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 On the Darboux Property of Restricted
 Functions

 Let M denote the set of reals. If A C M is a nonempty set, then we say that a
 function / : A - > M has the Darboux property whenever f(I fl A) is a connected
 set for every interval I C M. Denote by D(A) (A ^ 0) the set of all functions
 / : A - ► IR having the Darboux property. Let C(A) denote the family of all
 continuous functions / : A - ► R and let p be the uniform metric defined by the
 following formula

 p(f, g) = min(l, sup |/(x) - </(x)|).
 x£A

 Theorem 1 If a set A C M containing more than one point, is not an interval ,
 then the set C(A) ' D(A) has a nonempty interior (in the metric p).

 Proof. There is a point a G M' A such that (- oo, a)C'A ^ 0 and (a, oo)C'A ^
 0. Let b = sup(^4 fl (- oo,a)) and c = inf(^4 fl (a,oo)). There is a continuous
 function / : A - ► M such that:

 lim f(x) = 0;
 X - ► 0 -

 lim f(x) v ' = 1. X-+C+ v '

 For every function g € C{A) with p(/, g) < 1/2 there is r > 0 such that g(x) <
 1/2 for every x € A fi (b - r, b' and g(y) > 1/2 for every y e A H [c, c -h r). Since
 1/2 0 g(An(b - r, c-f r)), g does not have the Darboux property. This completes
 the proof.

 Theorem 2 If there exist points a, 6 G A such that a < b and the intersection
 [a,6]n A has cardinality smaller than the continuum , then the set C(A) fl D(A)
 is nowhere dense in C(A).
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 Proof. Let H (A) be the set {/ : A - ► M; / constant on [a, 6]fM}. Obviously,
 II (A) is uniformly closed. Let / G C(A)ni/(^4) be a fixed function and let r > 0
 be a number < 1. Define

 f(x) for x€i4n(-oo,a]

 g(x) = i f(x) + r/2 for x G A fl [6, oo)

 linear for x G Aft [a, 6].

 Then p(/, #) = r/2 < r, <7 G C{A)Ì and g (£ H(A). So H(A) fl C(A) is nowhere
 dense in C(A). Since D(A) C H(A) , the set D(A) C'C(A) is nowhere dense in
 C(A).

 Remark 1 There are sets AcM such thai the sets C(A)f]D(A) are not closed
 in C(A).

 Example 3 Let A - [0, 1/2) U (1/2, 1]. Put f(x) = x for x G A. Obviously
 f G C(A) ' D(A). For n = 1,2,... let an = 2"1 - 4~n and bn = (an + 2~1)/2.
 Define

 2_1 for x G [bnì2"1)

 fn(x)=< x for x G [0, an] U (2_1, 1]

 linear in the interval [an,bn].

 Then all fn G C(A) fi D{A) and the sequence (/n) uniformly converges to f .

 Theorem 4 If A CM is a nonempty closed set, then C(A) D D{A) is closed in
 C{A).

 Proof. If a sequence of functions fn G C( A) D D(A) converges uniformly to a
 function /, then / G C(A). Assume, to the contrary, that / 0 D(A). Then there
 are points a, 6 G A with a < 6, /(a) ^ /(6) and

 c G (min(/(a), /(6)), max(/(a), /(6)))

 such that c £ /([a, 6] fl ^4). We may assume that f(a) < c < f(b). Since the set
 [a, 6] fi A is compact and / is continuous, the set /([a, b] fl ^4) is compact. For
 r > 0 there is a function fn such that /n(a) < c < fn(b) and 'fn(x) - f(x)' < r
 for every x £ A. Since /n G D(A), there is a point d G A D (a,ò) such that
 /n(cř) = c. Consequently,

 |/(d)-c| = |/(d)-/n(d)|<rf

 and (c - r, c + r) fl /( [a , 6] fl ^4) / 0 . So c is an accumulation point of the compact
 set /([a, Ò] H A), and c G /([a, 6] D ^4), contrary to c ^ f([a, b] fl A).
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 Theorem 5 Suppose that a nonempty set A C M is such that clA - A is not
 closed. Then the set C(Ä) PI D(A) is nowhere dense in C(A).

 Proof. If there are points a, 6 G A such that a < b and the cardinality of the
 set [a, b]nA is smaller than continuum, then by Theorem 2 the set C(A)f'D(A) is
 nowhere dense in C(A). So we may assume that the set /D A has the cardinality
 of the continuum for every closed interval I with ends belonging to A. Since
 cl A - A is not closed, there is a point a G A which is an accumulation point of
 the set clA - A. Fix / G C(A) and 0 < r < 1. From the continuity of / at a
 it follows that there is an open interval I 3 a such that osc/n^/ < r/8. Since
 a E A and a is an accumulation point of clA - A , there are points b,d £ I C[ A
 and u G cl A - A such that b < u < d. Let us put

 {f(x) /(z) + 3r/4 for for z X G G A A fl H (u, (- oo, oo). u) /(z) + 3r/4 for z G A fl (u, oo).

