Zoltán Buczolich*, Eötvös Loránd University, Department of Analysis, Budapest, Múzeum krt 6-8, H-1088, Hungary.

The n-Dimensional Gradient Has the 1-Dimensional Denjoy-Clarkson Property

In this paper we present a partial result related to the gradient problem of C.E.Weil [Q]. The original problem is the following one. "Assume that f is a differentiable real valued function of n real variables and let $g=\nabla f$ denote its gradient, which is a function from \mathbb{R}^{n} to \mathbb{R}^{n}. Let G be a nonempty open subset of \mathbb{R}^{n}. Is it true that $g^{-1}(G)$ is either empty or has positive n-dimensional measure?" Though we do not answer this question in this paper we shall show a similar result, namely, $g^{-1}(G)=(\nabla f)^{-1}(G)$ is either empty or has positive 1 -measure in \mathbb{R}^{n} in the sense of Hausdorff measures (cf., [R] Chapter 2, or [F] Chapter 1, Section 1.2).

For $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ put $\|x\|=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$. For an $x \in \mathbb{R}^{n}$ we denote the open ball centered at x and of radius r by $B(x, r)$, that is, $B(x, r)=\{y$: $\|x-y\|<r\}$. The boundary of $B(x, r)$ will be denoted by $C(x, r)$, that is, $C(x, r)=\{y:\|x-y\|=r\}$. The closure of the set $A \subset \mathbb{R}^{n}$ is denoted by $\operatorname{cl}(A)$. Put $\operatorname{cl}(B(x, r))=\bar{B}(x, r)$. The n-dimensional Hausdorff measure is denoted by μ_{n}. The origin of \mathbb{R}^{n} will be denoted by 0 .

We shall use Lemma 1.8 on p. 10 of [F].
Lemma 1 Let $\psi: E \rightarrow F$ be a surjective mapping such that $\|\psi(x)-\psi(y)\| \leq$ $c\|x-y\|(x, y \in E)$ for a constant c. Then $\mu_{s}(F) \leq c^{s} \mu_{s}(E)$.

The main result of this paper is the following theorem.
Theorem 1 Assume that $\Omega \subset \mathbb{R}^{n}$ is open, and $f: \Omega \rightarrow \mathbb{R}$ is differentiable. Assume furthermore that $G \subset \mathbb{R}^{n}$ is open. Then $(\nabla f)^{-1}(G)$ is either empty or $\mu_{1}\left((\nabla f)^{-1}(G)\right)>0$.

We shall use Lemma 2 in the proof of our Theorem.

[^0]Lemma 2 Assume that $\Omega \subset \mathbb{R}^{n}$ is open, and $f: \Omega \rightarrow \mathbb{R}$ is differentiable. Assume furthermore that $x_{2} \in \Omega, \delta>0, B\left(x_{2}, \delta\right) \subset \Omega, \nu=\left\|\nabla f\left(x_{2}\right)\right\|<\eta$ and for any $y \in B\left(x_{2}, \delta\right)$ we have $\|\nabla f(y)\|>0$. Then $\mu_{1}\left((\nabla f)^{-1}(B(0, \eta))\right)>0$.

In the sequel first we prove the Theorem from Lemma 2. Then we provide a proof of Lemma 2.
(Proof of the theorem.) By subtracting a suitable linear function from f we can reduce the statement of the Theorem to the following one. If $0 \in$ $(\nabla f)^{-1}\left(B\left(0, \eta_{1}\right)\right)$ for an $\eta_{1}>0$, then $\mu_{1}\left((\nabla f)^{-1} B\left(0, \eta_{1}\right)\right)>0$.

For a $\rho>0$ put $H_{\rho}=\{x:\|\nabla f(x)\|<\rho\}=(\nabla f)^{-1}(B(0, \rho))$. For an $\eta \in\left(0, \eta_{1}\right)$ put $F_{\eta}=\operatorname{cl}\left(H_{\eta}\right)$. Put $\eta_{2}=\eta_{1} / 2$.

