F. S. Cater, Department of Mathematics, Portland State University, Portland, Oregon 97207

On Graphs of Continuous functions

1. Throughout this note, f is a continuous real valued function on the compact interval $[a, b]$. Let l be a real number. By the set E_{l}, we mean the set of all real numbers c such that the intersection of the line $y=l x+c$ and the graph of f is not a perfect set. It is known (see [G2, Theorem 2'] or [BG, Theorem 4.8]) that for a typical function f in the sense of category, E_{l} is countable for each l. We deduce from [M] that if f has no derivative, finite or infinite, at any point, $m\left(E_{l}\right)=0$ for each l. Here m denotes Lebesgue measure.

In this note we give a necessary and sufficient condition (Theorem 2.2) for $m\left(E_{l}\right)=0$ for fixed l, and a necessary and sufficient condition (Theorem 2.3) for $m\left(E_{l}\right)=0$ for all l. We prove that if $m\left(E_{l}\right)=0$ for two distinct values l, then $m\left(E_{l}\right)=0$ for any l (Theorem 2.4). This does not work when " $m\left(E_{l}\right)=0$ " is replaced by " E_{l} is a countable set" as our example F will show.

In [G1] it is proved that f is monotone on some subinterval of $[a, b]$ if and only if E_{0} is a second category set. We will provide (Theorem 3.1) a condition equivalent to these properties that involves intervals on the x-axis. Finally we discuss functions of the second species (Theorem 3.2).
2. Let D be the set of all points in $[a, b]$ at which f has a derivative, finite or infinite. For any extended real number l let

$$
D_{l}=\left\{x \in D: f^{\prime}(x)=l\right\} .
$$

We begin with
Lemma A. Let l be a nonzero real number and let $g(x)=f(x)-l x$ on $[a, b]$. Then

$$
\begin{aligned}
& m\left(f\left(D_{\infty}\right)\right)=0 \text { if and only if } m\left(g\left(D_{\infty}\right)\right)=0 \text {, and } \\
& m\left(f\left(D_{-\infty}\right)\right)=0 \text { if and only if } m\left(g\left(D_{-\infty}\right)\right)=0 .
\end{aligned}
$$

Proof. Assume, to the contrary, that $m\left(f\left(D_{\infty}\right)\right)=0$ and $m_{e}\left(g\left(D_{\infty}\right)\right)>0$ where m_{e} is Lebesgue outer measure. There is a $d>0$ such that $m_{e}(g(S))>0$
where

$$
S=\left\{x \in D_{\infty}:(f(u)-f(x))(u-x)^{-1}>2|l| \text { for } 0<|u-x|<d\right\} .
$$

There is a subset E of S of diameter $<d$, such that $m_{e}(g(E))>0$. So $f(x)-2|l| x$ is an increasing function on the set E.

Let h be a continuous increasing function on $[a, b]$ such that $h(x)=f(x)-$ $2|l| x$ on the set E. Then $h(x)+2|l| x=f(x)$ is increasing and $h(x)+2|l| x-l x=$ $g(x)$ is increasing on E. Of course $m(E)=0$ by [S, Theorem (4.4), p. 270]. We deduce from [C, Lemma 3] that either

$$
m_{e}(g(E))+0=m_{e}(f(E)) \text { or } m_{e}(f(E))+0=m_{e}(g(E))
$$

depending on whether l is positive or negative. In either case, $m_{e}\left(f\left(D_{\infty}\right)\right) \geq$ $m_{e}(f(E))>0$, contrary to assumption.

This contradiction proves that $m\left(f\left(D_{\infty}\right)\right)=0$ implies $m\left(g\left(D_{\infty}\right)\right)=0$. For the reverse implication, reverse the roles of f and g in the argument. Finally, for $D_{-\infty}$ use $-f,-g$ and $-l$ in place of f, g and l.
Theorem 2.1. Let $X=\left\{x: x\right.$ is an isolated point of the set $\left.f^{-1}(f(x))\right\}$. Then the following conditions are equivalent.
(1) $m(f(X))=0$,
(2) $m(f(D))=0$,
(3) $m\left(f\left(D_{\infty}\right)\right)=m\left(f\left(D_{-\infty}\right)\right)=0$ and $m\left(D \backslash D_{0}\right)=0$.