 Evidently, g G C(A) and p(f,g) = 3r/4. Let h G C(A) be such that p{g)h) <
 r/8. Then p(f,h) < p(f1g) + p(g, h) < 3r/4+ r/8 < r. We shall show that
 h £ £>(^4). We have

 9(b) = /(6), g(d) = f(d) + 3r/4,

 ä(6) < f(b) + r/8, h(d) > f(d) + 3r/4 - r/8 = f(d) + òr /8 >

 > f(b) - r/8 + òr /8 = f(b) + r/2.

 Let c be a number such that f(b) + r/4 < c < f(b) + r/2. Then h(b) <c< h(d ),
 and for every x G [6, u) H A we have

 Kx) < 9ÌX) + r/8 = f(x) + r/8 < f(b) + r/8 + r/8 < c.

 Moreover, for every x G (w, cfl D A,

 h(x) > g(x) - r/8 = f(x) + 3r/4 - r/8 > f(b) - r/8 + òr /8 = f(b) + r/2 > c.

 So c £ fc((6, d) fi A ), and consequently h £ D(A). This completes the proof.

 Theorem 6 If a nonempty set A is such that the set clA - A is closed and
 there are not points a, 6 G A with a < b and such that the cardinality of the set
 (a, b)DA is smaller than continuum , then the set C(A)P'D(A) has the nonempty
 interior in C(A).

 Proof. If c'A - A = 0 then A is an interval and C(A) C D(A). So, we may
 assume that cl A - A ^ 0. Let ((an> bn))n be a sequence with all components of
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 the open set M - (cl A - A). From the suppositions of our theorem it follows that
 A C Un(a"> ^n)> an¿ every set AD(an) bn) is connected. If AC'(ani bn) = (an, cn]
 (or = [cn, 6n)),then there is a continuous function fn : AC I ( an,6n ) - ► M such
 that fn(cn) = 0 and the cluster set

 K+(fni an) = {y G M : there is a sequence of points £* G A fl (an, 6n)

 with x* ' an and fn(xk) - ► y} = M

 (K~ (fn,bn) = {y G M : there is a sequence of points Xk E An (an, 6n)

 with x* / bn and fn(xk) - ► 2/} = M).

 If (an, 6n) C j4, then there is a continuous function /n : (an, 6n) - ► M such that

 /ř+(/n,an) = /ř-(/n,6n) = R.

 If (fln,M D is a singleton set {cn}, then we put fn{cn ) = 0. If (a„, bn) (1 A =
 [cn)dn] C (anj^n)> then there is a continuous function fn : [cnidn] - *• M such
 that /n(c„) = fn(dn) = 0 and /n([cn,dn]) = [-n,n]. Let /(z) = /n(x) for
 X 6 (ûnj ^n) n i4, n = 1,2,.... Then / G C(Ā) and if un = an or bn is an
 accumulation point of the set A from the left (from the right), then K~(fy un) =
 M (/f+(/, un) = M). Let g E C(A) be such that p(/, <7) = r < 1. We shall show
 that g G ^(-A). Let a, 6 6 A be points such that a < b and g(a) / <7(6), for
 example g(a) < g(b). Let us fix a number c with g(a) < c < g(b). If there
 is not a point ti,- = a,- or 6,- belonging to [a, 6], then [a, 6] C A and p|[a,6] has
 the Darboux property. Consequently, there is a point d G (a,b) fi A such that
 g(d) = c. In the contrary case, if there is a point = a{ or 6,- belonging to
 [a, 6], then there are points u^v G (dyb) such that f(u) < c - r, /(v) > c + r
 and [min(u, v), max(u, v)] C A. Since p(f,g) = r < 1, we have <j(ti) < c,
 g(y) > c and ^/[min(i/, v), max(u, i>)] is continuous. Consequently, there is a
 point d G (min(t£, v), max(«, v)) C (a, such that g(d) = c. So g G D{Ä).
 Now, for a nonempty set A C M let

 Co (A) = {y : ^4 - ► M; there is / G C(M) such that f/A = g}.

 Remark 2 If A C M is a nonempty set such that there is a point a G cl A - A
 which is bilateral accumulation point of A, then Co (-4) is a nowhere dense closed
 set in C{A).

 Proof. If a sequence of functions gn G Co(Ä) converges uniformly to a func-
 tion g : A - ► M, then there are functions fn G C(M) such that fn/A = gn and
 the sequence of functions /n/clv4, n = 1,2,..., converges uniformly on cl A to a
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 function h : cl A - ► IR. Evidently, h G Co(clA) and h/A = g G Cq{A). So Cq{A)
 is closed in C{A). For a fixed / G C(A) and for a fixed r > 0 (r < 1) we define

 {/(x) f(x) + r/2 for for x£(aioo)nA X G (- oo, a)n A . f(x) + r/2 for x£(aioo)nA .

