1,2. Then f has the
 Baire property iff for every e > 0 and for each second category set A having
 the Baire property there exists a second category set B C A having the Baire
 property with oscßf < €.

 Thus we have the following

 Proposition 2 A real function f : M - ► M has the Baire property iff it is
 q- cliquish.

 Example 6 There exists a function with the Baire property which is not q x q-
 cliquish.

 Indeed, let / and A be defined as in Example 2. A is residual and therefore
 q x q- dense. By Piccard's Theorem [12], M2 ' A is q x g-dense. Thus / fulfills all
 requirements.

 Proposition 3 Every q x q-cliquish function has the Baire property.

 Proof. Let / : M2 - ► M be q x ^-cliquish and A C M2 be a second category
 set with the Baire property. Then A we may assume that A is the difference of
 an open and non-empty set G and a first category set K . Choose open intervals
 /, J such that I x J C G. Let B be q x q- open, non-empty subset of I x J
 with oscßf < s. Then B ' K is of second category and has the Baire property,
 B'K C A and osc$'x < e. Consequently, / has the Baire property by Lemma
 2.

 □

 Let qxy be the collection of all subsets U of M2 with the following properties:

 1. U has the Baire property,

 2. all sections Ux and Uy of U are q- open.

 Lemma 3 If A G qXy is of first category , then it is empty.

 Proof. If A C M2 is of first category, then by the Kuratowski-Ulam Theorem
 (see e.g. [11]), nearly every section of A is of first category, and hence (being
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 q-open) it is empty. Thus A C A' x A2, where A', A2 are linear first category
 sets. But then every section of A is of first category. Hence every section of A
 is empty and consequently, A is empty.

 □

 Theorem 2 The collection qxy forms a topology on M2.

 Proof. This theorem can be proved in the similar way as Theorem 1 [10].
 However we present here a shorter proof which has been communicated to us
 by one of the referees. It is clear that only one condition needs to be verified.
 Namely, for some index set T, if Ut belongs to qxy for each t G T, then U =
 Uter Ut has the Baire property. We may assume that each Ut is non-empty.
 Then Ut = ( Gt 'At) 'üBtl where Gt is non-empty and open and Ati Bt are first
 category sets. Put

 G = {jGu B = X = U(Gt'¿»).

 Now (M2 ' GĪ) fi Ut is again in qxyi and being a set of first category, must be
 empty by Lemma 3. Thus Bt C tu' Gu and hence (5'G)CG'G, that is
 B ' G is a first category set. Let (5n)n run through the set of rational discs on
 the plane. Denote Tn = fļM* : $n C Gt }. Then by Gt = : Sn C G*},
 we have

 X= U U (Sn'At)= (J (S„'Tn).
 teTSnCGt SnCG

 Hence X admits the Baire property, moreover

 G'(Jrn c x c X u (G n B) c G,

 where (J Tn is of first category. Therefore X U (G fi B) has the Baire property
 as well, and finally by

 U = XU(GnB)U(B'G)

 we get the statement.
 □

 Example 7 The family of all subsets B ofM2 having the Baire property (which
 are measurable) and such that all sections Bx and By of B are d-open (q-open)
 does not form topology on IR2.
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 Indeed, let (A, B ) be a partition of M into two disjoint sets: a Fa subset of
 first category A and a G s subset of measure zero B. As B is uncountable,
 there exists a subset C of B without he Baire property (see e.g. [11], p. 24;
 Theorem 5.5). Let us put Uc = (A U {c}) x M for each c E C. Then Uc are
 Borei subsets of M 2 with cř-open sections but (Jcec ^ does not have the Baire
 property. The similar example shows that the family of all measurable subsets
 of M 2 with q- open sections does not form a topology.

 Finally we define two new collections of subsets of M2

 • q+y is the collection of all subsets U of R2 having the Baire property,
 for which all sections are open in the J- density topology introduced by
 Wilczyński (see [14] for definitions and basic properties),

 • q°xy is the collection of all subsets of M2 having the Baire property, for
 which all sections are open in the Euclidean topology.

 In the similar way as in Theorem 2 one can prove that q+y forms topology on
 R2 (note that the continuous real functions relative to this topology are the
 separately 2-approximately continuous functions). Thus q®y is a topology too
 and we have the following proper inclusions

 Qxy Qxy Qxy

 Proposition 4 For a function f : M2 - ► M the following conditions are equiv-
 alent :

 (i) f has the Baire property ,

 (ii) f is qxy~cliquish,

 (iii) f is q+y-cliquish.

 Proof. This is an immediate consequence of Lemma 2 and the following (easy
 to see) fact: every second category set having the Baire property contains a
 non-empty, qxy- open subset (cf [3], Theorem 1).

 □

 Finally note that every gjy-diqmsh function is qxy -cliquish but the charac-
 teristic function of the set Q x Q is in the class Cq{qxy) ' Cq(q®y).

 Acknowledgement. We would like to thank the referees for their valuable
 remarks which allowed us to correct many mistakes in the first version of the
 paper. We are especially grateful to one of them for the simple proof of Theorem
 2.
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