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 On Graphs of Continuous functions

 1. Throughout this note, / is a continuous real valued function on the compact
 interval [a, 6]. Let / be a real number. By the set Eu we mean the set of all real
 numbers c such that the intersection of the line y = lx + c and the graph of /
 is not a perfect set. It is known (see [G2, Theorem 2'] or [BG, Theorem 4.8])
 that for a typical function / in the sense of category, E¡ is countable for each /.
 We deduce from [M] that if / has no derivative, finite or infinite, at any point,
 m(Ej) = 0 for each /. Here m denotes Lebesgue measure.

 In this note we give a necessary and sufficient condition (Theorem 2.2) for
 m(Eļ) = 0 for fixed /, and a necessary and sufficient condition (Theorem 2.3) for
 nn(E¡) = 0 for all /. We prove that if m(E¡) = 0 for two distinct values /, then
 m(Eļ) = 0 for any I (Theorem 2.4). This does not work when "m(E¡) = 0" is
 replaced by "£7 is a countable set" as our example F will show.

 In [Gl] it is proved that / is monotone on some subinterval of [a, 6] if and
 only if Eo is a second category set. We will provide (Theorem 3.1) a condition
 equivalent to these properties that involves intervals on the x-axis. Finally we
 discuss functions of the second species (Theorem 3.2).

 2. Let D be the set of all points in [a, 6] at which / has a derivative, finite or
 infinite. For any extended real number / let

 Dl = {xeD:f'(x) = l}.

 We begin with

 Lemma A. Lei i be a nonzero real number and let g(x) = f(x) - lx on [a, 6].
 Then

 m(f(D00)) = 0 if and only if m(g(D00)) - 0, and

 m(f(D-00 )) = 0 if and only if m(g(D-00)) = 0.

 Proof. Assume, to the contrary, that m(f(D00)) = 0 and me(g(D00)) > 0
 where me is Lebesgue outer measure. There is a d > 0 such that me(^(5)) > 0
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 where

 S = {xG Doo - (f(u) - f(x))(u - x)"1 > 2|/| for 0 < 'u - x' < d}.

 There is a subset E of S of diameter < d, such that me(g(E)) > 0. So f(x) - 2'l'x
 is an increasing function on the set E.

 Let h be a continuous increasing function on [a, b] such that h(x) = f{x) -
 2'l'x on the set E. Then h(x) + 2'l'x = f(x) is increasing and h(x) + 2'l'x - lx =
 g(x) is increasing on E. Of course m(E) = 0 by [S, Theorem (4.4), p. 270]. We
 deduce from [C, Lemma 3] that either

 me (g(E)) + 0 = me(f(E)) or me{f(E)) + 0 = me(g(E))

 depending on whether I is positive or negative. In either case, me(f(Doo)) >
 me(f(E)) > 0, contrary to assumption.

 This contradiction proves that m(f(Doo)) = 0 implies m(g(Doo)) = 0. For
 the reverse implication, reverse the roles of / and g in the argument. Finally,
 for D-oo use - /, - g and - / in place of /, g and /.

 Theorem 2.1. Lei X = {x : x is an isolated point of the set f~1(f(x))}. Then
 the following conditions are equivalent.

 (1) m(f(X)) = 0,

 (2) m(f(D)) = 0,

 (3) m(f(D00)) = m(/(D_oo)) = 0 and m(D ' D0) = 0.

 Proof. In any case, m(£>oo) = m(Z?_CJO) = 0 by [S, Theorem (4.4), pp.
 270-271].

 (1) =>■ (2) Assume (1). Every point in D'D0 is in X, so m(f(D'D0)) = 0.
 But m(f(D0)) = 0 by [S, Theorem (4.5), p. 271], Hence m(f{D)) = 0.

 (2) =*> (3) Assume (2). Then m(f(D00)) = m(f(D-00)) = 0 is clear. Put
 = Uo<í<oo Dl an<^ S- = Uo>/> - oo Db
 We claim that m(S+) = 0. Suppose to the contrary, that me(S+) > 0. Then

 there is a c > 0 such that me(P ) > 0 where

 P = {xeS+:f'(x)>c}.

 There is a d > 0 such that m«^) > 0 where

 Pi = {x e P : (/(«) - f(x))(u - x)-1 >0 for 0 < |w - a;| < ci}.