 Then p(/, <7) = r/2 < r and g G C(^4) ' Co(>l). This completes the proof.

 Theorem 7 // a set A C M containing more than one point is not an interval ,
 then the set Co{A) ' D(A) is dense in Co(A).

 Proof. Let a £ A be such that (- oo, a) fi A 0 and (a, oo) D A / 0. Given
 a fixed / G Cq{A) and 1 > r > 0 there are continuous functions g,h G C(M)
 and points c, G A such that /i/A = /, < r, c < a < di and <7/[c, cř]
 is linear, non constant. Then G Co(^4) and g'A £ D(A), since g(a) G
 (min(5f(c), g(d)), max(0(c), g(d))) and g{a) g g(A fl [c, d]).

 Remark 3 Example 1 shows that the set Cq{A) fl D(A) may be not closed in
 Cq{Ä). But if a set A C M is nonempty and closed, then Co(A)C'D(A) is closed
 in Cq{A). This follows from Theorem 3.

 Theorem 8 If there exist points ayb G Cl A such that a < b and the cardinality
 of the set (a, b) fi A is smaller than continuum , then the set Co(A) fi D(A) is
 nowhere dense in Co(A).

 Proof. Given a fixed / G Cq{A), there is g G C{R) such that g/A = /. Let
 1 > r > 0 be a number. Define

 g(x) for X G (- oo, a]

 h{x) = g(x) + c for x G [fr, oo)

 g(x) + c(x - a)/(b - a) for xG[a,6],

 where c G M is such that |c| < r/2 and g(a) ^ </(6) + c. We may assume
 that g(a) < g(b) + c. Note that h/A G Co(A) and p(h/A,f) < r/2 < r. Put
 s = </(6) -he - g(a). Then s > 0. We shall prove that every function k G Co(A)
 with p(k1h/A) < min(r/2,s/8) is not in D(A). Indeed, since k G Co(A), there
 is £ G C(M) such that £/ A = k. We may assume that p(£,h) < min(r/2, s/S).
 From the continuity of £ and h at a, ò it follows that there are points tí, v G A
 such that u < v, and

 |ť(«)-/(a)|<«/8, |/(tf) - /(6)| < «/8,

 |/i(x) - ft(a)| < s/ 8, 'h(y) - h(b)' < sf 8
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 for all points x G [min(u, a), max(i/, a)] = I and all y G [min(i>, 6), max(v, 6)] = J.
 We have

 k(x) = l(x) < h(x) + s/S < h(a) + 5/8 + s/8 = g(a ) -f s/4,

 *(î/) = l(y) > h(y) - s/8 > Kb) ~ s/8 - s/8 = 0(6) + c - 5/4

 for all x G / fi A and all y G J fi A. Since g(a) + s/ 4 < <7(6) + c - s / 4 and since
 the set [a, 6] fi >1 has cardinality smaller than that of the continuum, there is a
 number z G (<7(a) + s/4, y(6) + c- s/4) such that Ár(x) ^ z for every x G (ti, v)fl A
 Since p(fc, /) < p(k , A/A) + p{h/ A> f) < r/2 + r/2 = r, the proof is finished.

 Theorem 9 If A C M is a nonempty set such that clA is a nondegenerate
 interval and for every open interval I with A fi I 0 the intersection I fi A
 contains a nonempty perfect set, then the set Cq{A) fl D(A) is dense in Cq{A).

 In the proof of this theorem we apply the following lemma:

 Lemma 10 Let f : [a, 6] - ► M be a continuous function and let P C (a, 6), Q C
 [a, 6] be nonempty perfect sets such that P C' Q = 0. There is a continuous
 function g : [a, 6] - ► R such that (f + 0)([a>&]) = /([a>^D = (/ + 9)(P) and
 g(x) = 0 for x G Q U {a, 6}.

 Proof of Lemma 1. There is ([1], p. 224) a continuous function h : P
 /([a, 6]). Let

 h(x) for x G P

 f(x) for x eQ U {a, 6}
 k(x) =

 linear in the closure of all components

 of the set (a, 6) - P - Q

 and

 9 = * - /•

 The function g satisfies all required conditions.

