Real Analysis Exchange
Vol. 18(1), 1992/93, pp. 221-224

Zoltan Buczolich* E6tvos Lorand University, Department of Analysis, Budapest,
Mizeum krt 6-8, H-1088, Hungary.

The n-Dimensional Gradient Has the
1-Dimensional Denjoy-Clarkson Property

In this paper we present a partial result related to the gradient problem of
C.E.Weil [Q]. The original problem is the following one. “Assume that f is a
differentiable real valued function of n real variables and let g = V f denote its
gradient, which is a function from R” to R™. Let G be a nonempty open subset
of R™ Is it true that g~1(G) is either empty or has positive n-dimensional
measure?” Though we do not answer this question in this paper we shall show
a similar result, namely, g=}(G) = (Vf)~!(G) is either empty or has positive
l-measure in R” in the sense of Hausdorfl measures (cf., [R] Chapter 2, or [F]
Chapter 1, Section 1.2).

For z = (21,3, ...,zn) € R" put ||z|| = /3 i, z7. Foran z € R"™ we denote
the open ball centered at z and of radius r by B(z,r), that is, B(z,r) = {y :
[l — y|| < r}. The boundary of B(z,r) will be denoted by C(z,r), that is,
C(z,r) ={y: ||z —yl| = r}. The closure of the set A C R™ is denoted by cl(4).
Put cl(B(z,r)) = B(z, 7). The n-dimensional Hausdorff measure is denoted by
tn. The origin of R™ will be denoted by 0.

We shall use Lemma 1.8 on p. 10 of [F].

Lemma l Lety : E — F be a surjective mapping such that ||¢(z) — ¢(y)|| <
cllz — yl| (z,y € E) for a constant c. Then p,(F) < c*p,(E).

The main result of this paper is the following theorem.

Theorem 1 Assume that @ C R™ is open, and f : @ — R is differentiable.
Assume furthermore that G C R™ is open. Then (Vf)~1(G) is either empty or
m((V)HG)) >o.

We shall use Lemma 2 in the proof of our Theorem.
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Lemma 2 Assume that Q@ C R"™ is open, and f : Q@ — R is differentiable.
Assume furthermore that £2 € Q, 6§ > 0, B(z2,6) C Q, v = ||V f(z2)|| < n and
for any y € B(z2,6) we have ||V f(y)|| > 0. Then p1((V£)~1(B(0,7n))) > 0.

In the sequel first we prove the Theorem from Lemma 2. Then we provide a
proof of Lemma 2.

(Proof of the theorem.) By subtracting a suitable linear function from f
we can reduce the statement of the Theorem to the following one. If0 €
(V)~1(B(0,m)) for an m > 0, then pi((V)~1B(0,m)) > 0.

Fora p > 0 put H, = {z : ||[Vf(z)|]| < p} = (VFf)~1(B(0,p)). For an
n € (0,n1) put Fy = cl(H,). Put n; = n1/2.

Assume that Fy,, has an isolated point, say z;. From F,, = cl(H,,) it follows
that £, € Hy,, that is v; = ||V f(z1)|| < 2. Since z; is an isolated point of
F, there exists a 6 > 0 such that B(z;,6) C Q, and {z;} = B(z1,6) N Fy, =
B(z1,6) N Hy,. Then for any y € B(z1,6) \ {z1} we have ||V f(y)|| > 72 > 0. If
vy # 0 we can apply Lemma 2 with = 1y, 2 = 1, v = 11, § = § and obtain
0 < p1((VF)~1(B(0,72))) < p1((Vf)~1(B(0,m))) proving our Theorem.

If v; = 0 then choose a linear function g such that ||Vg(z)|| = n2/4. Put
fi = f+ g. Then ||V fi(z1)|| = n2/4. For any y € B(z1,6) \ {1} we have
IVA@I > n2 — B2 > 0. Thus Lemma 2 is applicable to f; with n = s,
Ty = 1, ¥ = n2/4 and § = 6. We obtain that p;((V f1)~1(B(0,72))) > 0. Since
f=fi—gwehave||Vf|| <||Vfil|+||Vg||. Thus using that 1;/2 = 5, we have
(V)1 (B(0,m2)) C (V)= (B(0,n2 + %)) C (VF)~*(B(0,m)). This implies
m((V£)~1(B(0,m))) > 0.