Proof. In any case, $m\left(D_{\infty}\right)=m\left(D_{-\infty}\right)=0$ by [S, Theorem (4.4), pp. 270-271].
(1) \Rightarrow (2) Assume (1). Every point in $D \backslash D_{0}$ is in X, so $m\left(f\left(D \backslash D_{0}\right)\right)=0$. But $m\left(f\left(D_{0}\right)\right)=0$ by [S, Theorem (4.5), p. 271]. Hence $m(f(D))=0$.
(2) \Rightarrow (3) Assume (2). Then $m\left(f\left(D_{\infty}\right)\right)=m\left(f\left(D_{-\infty}\right)\right)=0$ is clear. Put $S_{+}=\bigcup_{0<l<\infty} D_{l}$ and $S_{-}=\bigcup_{0>1>-\infty} D_{l}$.

We claim that $m\left(S_{+}\right)=0$. Suppose to the contrary, that $m_{e}\left(S_{+}\right)>0$. Then there is a $c>0$ such that $m_{e}(P)>0$ where

$$
P=\left\{x \in S_{+}: f^{\prime}(x)>c\right\} .
$$

There is a $d>0$ such that $m_{e}\left(P_{1}\right)>0$ where

$$
P_{1}=\left\{x \in P:(f(u)-f(x))(u-x)^{-1}>0 \text { for } 0<|u-x|<d\right\} .
$$

There is a subset P_{2} of P_{1} of diameter $<d$ such that $m_{e}\left(P_{2}\right)>0$. Thus f is increasing on P_{2}. There is a continuous increasing function h on $[a, b]$ such that
$h(x)=f(x)$ for $x \in P_{2}$. Now h is differentiable almost everywhere, and almost every point of P_{2} is an accumulation point of P_{2}. It follows that $h^{\prime}(x)=f^{\prime}(x)>c$ almost everywhere on P_{2}. By [S , Lemma (9.4)(i), p. 126],

$$
m_{e}\left(f\left(P_{2}\right)\right)=m_{e}\left(h\left(P_{2}\right)\right) \geq c m_{e}\left(P_{2}\right)
$$

and hence

$$
0=m(f(D)) \geq c m_{e}\left(P_{2}\right)
$$

so $m_{e}\left(P_{2}\right)=0$. This contradiction proves that $m\left(S_{+}\right)=0$. Likewise $m\left(S_{-}\right)=0$. But $D \backslash D_{0}=S_{+} \cup S_{-} \cup D_{\infty} \cup D_{-\infty}$, so $m\left(D \backslash D_{0}\right)=0$.
(3) \Rightarrow (1) Assume (3). Then $m\left(X \cap\left(D \backslash D_{0}\right)\right)=0$ and by [S , Theorem (4.5), p. 271], $m\left[f\left(X \cap\left(D \backslash\left(D_{\infty} \cup D_{-\infty}\right)\right)\right)\right]=0$. But by (3), $m\left[f\left(X \cap D_{\infty}\right)\right]=$ $m\left[f\left(X \cap D_{-\infty}\right)\right]=0$. Moreover, $D=\left[D \backslash\left(D_{\infty} \cup D_{-\infty}\right)\right] \cup\left[D_{\infty} \cup D_{-\infty}\right]$, so $m(f(X \cap D))=0$. By [S, Lemma (6.1), p. 277], $m(f(X \backslash D))=0$. Finally, $m(f(X))=0$.

For any real number l let $f_{l}(x)=f(x)-l x$ on $[a, b]$.
Theorem 2.2. Fix $l \neq 0$. Then $m\left(E_{l}\right)=0$ if and only if

$$
m\left(D \backslash D_{l}\right)=m\left(f\left(D_{\infty}\right)\right)=m\left(f\left(D_{-\infty}\right)\right)=0
$$

Proof. Observe that in Theorem 2.1, $f(X)=E_{0}$. Moreover,

$$
E_{l}=f_{l}\left\{x: x \text { is an isolated point of } f_{l}^{-1}\left(f_{l}(x)\right)\right\}
$$

