Zbigniew Grande*, Mathematics Department, Slupsk Pedagogical University, ul. Arciszewskiego 22b, 76-200 Slupsk, Poland

On the Darboux Property of Restricted Functions

Let \mathbb{R} denote the set of reals. If $A \subset \mathbb{R}$ is a nonempty set, then we say that a function $f: A \rightarrow \mathbb{R}$ has the Darboux property whenever $f(I \cap A)$ is a connected set for every interval $I \subset \mathbb{R}$. Denote by $D(A)(A \neq \emptyset)$ the set of all functions $f: A \rightarrow \mathbb{R}$ having the Darboux property. Let $C(A)$ denote the family of all continuous functions $f: A \rightarrow \mathbb{R}$ and let p be the uniform metric defined by the following formula

$$
p(f, g)=\min \left(1, \sup _{x \in A}|f(x)-g(x)|\right)
$$

Theorem 1 If a set $A \subset \mathbb{R}$ containing more than one point, is not an interval, then the set $C(A) \backslash D(A)$ has a nonempty interior (in the metric p).

Proof. There is a point $a \in \mathbb{R} \backslash A$ such that $(-\infty, a) \cap A \neq \emptyset$ and $(a, \infty) \cap A \neq$ \emptyset. Let $b=\sup (A \cap(-\infty, a))$ and $c=\inf (A \cap(a, \infty))$. There is a continuous function $f: A \rightarrow \mathbb{R}$ such that:

$$
\begin{aligned}
& \lim _{x \rightarrow b-} f(x)=0 \\
& \lim _{x \rightarrow c+} f(x)=1
\end{aligned}
$$

For every function $g \in C(A)$ with $p(f, g)<1 / 2$ there is $r>0$ such that $g(x)<$ $1 / 2$ for every $x \in A \cap(b-r, b]$ and $g(y)>1 / 2$ for every $y \in A \cap[c, c+r)$. Since $1 / 2 \notin g(A \cap(b-r, c+r)), g$ does not have the Darboux property. This completes the proof.

Theorem 2 If there exist points $a, b \in A$ such that $a<b$ and the intersection $[a, b] \cap A$ has cardinality smaller than the continuum, then the set $C(A) \cap D(A)$ is nowhere dense in $C(A)$.

[^0]Proof. Let $H(A)$ be the set $\{f: A \rightarrow \mathbb{R} ; f$ constant on $[a, b] \cap A\}$. Obviously, $H(A)$ is uniformly closed. Let $f \in C(A) \cap H(A)$ be a fixed function and let $r>0$ be a number <1. Define

$$
g(x)= \begin{cases}f(x) & \text { for } x \in A \cap(-\infty, a] \\ f(x)+r / 2 & \text { for } x \in A \cap[b, \infty) \\ \text { linear for } x \in A \cap[a, b]\end{cases}
$$

Then $p(f, g)=r / 2<r, g \in C(A)$, and $g \notin H(A)$. So $H(A) \cap C(A)$ is nowhere dense in $C(A)$. Since $D(A) \subset H(A)$, the set $D(A) \cap C(A)$ is nowhere dense in $C(A)$.

Remark 1 There are sets $A \subset \mathbb{R}$ such that the sets $C(A) \cap D(A)$ are not closed in $C(A)$.

Example 3 Let $A=[0,1 / 2) \cup(1 / 2,1]$. Put $f(x)=x$ for $x \in A$. Obviously $f \in C(A) \backslash D(A)$. For $n=1,2, \ldots$ let $a_{n}=2^{-1}-4^{-n}$ and $b_{n}=\left(a_{n}+2^{-1}\right) / 2$. Define

$$
f_{n}(x)= \begin{cases}2^{-1} & \text { for } x \in\left[b_{n}, 2^{-1}\right) \\ x & \text { for } x \in\left[0, a_{n}\right] \cup\left(2^{-1}, 1\right] \\ \text { linear in the interval }\left[a_{n}, b_{n}\right]\end{cases}
$$

Then all $f_{n} \in C(A) \cap D(A)$ and the sequence $\left(f_{n}\right)$ uniformly converges to f.
Theorem 4 If $A \subset \mathbb{R}$ is a nonempty closed set, then $C(A) \cap D(A)$ is closed in $C(A)$.