 There is a subset P2 of Pi of diameter < d such that me(Pi) > 0. Thus / is
 increasing on P2. There is a continuous increasing function h on [a, 6] such that
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 h(x) = f(x) for X G P2. Now h is differentiable almost everywhere, and almost
 every point of P2 is an accumulation point of P 2. It follows that h'{x) = f'(x ) > c
 almost everywhere on P2. By [S, Lemma (9.4)(i), p. 126],

 me(f(P2)) = me(h(P2)) > cme(P2)

 and hence

 0 = m(f(D)) > cme(P2),

 so me(P2) = 0. This contradiction proves that ra(S+) = 0. Likewise m(SL) = 0.
 But D'i)o = 5+US_U Dqo U D~ 00 , so m(D ' Do) = 0.

 (3) (1) Assume (3). Then m(X n(D' Do)) = 0 and by [S, Theorem
 (4.5), p. 271],m[/(Xn(U'(i?ooUD_oo)))] = 0. But by (3), m[/(X n A*)] =
 m[/(X n Ö-00)] = 0. Moreover, D = [D ' (D^ U -D_oo)] U [D^ U D- oo], so
 m(/(X fi ZJ)) = 0. By [S, Lemma (6.1), p. 277], m(f(X ' D)) = 0. Finally,
 m(f(X)) = 0.

 For any real number / let fi(x) = f(x) - lx on [a, b ].

 Theorem 2.2. Fix 1^0. Then m(Ei) = 0 if and only if

 m(D ' Di) = m(f{DOQ)) - m(f{D.OQ)) = 0.

 Proof. Observe that in Theorem 2.1, f(X) = Eo. Moreover,

 E¡ = ft{x : X is an isolated point of ff1(fi(x))}.

 These observations, together with Lemma A and Theorem 2.1, prove the con-
 clusion.

 Theorem 2.3 We have m(Ei) = 0 for all reali if and only if

 m(D) = m(f(Doo)) = m(/(D_ «>)) = 0.

 Proof. Let /1 and /2 be real numbers such that /1 7^ /2. If m(Ei1) = m(E¡2) =
 0, then by Theorem 2.2, m(D ' AJ = rn(D ' D^) = 0 and m{f{Doo)) =
 m(/(£L oo)) = 0; but D = (D ' Dh) U {D ' Ąa), so m(D) = 0.

 The converse follows from Theorem 2.2.

 Theorem 2.4. Lei l' and l2 be real numbers such that /1 ^ l2. Let m(Eļļ) =
 m(Ei2) = 0. Then m(E¡) = 0 for all real I.

 Proof. The argument is part of the proof of Theorem 2.3, so we leave it.

 Proposition 2.1. The set {/ : Ei is a countable set } is a (finite or infinite)
 interval.

 Proof. Let li < I < l2 and let Ei1 and Ei2 be countable sets. Let G(f) denote
 the graph of / and let (xo, f(x 0)) G G{f).
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 Suppose that (xo, /(x o)) is an accumulation point of the intersection G(f) fl
 {(x, y) : y - /(x o) = / i(x - xo)}, and an accumulation point of G(f) fl {(x, y) :
 y - /(x o) = - ^o)}- We consider four cases.

 Case 1. (xo, /(x o)) is a left accumulation point of G(/)fl{(x, y) : y-f(x o) =
 ¡i(x - £o)} for i = 1,2. Then from the intermediate value theorem and the
 inequalities ii < / < /2, we deduce that ( Xo,/(xo )) is also a left accumulation
 point of G(f) fl {(x, y) : y - /(x0) = l(x - x0)}.

 Case 2. (xo,/(xo)) is a right accumulation point of G(f) fi {(x,y) : y -
 /(x0) = li(x - xo)} for i = 1,2. Just as in case 1, we deduce that (x0,/(x0)) is
 also a right accumulation point of G(f) H {(x, y) : y - f(x 0) = l(x - x0)}.

 Case 3. (xo, f(xo)) is a left accumulation point of G(/)fl{(x, y) : y-f(x 0) =
 /i(x - xo)} and a right accumulation point of G(f) fl {(x,y) : y - /(x 0) =
 ¡2(x - xo)}. We deduce that either the function // has a strict local minimum
 point at xo, or (xo, /(xo)) is an accumulation point of G(/)fl{(x, y) : y-f(x 0) =
 /(x - x0)}.