These observations, together with Lemma A and Theorem 2.1, prove the conclusion.
Theorem 2.3 We have $m\left(E_{l}\right)=0$ for all reall if and only if

$$
m(D)=m\left(f\left(D_{\infty}\right)\right)=m\left(f\left(D_{-\infty}\right)\right)=0
$$

Proof. Let l_{1} and l_{2} be real numbers such that $l_{1} \neq l_{2}$. If $m\left(E_{l_{1}}\right)=m\left(E_{l_{2}}\right)=$ 0 , then by Theorem 2.2, $m\left(D \backslash D_{l_{1}}\right)=m\left(D \backslash D_{l_{2}}\right)=0$ and $m\left(f\left(D_{\infty}\right)\right)=$ $m\left(f\left(D_{-\infty}\right)\right)=0$; but $D=\left(D \backslash D_{l_{1}}\right) \cup\left(D \backslash D_{l_{2}}\right)$, so $m(D)=0$.

The converse follows from Theorem 2.2.
Theorem 2.4. Let l_{1} and l_{2} be real numbers such that $l_{1} \neq l_{2}$. Let $m\left(E_{l_{1}}\right)=$ $m\left(E_{l_{2}}\right)=0$. Then $m\left(E_{l}\right)=0$ for all reall.

Proof. The argument is part of the proof of Theorem 2.3, so we leave it.
Proposition 2.1. The set $\left\{l: E_{l}\right.$ is a countable set $\}$ is a (finite or infinite) interval.

Proof. Let $l_{1}<l<l_{2}$ and let $E_{l_{1}}$ and $E_{l_{2}}$ be countable sets. Let $G(f)$ denote the graph of f and let $\left(x_{0}, f\left(x_{0}\right)\right) \in G(f)$.

Suppose that $\left(x_{0}, f\left(x_{0}\right)\right)$ is an accumulation point of the intersection $G(f) \cap$ $\left\{(x, y): y-f\left(x_{0}\right)=l_{1}\left(x-x_{0}\right)\right\}$, and an accumulation point of $G(f) \cap\{(x, y):$ $\left.y-f\left(x_{0}\right)=l_{2}\left(x-x_{0}\right)\right\}$. We consider four cases.

Case 1. $\left(x_{0}, f\left(x_{0}\right)\right)$ is a left accumulation point of $G(f) \cap\left\{(x, y): y-f\left(x_{0}\right)=\right.$ $\left.l_{i}\left(x-x_{0}\right)\right\}$ for $i=1,2$. Then from the intermediate value theorem and the inequalities $l_{1}<l<l_{2}$, we deduce that $\left(x_{0}, f\left(x_{0}\right)\right)$ is also a left accumulation point of $G(f) \cap\left\{(x, y): y-f\left(x_{0}\right)=l\left(x-x_{0}\right)\right\}$.

Case 2. $\left(x_{0}, f\left(x_{0}\right)\right)$ is a right accumulation point of $G(f) \cap\{(x, y): y-$ $\left.f\left(x_{0}\right)=l_{i}\left(x-x_{0}\right)\right\}$ for $i=1,2$. Just as in case 1 , we deduce that $\left(x_{0}, f\left(x_{0}\right)\right)$ is also a right accumulation point of $G(f) \cap\left\{(x, y): y-f\left(x_{0}\right)=l\left(x-x_{0}\right)\right\}$.

Case 3. $\left(x_{0}, f\left(x_{0}\right)\right)$ is a left accumulation point of $G(f) \cap\left\{(x, y): y-f\left(x_{0}\right)=\right.$ $\left.l_{1}\left(x-x_{0}\right)\right\}$ and a right accumulation point of $G(f) \cap\left\{(x, y): y-f\left(x_{0}\right)=\right.$ $\left.l_{2}\left(x-x_{0}\right)\right\}$. We deduce that either the function f_{l} has a strict local minimum point at x_{0}, or $\left(x_{0}, f\left(x_{0}\right)\right)$ is an accumulation point of $G(f) \cap\left\{(x, y): y-f\left(x_{0}\right)=\right.$ $\left.l\left(x-x_{0}\right)\right\}$.