Assume that $F_{\eta_{2}}$ has an isolated point, say x_{1}. From $F_{\eta_{2}}=\operatorname{cl}\left(H_{\eta_{2}}\right)$ it follows that $x_{1} \in H_{\eta_{2}}$, that is $\nu_{1}=\left\|\nabla f\left(x_{1}\right)\right\|<\eta_{2}$. Since x_{1} is an isolated point of $F_{\eta_{2}}$ there exists a $\delta>0$ such that $B\left(x_{1}, \delta\right) \subset \Omega$, and $\left\{x_{1}\right\}=B\left(x_{1}, \delta\right) \cap F_{\eta_{2}}=$ $B\left(x_{1}, \delta\right) \cap H_{\eta_{2}}$. Then for any $y \in B\left(x_{1}, \delta\right) \backslash\left\{x_{1}\right\}$ we have $\|\nabla f(y)\| \geq \eta_{2}>0$. If $\nu_{1} \neq 0$ we can apply Lemma 2 with $\eta=\eta_{2}, x_{2}=x_{1}, \nu=\nu_{1}, \delta=\delta$ and obtain $0<\mu_{1}\left((\nabla f)^{-1}\left(B\left(0, \eta_{2}\right)\right)\right) \leq \mu_{1}\left((\nabla f)^{-1}\left(B\left(0, \eta_{1}\right)\right)\right)$ proving our Theorem.

If $\nu_{1}=0$ then choose a linear function g such that $\|\nabla g(x)\|=\eta_{2} / 4$. Put $f_{1}=f+g$. Then $\left\|\nabla f_{1}\left(x_{1}\right)\right\|=\eta_{2} / 4$. For any $y \in B\left(x_{1}, \delta\right) \backslash\left\{x_{1}\right\}$ we have $\left\|\nabla f_{1}(y)\right\| \geq \eta_{2}-\frac{\eta_{2}}{4}>0$. Thus Lemma 2 is applicable to f_{1} with $\eta=\eta_{2}$, $x_{2}=x_{1}, \nu=\eta_{2} / 4$ and $\delta=\delta$. We obtain that $\mu_{1}\left(\left(\nabla f_{1}\right)^{-1}\left(B\left(0, \eta_{2}\right)\right)\right)>0$. Since $f=f_{1}-g$ we have $\|\nabla f\| \leq\left\|\nabla f_{1}\right\|+\|\nabla g\|$. Thus using that $\eta_{1} / 2=\eta_{2}$ we have $\left(\nabla f_{1}\right)^{-1}\left(B\left(0, \eta_{2}\right)\right) \subset(\nabla f)^{-1}\left(B\left(0, \eta_{2}+\frac{\eta_{2}}{4}\right)\right) \subset(\nabla f)^{-1}\left(B\left(0, \eta_{1}\right)\right)$. This implies $\mu_{1}\left((\nabla f)^{-1}\left(B\left(0, \eta_{1}\right)\right)\right)>0$.

Assume that $F_{\eta_{2}}$ does not have isolated points. Since the coordinate functions of ∇f are Baire-1 functions, there is a dense G_{δ} subset of $F_{\eta_{2}}$, say F^{\prime}, such that the restriction of ∇f onto $F_{\eta_{2}}$ is continuous at the points of F^{\prime}. Choose an $x_{1} \in F^{\prime}$. Assume that $\left\|\nabla f\left(x_{1}\right)\right\| \neq 0$. Choose a $\delta>0$ such that $B\left(x_{1}, \delta\right)$ is a subset of the domain of f and for any $y \in B\left(x_{1}, \delta\right) \cap F_{\eta_{2}}$ we have $\|\nabla f(y)\|>0$, this choice of δ is possible since $\left\|\nabla f\left(x_{1}\right)\right\| \neq 0$ and the restriction of ∇f onto $F_{\eta_{2}}$ is continuous at x_{1}. Since $H_{\eta_{2}} \subset F_{\eta_{2}}$ we have $\|\nabla f(y)\|>0$ for any $y \in B\left(x_{1}, \delta\right)$. Since $F_{\eta_{2}}=\operatorname{cl}\left(H_{\eta_{2}}\right)$ and x_{1} is not an isolated point of $F_{\eta_{2}}$ we can find an $x_{2} \in H_{\eta_{2}} \cap B\left(x_{1}, \delta\right)$. Choose a δ_{2} such that $B\left(x_{2}, \delta_{2}\right) \subset B\left(x_{1}, \delta\right)$. Then it is clear that the assumptions of Lemma 2 are satisfied with $\eta=\eta_{2}, x_{2}=x_{2}$, $\nu=\left\|\nabla f\left(x_{2}\right)\right\|, \delta=\delta_{2}$. Thus in this case our Theorem follows again from Lemma 2.