 Case 4. (xo,/(xo)) is a right accumulation point of G(f) fl {(x,y) : y -
 /(tfo) = /i(x - xo)} and a left accumulation point of G(f) D {(x, y) : y - /(x0) =
 ¡2(x - xo)}. We deduce that either the function // has a strict local maximum
 point at xo, or (xo, /(xo)) is an accumulation point of G(/)fl{(x, y) : y-f(x 0) =
 /(x - xo)}. Of course f' has at most countably many strict local maximum and
 minimum points.

 But for any c G Eii ( i = 1,2) there are at most countably many isolated
 points in G(f) fl {(x,y) : y = /,x + c}. From this and the assumption that
 Eix U E¡ 3 is countable, we deduce that all but countably many of the points in
 G(f) satisfy the hypothesis of the preceding paragraph. It follows that at most
 countably many points (x0, /(x0)) in G(f) are isolated points of G(f) fl {(x, y) :
 y - /(x 0) = /(x - xo)}. Consequently E¡ is a countable set.

 Proposition 2.2. Lei V be a set of real numbers not bounded above or below.
 If Ei is countable for each l G V, then E¡ is countable for all real I.

 The proof follows from Proposition 2.1. The argument for Proposition 2.1
 does not work when / < /1 < /2 or when /1 < /2 < / as the following example
 will show.

 For convenience, we call / a P- function if for each real /, the line y = lx + c
 meets G(f) in a perfect set for all but at most countably many c. There exist
 P-functions (see [BG] for example). By selecting a smaller interval domain and
 by adding a constant we can find a P-function / on an interval [w, v' such that
 f(u) = f(v) = 0. We can find a P-function g on [0, 1] with #(0) = <7(1) = 0 by
 setting £f(x) = f((v - u)x + u). By multiplying by a constant if necessary, we
 assume without loss of generality that sup ^[0, 1] - inf ^[0, 1] = 1.
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 On any interval [u, t;] we define the P-function gU)V as follows: 5fu>v(^) = (v -
 u)g((v - u)-x(x - tz)). Note that <7u,t/(u) = gu,v(v) = 0 and sup gUiV - inf gUļV =
 V - u.

 On [0, 1] we define the function h as follows: h(x) = gi x(x) for | < x <
 1, h(x) = gi i(x) for | < x < |, and in general, h(x) = g2-j-it2-j(x) for
 2 -j-i < x < 2~i . Put /i(0) = 0. Then h is defined on [0, 1]. Note that G{h ) lies
 above the line y = - x and below the line y = x.

 Now we make h(x) = h{2 - x) for 1 < x < 2. Thus h is defined on [0,2].
 It follows that no line not passing through the points (0, 0) or (2, 0) can meet
 the graphs of more than finitely many functions and we deduce that
 A is a P-function on [0,2]. Note that G(h) lies in the diamond shaped region
 bounded by the lines y = x, y = - x> y = 2 - x and y = -2 + x.

 On any interval [ti, v], define the function hUļV (x) = - u) h(2(v - u)~1(x -
 u)) for x E [w,t;]. It follows that hUfV is a P-function on [ii,t>] whose graph
 lies inside the diamond shaped region bounded by the lines y = x - u, y =
 -x + u, y = v - x, y = -v + x. Hence:

 (1) any line with slope 2 whose x-intercept is in R'[uy v] does not meet G(hUfV).

 Fix nonzero numbers /i and /2 (/1 ^ ¡2) such that any line of slope /,• (i = 1, 2)
 whose x-intercept lies in [0,4] meets G(h). Hence:

 (2) any line of slope ¡¡ (i = 1, 2) whose ^-intercept lies in the interval [tí, 2v - u]
 meets G(hUļV).

 Let C denote the Cantor set. For each component interval (ti, t;) of (0, 1)'C,
 put F(x) = hU)V(x) for u < x < v. Put F(x) = 0 for x E C. Then F is defined
 on [0, 1].

 Any line of slope 2 whose x-intercept is in C must meet G(F) in a singleton
 set by (1), not a perfect set. Thus F is not a P-function on [0, 1].

 All but at most countably many lines of slope /¿ (i = 1, 2) whose x-intercepts
 lie in R'C meet G(F) in the void set or the union of finitely many perfect sets,
 and therefore meet G(F) in a perfect set. We deduce from (2) that all but at
 most countably many lines of slope /,• (i' =1,2) whose x-intercepts u lie in C
 meet G(F) in the union of a sequence of perfect sets Sn such that the diameter
 of the set {(u,0)}U5n converges to 0. It follows that the intersection of such a
 line with G(F) is a perfect set.

 Finally, all but at most countably many lines of slope /,• (¿ = 1, 2) meet G(F)
 in a perfect set. But F is not a P-function.