Case 4. $\left(x_{0}, f\left(x_{0}\right)\right)$ is a right accumulation point of $G(f) \cap\{(x, y): y-$ $\left.f\left(x_{0}\right)=l_{1}\left(x-x_{0}\right)\right\}$ and a left accumulation point of $G(f) \cap\left\{(x, y): y-f\left(x_{0}\right)=\right.$ $\left.l_{2}\left(x-x_{0}\right)\right\}$. We deduce that either the function f_{l} has a strict local maximum point at x_{0}, or $\left(x_{0}, f\left(x_{0}\right)\right)$ is an accumulation point of $G(f) \cap\left\{(x, y): y-f\left(x_{0}\right)=\right.$ $\left.l\left(x-x_{0}\right)\right\}$. Of course f_{l} has at most countably many strict local maximum and minimum points.

But for any $c \in E_{l_{i}}(i=1,2)$ there are at most countably many isolated points in $G(f) \cap\left\{(x, y): y=l_{i} x+c\right\}$. From this and the assumption that $E_{l_{1}} \cup E_{l_{2}}$ is countable, we deduce that all but countably many of the points in $G(f)$ satisfy the hypothesis of the preceding paragraph. It follows that at most countably many points ($\left.x_{0}, f\left(x_{0}\right)\right)$ in $G(f)$ are isolated points of $G(f) \cap\{(x, y)$: $\left.y-f\left(x_{0}\right)=l\left(x-x_{0}\right)\right\}$. Consequently E_{l} is a countable set.

Proposition 2.2. Let V be a set of real numbers not bounded above or below. If E_{l} is countable for each $l \in V$, then E_{l} is countable for all reall.

The proof follows from Proposition 2.1. The argument for Proposition 2.1 does not work when $l<l_{1}<l_{2}$ or when $l_{1}<l_{2}<l$ as the following example will show.

For convenience, we call f a P-function if for each real l, the line $y=l x+c$ meets $G(f)$ in a perfect set for all but at most countably many c. There exist P-functions (see [BG] for example). By selecting a smaller interval domain and by adding a constant we can find a P-function f on an interval $[u, v]$ such that $f(u)=f(v)=0$. We can find a P-function g on $[0,1]$ with $g(0)=g(1)=0$ by setting $g(x)=f((v-u) x+u)$. By multiplying by a constant if necessary, we assume without loss of generality that $\sup g[0,1]-\inf g[0,1]=1$.

On any interval $[u, v]$ we define the P-function $g_{u, v}$ as follows: $g_{u, v}(x)=(v-$ $u) g\left((v-u)^{-1}(x-u)\right)$. Note that $g_{u, v}(u)=g_{u, v}(v)=0$ and $\sup g_{u, v}-\inf g_{u, v}=$ $v-u$.

On $[0,1]$ we define the function h as follows: $h(x)=g_{\frac{1}{2}, 1}(x)$ for $\frac{1}{2}<x \leq$ 1, $h(x)=g_{\frac{1}{4}, \frac{1}{2}}(x)$ for $\frac{1}{4}<x \leq \frac{1}{2}$, and in general, $h(x)=g_{2^{-j-1}, 2^{-j}}(x)$ for $2^{-j-1}<x \leq 2^{-j}$. Put $h(0)=0$. Then h is defined on $[0,1]$. Note that $G(h)$ lies above the line $y=-x$ and below the line $y=x$.

Now we make $h(x)=h(2-x)$ for $1<x \leq 2$. Thus h is defined on [0, 2]. It follows that no line not passing through the points $(0,0)$ or $(2,0)$ can meet the graphs of more than finitely many functions $g_{2-j-1,2^{-j}}$ and we deduce that h is a P-function on $[0,2]$. Note that $G(h)$ lies in the diamond shaped region bounded by the lines $y=x, y=-x, y=2-x$ and $y=-2+x$.

On any interval [u, v], define the function $h_{u, v}(x)=\frac{1}{2}(v-u) h\left(2(v-u)^{-1}(x-\right.$ u)) for $x \in[u, v]$. It follows that $h_{u, v}$ is a P-function on $[u, v]$ whose graph lies inside the diamond shaped region bounded by the lines $y=x-u, y=$ $-x+u, y=v-x, y=-v+x$. Hence:
(1) any line with slope 2 whose x-intercept is in $R \backslash[u, v]$ does not meet $G\left(h_{u, v}\right)$.