Proof. If a sequence of functions $f_{n} \in C(A) \cap D(A)$ converges uniformly to a function f, then $f \in C(A)$. Assume, to the contrary, that $f \notin D(A)$. Then there are points $a, b \in A$ with $a<b, f(a) \neq f(b)$ and

$$
c \in(\min (f(a), f(b)), \max (f(a), f(b)))
$$

such that $c \notin f([a, b] \cap A)$. We may assume that $f(a)<c<f(b)$. Since the set $[a, b] \cap A$ is compact and f is continuous, the set $f([a, b] \cap A)$ is compact. For $r>0$ there is a function f_{n} such that $f_{n}(a)<c<f_{n}(b)$ and $\left|f_{n}(x)-f(x)\right|<r$ for every $x \in A$. Since $f_{n} \in D(A)$, there is a point $d \in A \cap(a, b)$ such that $f_{n}(d)=c$. Consequently,

$$
|f(d)-c|=\left|f(d)-f_{n}(d)\right|<\tau
$$

and $(c-r, c+r) \cap f([a, b] \cap A) \neq \emptyset$. So c is an accumulation point of the compact set $f([a, b] \cap A)$, and $c \in f([a, b] \cap A)$, contrary to $c \neq f([a, b] \cap A)$.

Theorem 5 Suppose that a nonempty set $A \subset \mathbb{R}$ is such that cl $A-A$ is not closed. Then the set $C(A) \cap D(A)$ is nowhere dense in $C(A)$.

Proof. If there are points $a, b \in A$ such that $a<b$ and the cardinality of the set $[a, b] \cap A$ is smaller than continuum, then by Theorem 2 the set $C(A) \cap D(A)$ is nowhere dense in $C(A)$. So we may assume that the set $I \cap A$ has the cardinality of the continuum for every closed interval I with ends belonging to A. Since $\operatorname{cl} A-A$ is not closed, there is a point $a \in A$ which is an accumulation point of the set $\mathrm{cl} A-A$. Fix $f \in C(A)$ and $0<r<1$. From the continuity of f at a it follows that there is an open interval $I \ni a$ such that $\operatorname{osc}_{I \cap A} f<r / 8$. Since $a \in A$ and a is an accumulation point of $\operatorname{cl} A-A$, there are points $b, d \in I \cap A$ and $u \in \operatorname{cl} A-A$ such that $b<u<d$. Let us put

$$
g(x)=\left\{\begin{array}{lll}
f(x) & \text { for } & x \in A \cap(-\infty, u) \\
f(x)+3 r / 4 & \text { for } & x \in A \cap(u, \infty)
\end{array}\right.
$$

Evidently, $g \in C(A)$ and $p(f, g)=3 r / 4$. Let $h \in C(A)$ be such that $p(g, h)<$ $r / 8$. Then $p(f, h) \leq p(f, g)+p(g, h)<3 r / 4+r / 8<r$. We shall show that $h \notin D(A)$. We have

$$
\begin{array}{ll}
g(b)=f(b), & g(d)=f(d)+3 r / 4, \\
h(b)<f(b)+r / 8, & h(d)>f(d)+3 r / 4-r / 8=f(d)+5 r / 8> \\
& >f(b)-r / 8+5 r / 8=f(b)+r / 2 .
\end{array}
$$

Let c be a number such that $f(b)+r / 4<c<f(b)+r / 2$. Then $h(b)<c<h(d)$, and for every $x \in[b, u) \cap A$ we have

$$
h(x)<g(x)+r / 8=f(x)+r / 8<f(b)+r / 8+r / 8<c .
$$

Moreover, for every $x \in(u, d] \cap A$,

$$
h(x)>g(x)-r / 8=f(x)+3 r / 4-r / 8>f(b)-r / 8+5 r / 8=f(b)+r / 2>c .
$$

So $c \notin h((b, d) \cap A)$, and consequently $h \notin D(A)$. This completes the proof.
Theorem 6 If a nonempty set A is such that the set cl $A-A$ is closed and there are not points $a, b \in A$ with $a<b$ and such that the cardinality of the set $(a, b) \cap A$ is smaller than continuum, then the set $C(A) \cap D(A)$ has the nonempty interior in $C(A)$.