 3. We begin with another nuts and bolts lemma in which the function need
 not be everywhere continuous.
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 Lemma B. Let g(x) be a real valued function on [a, 6] such that for any points
 xìyì z (x < y < z) in [a, 6],

 9(y) < g(z)) and

 g(y) > min (g(x)ìg(z)).

 Then g is monotone on [a, 6].

 Proof. For definiteness, say g(a) < g(b). Take any £ [a, b] with x < y.
 Then

 g(x) < max((/(a),(/(6)) = g(b ),

 g(x) > min(g(a)yg(b)) = g(a)

 and so g(a) < g(x) < g(b). By the same argument on x, y and 6,

 g(x) < g(y) < g(b).

 Hence g is nondecreasing. When g(a) > g(b) it follows analogously that g is
 nonincreasing.

 Theorem 3.1. Let f be a continuous function on [a, 6] that is constant on no
 interval. Let

 X = {x : x is an isolated point of f~l (f(x))} .

 Then the following are equivalent.

 (1) X contains a subinterval of[a,b'.

 (2) X is a second category set ,

 (3) f(X) contains an interval ,

 (4) f(X) is a second category set ,

 (5) / is monotone on some subinterval of[a,b].

 Proof. The plan is to prove (5) => (1) => (2) =» (4) =» (5) and (1) => (3) =»
 (4).

 (1) => (3). If I is an interval and I C X, then f(X) D /(/), and because /
 is not constant on 7, /(/) is an interval.

 (3) => (4). Clear.
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 (5) => (1). Let / be monotone on the open interval I. Then any x G I is
 an isolated point of /_1 (/(#)). So I C X.

 (1) => (2). Clear.
 (2) => (4). If y is a nowhere dense set, then is nowhere dense; for

 otherwise there is an interval I in which Jfl f"1(Y) is dense, and /(/ fl /~1(y))
 is also dense in the interval /(/). Thus if f(X) is a first category set, so are
 f~'fĻ X)) and X.

 (4) (5). Let f(X) be a second category set. Then there is a number
 d > 0 such that f(W) is a second category set where

 W = {x G X : distance from {x} to f^1(f(x)) ' {#} > d}.

 Now (a, 6) is the union of finitely many open intervals of length < d, so there is
 such an interval K such that f(I< fl W ) is a second category set. Note that if
 x G K fi W, then

 (0 {*} = tfn/-1 (/(*))•

 But f(K fl W) is not nowhere dense, so there is an open interval J such that
 f(K fi W) fl J is dense in J . Choose x0 G K fl W such that f(x0) G J . By
 continuity, there is an open subinterval I of K such that /(/) C J .

 We claim that there exist no points r, 5, ź (r < s < i) in I such that either
 f(s) < min (/(r),/(ź)) or f(s) > max(/(r),/(ť)). For otherwise there is a y G
 f(K H W) H J such that y G (/(s), min(/(r), f{t)) or t/ G (max(/(r), /(*)), /(s));
 in either case, by the intermediate value theorem, there exist x' G (r, s), £2 €
 (s,ť) such that y = /(xi) = /(#2), contrary to ft/ It follows from Lemma B
 that / is monotone on the interval I. (Compare with [Gl, Lemma 1].)

 Recall that for any real /, fi(x) = f(x) - lx on [a, 6].
 We say that the continuous function / on [a, 6] is of the second species if for

 each real /, // is monotone on no interval. Equivalently, / is of the second species
 if for each integer n (positive, negative or 0), fn is monotone on no interval.

 Recall that En = fn(Xn) where

 Xn = {x : x is an isolated point of the set /^(/„(i))}.

 It also follows that Xn consists of those points u G [a, b] for which (ti,/(u)) is
 an isolated point of {(x, y) : y - nx = f(u) - nu } fl G(f). Moreover, X0 = X in
 Theorem 3.1.

 Theorem 3.2. Let f be a continuous function on [a, b] that is not linear on any
 interval. Then the following conditions are equivalent:

 (V U^L-00 Xn contains no subinterval o/[a,6],
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 (s) IXL-OO Xn m a first category set,

 (3) U~-oo£n contains no interval,

 (4) ir=-oo En is a firsi category set,

 (5) f is of the second species.

 Proof. Note that (JnL-oo Xn (respectively U^L-oo En)) ls a first category set
 if and only if each Xn (respectively En) is a first category set. This observation,
 together with Theorem 3.1, proves the result.
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