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 The n-Dimensional Gradient Has the

 1-Dimensional Denjoy-Clarkson Property

 In this paper we present a partial result related to the gradient problem of
 C.E.Weil [Q]. The original problem is the following one. "Assume that / is a
 differentiate real valued function of n real variables and let g = V/ denote its
 gradient, which is a function from Mn to Mn. Let G be a nonempty open subset
 of Mn. Is it true that g~x(G) is either empty or has positive n-dimensional
 measure?" Though we do not answer this question in this paper we shall show
 a similar result, namely, g^1(G) = (V f)"1(G) is either empty or has positive
 1-measure in Mn in the sense of Hausdorff measures (cf., [R] Chapter 2, or [F]
 Chapter 1, Section 1.2).

 For X = (xi, £2, •••> £fi) E Mn put ||x|| = xl- For aniÇR" we denote
 the open ball centered at x and of radius r by B(x,r), that is, B(x1r) = {y :
 11^ - 2/11 < r}- The boundary of B(x,r) will be denoted by C(x,r), that is,
 C(x, r) = {y : ||x - y'' = r}. The closure of the set A C Mn is denoted by cl(^4).
 Put cl(5(x,r)) = B(xir). The n-dimensional Hausdorff measure is denoted by
 /in. The origin of Mn will be denoted by 0.

 We shall use Lemma 1.8 on p. 10 of [F].

 Lemma 1 Let 'ļ> : E -► F be a surjective mapping such that ''ip(x) - -0(y) 1 1 <
 c''x - y II (x, y e E) for a constant c. Then fis(F) < csfis(E).

 The main result of this paper is the following theorem.

 Theorem 1 Assume that Çl C Mn is open , and f : Q -> R is differ enti able.
 Assume furthermore that G CM" is open . Then (^f)"1(G) is either empty or
 /ii((V/)-1(G))>0.

 We shall use Lemma 2 in the proof of our Theorem.
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 Lemma 2 Assume that Cl C Mn is open, and f : ii - ► M is differentiate.
 Assume furthermore that xi G fi, 6 > O, B{x2>6) C fi, f = l|V/(x2)|| < 77 and
 for any y G £(x2, <*) ^ave ll^/(y)ll > Ū. Then /ii((V/)_1(i?(0, r/))) > 0.

 In the sequel first we prove the Theorem from Lemma 2. Then we provide a
 proof of Lemma 2.
 (Proof of the theorem.) By subtracting a suitable linear function from /
 we can reduce the statement of the Theorem to the following one. If 0 G
 (V/)-1(S(0, »7i )) for an r¡i > 0, then m((V f)'1 B(0,rļi)) > 0.

 For a p > 0 put Hp = {x : ||V/(*)|| < p} = (V/)"1^, p)). For an
 V € (0, »ji) put Fn = cI(H„). Put i)2 = »7i/2.

 Assume that F ^ has an isolated point, say xi. From F ^ = cl (H^) it follows
 that x' G Hrj 3, that is v' = ||V/(xi)|| < 772. Since x' is an isolated point of
 Ff) 2 there exists a 6 > 0 such that B(xi>6) C fi, and {xi} = B(x'i6) fi F ^ =
 B(x i,6) H HV2. Then for any y G B(x',6) ' {xi} we have ||V/(2/)|| > 772 > 0. If

 / 0 we can apply Lemma 2 with 77 = 772 , X2 = xi, f = 1/1, ¿ = 6 and obtain
 0 < fii((Vf)-1(B(0irļ2))) < f)-1 (B(0, T]i))) proving our Theorem.

 If v' = 0 then choose a linear function g such that ||V<7(x)|| = 772/4. Put
 /1 = / + 9- Then ||V/i(xi)|| = 772/4. For any y G B(xìì6) ' {xi} we have
 ||V/i(y)|| > 772 - ^ > 0. Thus Lemma 2 is applicable to /1 with 77 = 772,
 z 2 = x', v = 772/4 and 6 = 6. We obtain that /ii((V/i)_1(J5(0, 772))) > 0. Since
 / = /1 - g we have ||V/|| < ||V/i|| + ||V^||. Thus using that 771/2 = 772 we have
 (V/O-^iū,^)) c (V/)-1(5(0,772 -f ^)) C (Vfr^B^m)). This implies
 /i1((V/)~1(-B(0, 771))) > 0.