Assume that F, does not haveisolated points. Since the coordinate functions
of V f are Baire-1 functions, there is a dense G subset of Fy,,, say F’, such that
the restriction of Vf onto F,, is continuous at the points of F’. Choose an
z; € F'. Assume that ||V f(z,)|| # 0. Choose a § > 0 such that B(z1,6) is a
subset of the domain of f and for any y € B(z1,6) N F,, we have ||V f(y)|| > 0,
this choice of 6 is possible since ||V f(z,)|| # 0 and the restriction of V f onto Fy,
is continuous at ;. Since H,, C F,, we have ||V f(y)|| > 0 for any y € B(z;,§).
Since F,, = cl(Hy,) and z; is not an isolated point of F,, we can find an
s € Hy, N B(x;,6). Choose a é; such that B(z2,82) C B(z1,6). Then it is
clear that the assumptions of Lemma 2 are satisfied with n = 7., 23 = z,,
v = ||V f(z2)||, § = 6. Thus in this case our Theorem follows again from Lemma
2.

If ||V f(x1)|| = 0 then, like in the corresponding case when z; was an isolated
point, we can add to f a suitable linear function, g, which has a small gradient
and obtain a function f;. After this, the argument used for the case ||V f(z1)|| #
0 is applicable to f,. Finally an argument, similar to the one used for the case
when z; was an isolated point, can show that pu;((Vf)~*(B(0,71))) > 0. This
concludes the proof of the Theorem.
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(Proof of Lemma 2.) For r € [0, 6) put M(r) = max{f(z) : z € C(z2,7)}.

First we show that M (r) is monotone increasing. Assume for a contradiction
that one can find 0 < r; < rp < § such that M(ry) < M(ry). Assume that f
takes its absolute maximum on B(z2,r2) at y. Then f(y) > M(r1) > M(r2).
Thus y is in B(z2,r2) and hence ||V f(y)|| = 0. This contradicts the assumption
IV £(w)ll > 0 for y € B(zz,5).

As a monotone increasing function, M(r) is almost everywhere differentiable
and

/ot M'(r)dr < M(t) — M(0) = M(t) — f(z2)

holds for any t € (0, 6) [cf. [S] Ch. IV., Th.7.4, p.119]. Since ||V f(z2)|| =v <
there exists a subset S of the interval (0, 6) such that 4;(S) > 0 and forr € S
we have M'(r) < n. For any r € (0,6) choose an z(r) € C(x2,r) such that
f(z(r)) = M(r). Observe that z(r) is one-to-one and denote its inverse by . By
definition M(r) is the maximum of f on C(z2,r) and this implies that V f(z(r))
is perpendicular to C(z2,r). Assume for a contradiction that V f(z(r)) points
towards the interior of B(z2, 7). Using ||V f(z(r))|| # 0 the previous assumption
implies that one can find a point y € B(z2,r) such that f(y) > f(z(r)). From
this it follows that M(r') > M(r) for an r’ € (0, ) chosen so that y € C(z2,1').
Since M(r) is monotone increasing this is impossible. Therefore V f(z(r)) points
outwards of B(zz,r). Denote by £; the halfline starting at z(r) pointing in the
direction of V f(z(r)). Furthermore denote by y(t) the intersection point of ¢,
and C(z2,1). It is obvious that

lim
t—r+4
Since f(z(r)) = M(r) and f(y(t)) < M(t) we obtain that

@) — f(z(r))
t

-r

f@@%:f““»=uvﬂdﬂm~

IV (z(r)ll = Jlim

M) - M(r) _
t

-Tr

< lim
t—r+4

M'(r) < 9.
This is valid for any » € S. It is easy to see that the mapping ¢ : z(r) — r
satisfies ||z(r1) — z(r2)|| > ||¥(z(r1)) = ¥(2(r2))|| = |r2 — 1|, and maps the

set {z(r) : r € S} onto S, hence Lemma 1 implies that p,({z(r) : r € S}) >
#1(S) > 0. Thus gy ({z : ||V f(z)|| < n}) > 0. This proves Lemma 2.
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