Proof. If cl $A-A=\emptyset$ then A is an interval and $C(A) \subset D(A)$. So, we may assume that $\operatorname{cl} A-A \neq \emptyset$. Let $\left(\left(a_{n}, b_{n}\right)\right)_{n}$ be a sequence with all components of
the open set $\mathbb{R}-(\mathrm{cl} A-A)$. From the suppositions of our theorem it follows that $A \subset \bigcup_{n}\left(a_{n}, b_{n}\right)$, and every set $A \cap\left(a_{n}, b_{n}\right)$ is connected. If $A \cap\left(a_{n}, b_{n}\right)=\left(a_{n}, c_{n}\right]$ (or $=\left[c_{n}, b_{n}\right)$), then there is a continuous function $f_{n}: A \cap\left(a_{n}, b_{n}\right) \rightarrow \mathbb{R}$ such that $f_{n}\left(c_{n}\right)=0$ and the cluster set

$$
K^{+}\left(f_{n}, a_{n}\right)=\left\{y \in \mathbb{R}: \text { there is a sequence of points } x_{k} \in A \cap\left(a_{n}, b_{n}\right)\right.
$$

$$
\text { with } \left.x_{k} \searrow a_{n} \text { and } f_{n}\left(x_{k}\right) \rightarrow y\right\}=\mathbb{R}
$$

$\left(K^{-}\left(f_{n}, b_{n}\right)=\left\{y \in \mathbb{R}:\right.\right.$ there is a sequence of points $x_{k} \in A \cap\left(a_{n}, b_{n}\right)$

$$
\text { with } \left.\left.x_{k} \nearrow b_{n} \text { and } f_{n}\left(x_{k}\right) \rightarrow y\right\}=\mathbb{R}\right)
$$

If $\left(a_{n}, b_{n}\right) \subset A$, then there is a continuous function $f_{n}:\left(a_{n}, b_{n}\right) \rightarrow \mathbb{R}$ such that

$$
K^{+}\left(f_{n}, a_{n}\right)=K^{-}\left(f_{n}, b_{n}\right)=\mathbb{R}
$$

If $\left(a_{n}, b_{n}\right) \cap A$ is a singleton set $\left\{c_{n}\right\}$, then we put $f_{n}\left(c_{n}\right)=0$. If $\left(a_{n}, b_{n}\right) \cap A=$ $\left[c_{n}, d_{n}\right] \subset\left(a_{n}, b_{n}\right)$, then there is a continuous function $f_{n}:\left[c_{n}, d_{n}\right] \rightarrow \mathbb{R}$ such that $f_{n}\left(c_{n}\right)=f_{n}\left(d_{n}\right)=0$ and $f_{n}\left(\left[c_{n}, d_{n}\right]\right)=[-n, n]$. Let $f(x)=f_{n}(x)$ for $x \in\left(a_{n}, b_{n}\right) \cap A, n=1,2, \ldots$. Then $f \in C(A)$ and if $u_{n}=a_{n}$ or b_{n} is an accumulation point of the set A from the left (from the right), then $K^{-}\left(f, u_{n}\right)=$ $\mathbb{R}\left(K^{+}\left(f, u_{n}\right)=\mathbb{R}\right)$. Let $g \in C(A)$ be such that $p(f, g)=r<1$. We shall show that $g \in D(A)$. Let $a, b \in A$ be points such that $a<b$ and $g(a) \neq g(b)$, for example $g(a)<g(b)$. Let us fix a number c with $g(a)<c<g(b)$. If there is not a point $u_{i}=a_{i}$ or b_{i} belonging to $[a, b]$, then $[a, b] \subset A$ and $g \mid[a, b]$ has the Darboux property. Consequently, there is a point $d \in(a, b) \cap A$ such that $g(d)=c$. In the contrary case, if there is a point $u_{i}=a_{i}$ or b_{i} belonging to $[a, b]$, then there are points $u, v \in(a, b)$ such that $f(u)<c-r, f(v)>c+r$ and $[\min (u, v), \max (u, v)] \subset A$. Since $p(f, g)=r<1$, we have $g(u)<c$, $g(v)>c$ and $g /[\min (u, v), \max (u, v)]$ is continuous. Consequently, there is a point $d \in(\min (u, v), \max (u, v)) \subset(a, b)$ such that $g(d)=c$. So $g \in D(A)$.