Fix nonzero numbers l_{1} and $l_{2}\left(l_{1} \neq l_{2}\right)$ such that any line of slope $l_{i}(i=1,2)$ whose x-intercept lies in $[0,4]$ meets $G(h)$. Hence:
(2) any line of slope $l_{i}(i=1,2)$ whose x-intercept lies in the interval $[u, 2 v-u]$ meets $G\left(h_{u, v}\right)$.

Let C denote the Cantor set. For each component interval (u, v) of $(0,1) \backslash C$, put $F(x)=h_{u, v}(x)$ for $u \leq x \leq v$. Put $F(x)=0$ for $x \in C$. Then F is defined on $[0,1]$.

Any line of slope 2 whose x-intercept is in C must meet $G(F)$ in a singleton set by (1), not a perfect set. Thus F is not a P-function on $[0,1]$.

All but at most countably many lines of slope $l_{i}(i=1,2)$ whose x-intercepts lie in $R \backslash C$ meet $G(F)$ in the void set or the union of finitely many perfect sets, and therefore meet $G(F)$ in a perfect set. We deduce from (2) that all but at most countably many lines of slope $l_{i}(i=1,2)$ whose x-intercepts u lie in C meet $G(F)$ in the union of a sequence of perfect sets S_{n} such that the diameter of the set $\{(u, 0)\} \cup S_{n}$ converges to 0 . It follows that the intersection of such a line with $G(F)$ is a perfect set.

Finally, all but at most countably many lines of slope $l_{i}(i=1,2)$ meet $G(F)$ in a perfect set. But F is not a P-function.
3. We begin with another nuts and bolts lemma in which the function need not be everywhere continuous.

Lemma B. Let $g(x)$ be a real valued function on $[a, b]$ such that for any points $x, y, z(x<y<z)$ in $[a, b]$,

$$
\begin{aligned}
& g(y) \leq \max (g(x), g(z)) \quad \text { and } \\
& g(y) \geq \min (g(x), g(z))
\end{aligned}
$$

Then g is monotone on $[a, b]$.
Proof. For definiteness, say $g(a) \leq g(b)$. Take any $x, y \in[a, b]$ with $x<y$. Then

$$
\begin{aligned}
& g(x) \leq \max (g(a), g(b))=g(b) \\
& g(x) \geq \min (g(a), g(b))=g(a)
\end{aligned}
$$

and so $g(a) \leq g(x) \leq g(b)$. By the same argument on x, y and b,

$$
g(x) \leq g(y) \leq g(b)
$$

Hence g is nondecreasing. When $g(a) \geq g(b)$ it follows analogously that g is nonincreasing.
Theorem 3.1. Let f be a continuous function on $[a, b]$ that is constant on no interval. Let

$$
X=\left\{x: x \text { is an isolated point of } f^{-1}(f(x))\right\}
$$

Then the following are equivalent.
(1) X contains a subinterval of $[a, b]$.
(2) X is a second category set,
(3) $f(X)$ contains an interval,
(4) $f(X)$ is a second category set,
(5) f is monotone on some subinterval of $[a, b]$.

Proof. The plan is to prove $(5) \Rightarrow(1) \Rightarrow(2) \Rightarrow(4) \Rightarrow(5)$ and $(1) \Rightarrow(3) \Rightarrow$ (4).
(1) \Rightarrow (3). If I is an interval and $I \subset X$, then $f(X) \supset f(I)$, and because f is not constant on $I, f(I)$ is an interval.
(3) \Rightarrow (4). Clear.
(5) \Rightarrow (1). Let f be monotone on the open interval I. Then any $x \in I$ is an isolated point of $f^{-1}(f(x))$. So $I \subset X$.
(1) \Rightarrow (2). Clear.
(2) \Rightarrow (4). If Y is a nowhere dense set, then $f^{-1}(Y)$ is nowhere dense; for otherwise there is an interval I in which $I \cap f^{-1}(Y)$ is dense, and $f\left(I \cap f^{-1}(Y)\right)$ is also dense in the interval $f(I)$. Thus if $f(X)$ is a first category set, so are $f^{-1}(f(X))$ and X.
(4) \Rightarrow (5). Let $f(X)$ be a second category set. Then there is a number $d>0$ such that $f(W)$ is a second category set where

$$
W=\left\{x \in X: \text { distance from }\{x\} \text { to } f^{-1}(f(x)) \backslash\{x\}>d\right\}
$$