If $\left\|\nabla f\left(x_{1}\right)\right\|=0$ then, like in the corresponding case when x_{1} was an isolated point, we can add to f a suitable linear function, g, which has a small gradient and obtain a function f_{1}. After this, the argument used for the case $\left\|\nabla f\left(x_{1}\right)\right\| \neq$ 0 is applicable to f_{1}. Finally an argument, similar to the one used for the case when x_{1} was an isolated point, can show that $\mu_{1}\left((\nabla f)^{-1}\left(B\left(0, \eta_{1}\right)\right)\right)>0$. This concludes the proof of the Theorem.
(Proof of Lemma 2.) For $r \in[0, \delta)$ put $M(r)=\max \left\{f(x): x \in C\left(x_{2}, r\right)\right\}$.
First we show that $M(r)$ is monotone increasing. Assume for a contradiction that one can find $0<r_{1}<r_{2}<\delta$ such that $M\left(r_{2}\right)<M\left(r_{1}\right)$. Assume that f takes its absolute maximum on $\bar{B}\left(x_{2}, r_{2}\right)$ at y. Then $f(y) \geq M\left(r_{1}\right)>M\left(r_{2}\right)$. Thus y is in $B\left(x_{2}, r_{2}\right)$ and hence $\|\nabla f(y)\|=0$. This contradicts the assumption $\|\nabla f(y)\|>0$ for $y \in B\left(x_{2}, \delta\right)$.

As a monotone increasing function, $M(r)$ is almost everywhere differentiable and

$$
\int_{0}^{t} M^{\prime}(r) d r \leq M(t)-M(0)=M(t)-f\left(x_{2}\right)
$$

holds for any $t \in(0, \delta)$ [cf. [S] Ch. IV., Th.7.4, p.119]. Since $\left\|\nabla f\left(x_{2}\right)\right\|=\nu<\eta$ there exists a subset S of the interval $(0, \delta)$ such that $\mu_{1}(S)>0$ and for $r \in S$ we have $M^{\prime}(r)<\eta$. For any $r \in(0, \delta)$ choose an $x(r) \in C\left(x_{2}, r\right)$ such that $f(x(r))=M(r)$. Observe that $x(r)$ is one-to-one and denote its inverse by ψ. By definition $M(r)$ is the maximum of f on $C\left(x_{2}, r\right)$ and this implies that $\nabla f(x(r))$ is perpendicular to $C\left(x_{2}, r\right)$. Assume for a contradiction that $\nabla f(x(r))$ points towards the interior of $\bar{B}\left(x_{2}, r\right)$. Using $\|\nabla f(x(r))\| \neq 0$ the previous assumption implies that one can find a point $y \in B\left(x_{2}, r\right)$ such that $f(y)>f(x(r))$. From this it follows that $M\left(r^{\prime}\right)>M(r)$ for an $r^{\prime} \in(0, r)$ chosen so that $y \in C\left(x_{2}, r^{\prime}\right)$. Since $M(r)$ is monotone increasing this is impossible. Therefore $\nabla f(x(r))$ points outwards of $\bar{B}\left(x_{2}, r\right)$. Denote by ℓ_{1} the halfline starting at $x(r)$ pointing in the direction of $\nabla f(x(r))$. Furthermore denote by $y(t)$ the intersection point of ℓ_{1} and $C\left(x_{2}, t\right)$. It is obvious that

$$
\lim _{t \rightarrow r+} \frac{f(y(t))-f(x(r))}{t-r}=\|\nabla f(x(r))\| .
$$

Since $f(x(r))=M(r)$ and $f(y(t)) \leq M(t)$ we obtain that

$$
\begin{aligned}
& \|\nabla f(x(r))\|=\lim _{t \rightarrow r+} \frac{f(y(t))-f(x(r))}{t-r} \\
& \leq \lim _{t \rightarrow r+} \frac{M(t)-M(r)}{t-r}=M^{\prime}(r)<\eta
\end{aligned}
$$

This is valid for any $r \in S$. It is easy to see that the mapping $\psi: x(r) \rightarrow r$ satisfies $\left\|x\left(r_{1}\right)-x\left(r_{2}\right)\right\| \geq\left\|\psi\left(x\left(r_{1}\right)\right)-\psi\left(x\left(r_{2}\right)\right)\right\|=\left|r_{2}-r_{1}\right|$, and maps the set $\{x(r): r \in S\}$ onto S, hence Lemma 1 implies that $\mu_{1}(\{x(r): r \in S\}) \geq$ $\mu_{1}(S)>0$. Thus $\mu_{1}(\{x:\|\nabla f(x)\|<\eta\})>0$. This proves Lemma 2 .

References

[F] K. J. Falconer The geometry of fractal sets, Cambridge University Press 1985.
[Q] Queries section, Real Analysis Exchange, Vol 16. No. 1., 1990-91, p. 373.
[R] C. A. Rogers, Hausdorff Measures, Cambridge University Press 1970.
[S] S. Saks, Theory of the Integral, Warsaw, 1937.

[^0]: *Research supported by the Hungarian National Foundation for Scientific Research, Grant No. 2114.

 Received by the editors March 17, 1992