Now, for a nonempty set $A \subset \mathbb{R}$ let

$$
C_{0}(A)=\{g: A \rightarrow \mathbb{R} ; \text { there is } f \in C(\mathbb{R}) \text { such that } f / A=g\}
$$

Remark 2 If $A \subset \mathbb{R}$ is a nonempty set such that there is a point a $\in \operatorname{cl} A-A$ which is bilateral accumulation point of A, then $C_{0}(A)$ is a nowhere dense closed set in $C(A)$.

Proof. If a sequence of functions $g_{n} \in C_{0}(A)$ converges uniformly to a function $g: A \rightarrow \mathbb{R}$, then there are functions $f_{n} \in C(\mathbb{R})$ such that $f_{n} / A=g_{n}$ and the sequence of functions $f_{n} / \mathrm{cl} A, n=1,2, \ldots$, converges uniformly on $\operatorname{cl} A$ to a
function $h: \operatorname{cl} A \rightarrow \mathbb{R}$. Evidently, $h \in C_{0}(\operatorname{cl} A)$ and $h / A=g \in C_{0}(A)$. So $C_{0}(A)$ is closed in $C(A)$. For a fixed $f \in C(A)$ and for a fixed $r>0(r<1)$ we define

$$
g(x)=\left\{\begin{array}{lll}
f(x) & \text { for } & x \in(-\infty, a) \cap A \\
f(x)+r / 2 & \text { for } & x \in(a, \infty) \cap A
\end{array}\right.
$$

Then $p(f, g)=r / 2<r$ and $g \in C(A) \backslash C_{0}(A)$. This completes the proof.
Theorem 7 If a set $A \subset \mathbb{R}$ containing more than one point is not an interval, then the set $C_{0}(A) \backslash D(A)$ is dense in $C_{0}(A)$.

Proof. Let $a \notin A$ be such that $(-\infty, a) \cap A \neq \emptyset$ and $(a, \infty) \cap A \neq \emptyset$. Given a fixed $f \in C_{0}(A)$ and $1>r>0$ there are continuous functions $g, h \in C(\mathbb{R})$ and points $c, d \in A$ such that $h / A=f, p(h, g)<r, c<a<d$, and $g /[c, d]$ is linear, non constant. Then $g \mid A \in C_{0}(A)$ and $g \mid A \notin D(A)$, since $g(a) \in$ $(\min (g(c), g(d)), \max (g(c), g(d)))$ and $g(a) \notin g(A \cap[c, d])$.

Remark 3 Example 1 shows that the set $C_{0}(A) \cap D(A)$ may be not closed in $C_{0}(A)$. But if a set $A \subset \mathbb{R}$ is nonempty and closed, then $C_{0}(A) \cap D(A)$ is closed in $C_{0}(A)$. This follows from Theorem 3.

Theorem 8 If there exist points $a, b \in C 1 A$ such that $a<b$ and the cardinality of the set $(a, b) \cap A$ is smaller than continuum, then the set $C_{0}(A) \cap D(A)$ is nowhere dense in $C_{0}(A)$.

Proof. Given a fixed $f \in C_{0}(A)$, there is $g \in C(R)$ such that $g / A=f$. Let $1>r>0$ be a number. Define

$$
h(x)=\left\{\begin{array}{l}
g(x) \quad \text { for } x \in(-\infty, a] \\
g(x)+c \text { for } x \in[b, \infty) \\
g(x)+c(x-a) /(b-a) \text { for } x \in[a, b]
\end{array}\right.
$$

where $c \in \mathbb{R}$ is such that $|c|<r / 2$ and $g(a) \neq g(b)+c$. We may assume that $g(a)<g(b)+c$. Note that $h / A \in C_{0}(A)$ and $p(h / A, f) \leq r / 2<r$. Put $s=g(b)+c-g(a)$. Then $s>0$. We shall prove that every function $k \in C_{0}(A)$ with $p(k, h / A)<\min (r / 2, s / 8)$ is not in $D(A)$. Indeed, since $k \in C_{0}(A)$, there is $\ell \in C(\mathbb{R})$ such that $\ell / A=k$. We may assume that $p(\ell, h)<\min (r / 2, s / 8)$. From the continuity of ℓ and h at a, b it follows that there are points $u, v \in A$ such that $u<v$, and