 Assume that Ffj2 does not have isolated points. Since the coordinate functions
 of V/ are Baire-1 functions, there is a dense G 6 subset of FV2i say F', such that
 the restriction of V/ onto Ffļ 3 is continuous at the points of F'. Choose an
 xi G F'. Assume that ||V/(xi)|| / 0. Choose a 6 > 0 such that B{x')6) is a
 subset of the domain of / and for any y G B(xiì 6) D F^ we have ||V f(y)'' > 0,
 this choice of 6 is possible since ||V/(xi)|| ^ 0 and the restriction of V/ onto F ^
 is continuous at xx. Since HV2 C Fn2 we have ||V/(t/)|| > 0 for any y G B(xíi6).
 Since c'(Hrj2) and xi is not an isolated point of FV2 we can find an
 £2 € HV2 fi B(xu6). Choose a 62 such that B(x2,^) C B(x',6). Then it is
 clear that the assumptions of Lemma 2 are satisfied with 77 = 772, X2 = X2,
 v = II^/(x2)||j 6 = 62. Thus in this case our Theorem follows again from Lemma
 2.

 If ||V/(xi)|| = 0 then, like in the corresponding case when xi was an isolated
 point, we can add to / a suitable linear function, g , which has a small gradient
 and obtain a function f'. After this, the argument used for the case ||V/(xi)|| ^
 0 is applicable to f'. Finally an argument, similar to the one used for the case
 when xi was an isolated point, can show that /ii((V/)""1(B(0, 771))) > 0. This
 concludes the proof of the Theorem.
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 (Proof of Lemma 2.) For r G [0, 6) put M(r) = max{/(x) : x G C(x2) r)}.
 First we show that M(r) is monotone increasing. Assume for a contradiction

 that one can find 0 < ri < r2 < 6 such that M(r2) < M(ri). Assume that /
 takes its absolute maximum on B(x2ir2) at y. Then f(y ) > M{r') > M(r2).
 Thus y is in B(x2i r2) and hence ||V/(r/)|| = 0. This contradicts the assumption
 ||V/(y)||>0fory€fl(*2,i).

 As a monotone increasing function, M(r) is almost everywhere differentiate
 and

 [ M'(r)dr < M(t) - M{ 0) = M(t) - f(x2)
 Jo

 holds for any t G (0, 6) [cf. [S] Ch. IV., Th.7.4, p.119]. Since ||V/(x2)|| = v < rj
 there exists a subset S of the interval (0,6) such that > 0 and for r G S
 we have Af'(r) < 77. For any r G (0,6) choose an x(r) G C(x2lr) such that
 /(x(r)) = M(r). Observe that x(r) is one-to-one and denote its inverse by ip. By
 definition M(r) is the maximum of / on C(x2, r) and this implies that V/(x(r))
 is perpendicular to C(x2,r). Assume for a contradiction that V/(x(r)) points
 towards the interior of S(x2, r). Using ||V/(x(r))|| ^ 0 the previous assumption
 implies that one can find a point y G B(x2,r) such that f(y) > f(x(r)). From
 this it follows that M(r') > M(r) for an r' G (0, r ) chosen so that y G C(x2, r').
 Since M(r) is monotone increasing this is impossible. Therefore V/(x(r)) points
 outwards of ~B(x2ir). Denote by t' the halfline starting at x(r) pointing in the
 direction of V/(x(r)). Furthermore denote by y(t) the intersection point of l'
 and C(x2it). It is obvious that

 lim W>w«r» .
 t- ^r-ł- t - r

 Since f(x(r)) = M(r) and f(y(t)) < M(t) we obtain that

 ||V/(.(r))|| = Ä

 < „m =
 - ť- r+ t - r

 This is valid for any r G 5. It is easy to see that the mapping tp : x(r) - ► r
 satisfies ||x(ri) - x(r2)|| > ||V,(a?(ri)) - ^(^(^))!! = 'r2 - ri|, and maps the
 set {x(r) : r G 5} onto 5, hence Lemma 1 implies that fii({x(r) : r G 5}) >
 //i(5) > 0. Thus /ii({x : ||V/(x)|| < 77}) > 0. This proves Lemma 2.
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