 Proof of Theorem 8. Fix / G Cq{A) and 1 > r > 0. There is a function
 g G C(R) such that / = g'A. We shall prove that there is a function h G
 Cq{A ) fi D(A) with p(f, h) < r. If / G D(A ), then / = h. Assume that
 / £ D{A). Since the function g is uniformly continuous on the interval [-1,1],
 there are points

 max(- 1, inf CI A)) = an < a'2 < • • • < ai,*(i) = min(l, sup CI A)
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 such that

 ai,ť+i - an < 1
 and

 ose g < 4""1r
 lautaiti+l]

 for i = l,...,Ar(l) - 1. For each i < fc(l) there is a nonempty perfect set
 P'i C (ai», fli,ť+ 1) H A which is nowhere dense in A. Consequently, by Lemma
 1, there are continuous functions <71 ,• : [ai¿, ai)t+i] - ► R such that

 ( 9 + <7i«)([aii, ai,«+i]) = g([au, <»u+i)] = (</ +

 and gu(au) = 0i¿(aM+i) = Let

 ^ ř 9{x) + 9u{x) for X € [an, aM+1], i < k( 1)
 [ g(x) otherwise.

 Evidently, f' G C(M) and p{g,f') < 4 ~1r. Since the function /1 is uniformly
 continuous on the interval [-2,2], there are points

 max(- 2, inf CI A) = a2i < - • < a2k{2) = min(2, sup CI A)

 such that

 a2,»+i - 0,2i < 2_1, and ose /1 < 4 ~2r for i < k( 2)
 [03^,02,1+1]

 For each i < k( 2), there is a nonempty perfect set Pu C (^4 fi (02*» 02,1+1)) -
 'Ji<k(i)pu which is nowhere dense in A. By Lemma 1, for each i < k( 2) there
 are continuous functions g2i : [a2t-, a2|t-+i] - ► ® such that (/1 + 02«)([a2», a2,t+i]) =
 /i([fl2»j o2,i+i]) = (/1 + g2i)(P2i) and g2i(x) = 0 for

 X G {a2¿, 02,1+1} u ([a2¿, û2,»+i] H U{Pij : j < ¿(1)}).

 Let

 , / * f /i(x) + 02»(z) for * € [a2,-,a2|i+i], i<k( 2)
 J2'X) , / * = <

 [ /i(x) otherwise.

 Evidently, /2 E C(M) and p(/2,/i) < 4 ~2r. Generally, for n > 2, there are
 points

 max(-n, inf ci >1) = ani < • • • < ank(n) = min(n, sup cl A)
 with

 ûn.j+1 - Oni < l/n, ose /n_i < 4 ~nr for i < Hn),
 K„an,¿+l]
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 nonempty perfect sets Pni C (a„,-, an,,+i) CI A - (Jj<n U,<t(j) Pji which are
 nowhere dense in A (i < k(n)), and continuous function /„ G C(M) such
 that p(fn,fn- 1) < 4 ~nr, fn(Pni) = fn([ani, an,,+i]) for i < k(n ) and fn(x) =
 for X € Pji with j < n, i < k(j). Since p(/n,/„_i) < 4 ~nr and
 4 ~nr < oo, the sequence (/n) converges uniformly to a function k G C(M). ■

 For every n = 1, 2, . . . p(g, /„) < p(g, /i) +

 and consequently
 OO

 p(p, k)<r^2 4~n = r/3 < r.
 n=l

 Now, we shall show that k/A = h G ^(^4). For given points a, 6 G -A with a < b
 and h(a) ^ h(b) (for example, h(a) < h(b)) let c G h(b)). There are points
 ai,6i such that a < a' < b' < b and k(a') < c < k(bi). Since the sequence
 (fn) converges uniformly to k, there is an index n such that fn(a i) < c <
 fn(b i)> [a> b] C (- n, n) and l/n < min(ai - a, 6 - 6i). From the continuity of fn
 it follows that there is a point z G (ai, ¿i) such that fn(z) = c. There is an index
 i < k(n) such that z G [ani,a„)i+ 1] C (a, 6). Since /n(Pm) = /«(fani, On.i+i]),
 there is a point tu G Pni with /n(w) = /n(^) = c. Consequently, w G A fi (a, 6),
 and A(u;) = fc(w) = /n(w) = fn(z) = c, since fk(w) = /n(w) for k > n. This
 completes the proof.

 Remark 4 /n oar discussion with Dr. T. Natkaniec he remarked that if cl A
 is a nondegenerate interval and if there is f G D(A) D Cq(A) which is non
 constant , then A contains a nowhere dense (in subset having the cardinality
 of the continuum. Since there exist c-dense (in 1SŁ) sets A such that for every
 set B C M of the first category the intersection BnA is countable (for example,
 Lusin sets), there are sets A C M such that clA = M and Aí) I has the cardinality
 of the continuum for every open interval I and Cq(A) fi D(A) is nowhere dense
 in Cq{A).

 Problem 1 Suppose that clA is a nondegenerate interval and for every open
 interval I with A PI I ^ 0 the intersection A D I contains a nowhere dense set
 having the cardinality of the continuum. Is the set D(Ä)C'Cq(Ä) dense in Cq(A)?
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