$$
\begin{aligned}
& |\ell(x)-\ell(a)|<s / 8, \quad|\ell(y)-\ell(b)|<s / 8, \\
& |h(x)-h(a)|<s / 8, \quad|h(y)-h(b)|<s / 8
\end{aligned}
$$

for all points $x \in[\min (u, a), \max (u, a)]=I$ and all $y \in[\min (v, b), \max (v, b)]=J$. We have

$$
\begin{aligned}
& k(x)=1(x)<h(x)+s / 8<h(a)+s / 8+s / 8=g(a)+s / 4 \\
& k(y)=1(y)>h(y)-s / 8>h(b)-s / 8-s / 8=g(b)+c-s / 4
\end{aligned}
$$

for all $x \in I \cap A$ and all $y \in J \cap A$. Since $g(a)+s / 4<g(b)+c-s / 4$ and since the set $[a, b] \cap A$ has cardinality smaller than that of the continuum, there is a number $z \in(g(a)+s / 4, g(b)+c-s / 4)$ such that $k(x) \neq z$ for every $x \in(u, v) \cap A$. Since $p(k, f) \leq p(k, h / A)+p(h / A, f)<r / 2+r / 2=r$, the proof is finished.

Theorem 9 If $A \subset \mathbb{R}$ is a nonempty set such that cl A is a nondegenerate interval and for every open interval I with $A \cap I \neq \emptyset$ the intersection $I \cap A$ contains a nonempty perfect set, then the set $C_{0}(A) \cap D(A)$ is dense in $C_{0}(A)$.

In the proof of this theorem we apply the following lemma:
Lemma 10 Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function and let $P \subset(a, b), Q \subset$ $[a, b]$ be nonempty perfect sets such that $P \cap Q=\emptyset$. There is a continuous function $g:[a, b] \rightarrow R$ such that $(f+g)([a, b])=f([a, b])=(f+g)(P)$ and $g(x)=0$ for $x \in Q \cup\{a, b\}$.

Proof of Lemma 1. There is ([1], p. 224) a continuous function $h: P \xrightarrow{\text { onto }}$ $f([a, b])$. Let

$$
k(x)=\left\{\begin{array}{l}
h(x) \text { for } x \in P \\
f(x) \text { for } x \in Q \cup\{a, b\} \\
\text { linear in the closure of all components } \\
\text { of the set }(a, b)-P-Q
\end{array}\right.
$$

and

$$
g=k-f
$$

The function g satisfies all required conditions.
Proof of Theorem 8. Fix $f \in C_{0}(A)$ and $1>r>0$. There is a function $g \in C(R)$ such that $f=g \mid A$. We shall prove that there is a function $h \in$ $C_{0}(A) \cap D(A)$ with $p(f, h)<r$. If $f \in D(A)$, then $f=h$. Assume that $f \notin D(A)$. Since the function g is uniformly continuous on the interval $[-1,1]$, there are points

$$
\max (-1, \inf C 1 A))=a_{11}<a_{12}<\cdots<a_{1, k(1)}=\min (1, \sup C 1 A)
$$

such that

$$
a_{1, i+1}-a_{1 i}<1
$$

and

$$
\underset{\left[a_{1 i}, a_{1}, i+1\right]}{\operatorname{osc}_{i}} g<4^{-1} r
$$

for $i=1, \ldots, k(1)-1$. For each $i<k(1)$ there is a nonempty perfect set $P_{1 i} \subset\left(a_{1 i}, a_{1, i+1}\right) \cap A$ which is nowhere dense in A. Consequently, by Lemma 1 , there are continuous functions $g_{1 i}:\left[a_{1 i}, a_{1, i+1}\right] \rightarrow R$ such that

$$
\left(g+g_{1 i}\right)\left(\left[a_{1 i}, a_{1, i+1}\right]\right)=g\left(\left[a_{1 i}, a_{1, i+1}\right)\right]=\left(g+g_{1 i}\right)\left(P_{1 i}\right)
$$

and $g_{1 i}\left(a_{1 i}\right)=g_{1 i}\left(a_{1, i+1}\right)=0$. Let

$$
f_{1}(x)=\left\{\begin{array}{l}
g(x)+g_{1 i}(x) \text { for } x \in\left[a_{1 i}, a_{1, i+1}\right], \quad i<k(1) \\
g(x) \text { otherwise }
\end{array}\right.
$$