Now (a, b) is the union of finitely many open intervals of length $<d$, so there is such an interval K such that $f(K \cap W)$ is a second category set. Note that if $x \in K \cap W$, then

$$
\begin{equation*}
\{x\}=K \cap f^{-1}(f(x)) . \tag{i}
\end{equation*}
$$

But $f(K \cap W)$ is not nowhere dense, so there is an open interval J such that $f(K \cap W) \cap J$ is dense in J. Choose $x_{0} \in K \cap W$ such that $f\left(x_{0}\right) \in J$. By continuity, there is an open subinterval I of K such that $f(I) \subset J$.

We claim that there exist no points $r, s, t(r<s<t)$ in I such that either $f(s)<\min (f(r), f(t))$ or $f(s)>\max (f(r), f(t))$. For otherwise there is a $y \in$ $f(K \cap W) \cap J$ such that $y \in(f(s), \min (f(r), f(t))$ or $y \in(\max (f(r), f(t)), f(s))$; in either case, by the intermediate value theorem, there exist $x_{1} \in(r, s), x_{2} \in$ (s, t) such that $y=f\left(x_{1}\right)=f\left(x_{2}\right)$, contrary to (i). It follows from Lemma B that f is monotone on the interval I. (Compare with [G1, Lemma 1].)

Recall that for any real $l, f_{l}(x)=f(x)-l x$ on $[a, b]$.
We say that the continuous function f on $[a, b]$ is of the second species if for each real l, f_{l} is monotone on no interval. Equivalently, f is of the second species if for each integer n (positive, negative or 0), f_{n} is monotone on no interval.

Recall that $E_{n}=f_{n}\left(X_{n}\right)$ where

$$
X_{n}=\left\{x: x \text { is an isolated point of the set } f_{n}^{-1}\left(f_{n}(x)\right)\right\}
$$

It also follows that X_{n} consists of those points $u \in[a, b]$ for which $(u, f(u))$ is an isolated point of $\{(x, y): y-n x=f(u)-n u\} \cap G(f)$. Moreover, $X_{0}=X$ in Theorem 3.1.
Theorem 3.2. Let f be a continuous function on $[a, b]$ that is not linear on any interval. Then the following conditions are equivalent:

$$
\bigcup_{n=-\infty}^{\infty} X_{n} \text { contains no subinterval of }[a, b],
$$

(2) $\bigcup_{n=-\infty}^{\infty} X_{n}$ is a first category set,
(9) $\bigcup_{n=-\infty}^{\infty} E_{n}$ contains no interval,
(4) $\bigcup_{n=-\infty}^{\infty} E_{n}$ is a first category set,
(5) f is of the second species.

Proof. Note that $\bigcup_{n=-\infty}^{\infty} X_{n}$ (respectively $\bigcup_{n=-\infty}^{\infty} E_{n}$)) is a first category set if and only if each X_{n} (respectively E_{n}) is a first category set. This observation, together with Theorem 3.1, proves the result.

References

[BG] A.M. Bruckner and K.M. Garg, The level structure of a residual set of continuous functions, Trans. Amer. Math. Soc. 232 (1977) pp. 307-321.
[C] F.S. Cater, Most monotone functions are not singular, Amer. Math. Monthly 89 (1982) pp. 466-469.
[G1] K.M. Garg, On level sets of continuous nowhere monotone functions, Fund. Math. 52 (1963) pp. 59-68.
[G2] K.M. Garg, On a residual set of continuous functions, Czech. Mathematical Journal 20 (1970) pp. 537-543.
[M] S. Minakshisundaram, On the roots of a continuous non-differentiable function, Journal Indian Math. Soc. 4 (1940) pp. 31-33.
[S] S. Saks, Theory of the Integral, Second Revised Edition, Dover, New York, 1964.