Evidently, $f_{1} \in C(\mathbb{R})$ and $p\left(g, f_{1}\right)<4^{-1} r$. Since the function f_{1} is uniformly continuous on the interval $[-2,2]$, there are points

$$
\max (-2, \inf C 1 A)=a_{21}<\cdots<a_{2 k(2)}=\min (2, \sup C 1 A)
$$

such that

$$
a_{2, i+1}-a_{2 i}<2^{-1}, \text { and } \underset{\left[a_{2 i}, a_{2, i+1}\right]}{\text { osc }} f_{1}<4^{-2} r \quad \text { for } i<k(2)
$$

For each $i<k(2)$, there is a nonempty perfect set $P_{2 i} \subset\left(A \cap\left(a_{2 i}, a_{2, i+1}\right)\right)-$ $\bigcup_{i<k(1)} P_{1 i}$ which is nowhere dense in A. By Lemma 1 , for each $i<k(2)$ there are continuous functions $g_{2 i}:\left[a_{2 i}, a_{2, i+1}\right] \rightarrow \mathbb{R}$ such that $\left(f_{1}+g_{2 i}\right)\left(\left[a_{2 i}, a_{2, i+1}\right]\right)=$ $f_{1}\left(\left[a_{2 i}, a_{2, i+1}\right]\right)=\left(f_{1}+g_{2 i}\right)\left(P_{2 i}\right)$ and $g_{2 i}(x)=0$ for

$$
x \in\left\{a_{2 i}, a_{2, i+1}\right\} \cup\left(\left[a_{2 i}, a_{2, i+1}\right] \cap \cup\left\{P_{1 j}: j<k(1)\right\}\right)
$$

Let

$$
f_{2}(x)=\left\{\begin{array}{l}
f_{1}(x)+g_{2 i}(x) \text { for } x \in\left[a_{2 i}, a_{2, i+1}\right], \quad i<k(2) \\
f_{1}(x) \text { otherwise }
\end{array}\right.
$$

Evidently, $f_{2} \in C(\mathbb{R})$ and $p\left(f_{2}, f_{1}\right)<4^{-2} r$. Generally, for $n>2$, there are points

$$
\max (-n, \inf \operatorname{cl} A)=a_{n 1}<\cdots<a_{n k(n)}=\min (n, \operatorname{supcl} A)
$$

with

$$
a_{n, i+1}-a_{n i}<1 / n, \underset{\left[a_{n i}, a_{n, i+1}\right]}{\operatorname{osc}} \quad f_{n-1}<4^{-n} r \quad \text { for } i<k(n)
$$

nonempty perfect sets $P_{n i} \subset\left(a_{n i}, a_{n, i+1}\right) \cap A-\bigcup_{j<n} \bigcup_{i<k(j)} P_{j i}$ which are nowhere dense in $A(i<k(n))$, and continuous function $f_{n} \in C(\mathbb{R})$ such that $p\left(f_{n}, f_{n-1}\right)<4^{-n} r, f_{n}\left(P_{n i}\right)=f_{n}\left(\left[a_{n i}, a_{n, i+1}\right]\right)$ for $i<k(n)$ and $f_{n}(x)=$ $f_{n-1}(x)$ for $x \in P_{j i}$ with $j<n, i<k(j)$. Since $p\left(f_{n}, f_{n-1}\right)<4^{-n} r$ and $\sum_{n=1}^{\infty} 4^{-n} r<\infty$, the sequence $\left(f_{n}\right)$ converges uniformly to a function $k \in C(\mathbb{R})$. For every $n=1,2, \ldots p\left(g, f_{n}\right) \leq p\left(g, f_{1}\right)+\cdots+p\left(f_{n-1}, f_{n}\right)<r / 4+\cdots+r / 4^{n}$, and consequently

$$
p(g, k) \leq r \sum_{n=1}^{\infty} 4^{-n}=r / 3<r
$$

Now, we shall show that $k / A=h \in D(A)$. For given points $a, b \in A$ with $a<b$ and $h(a) \neq h(b)$ (for example, $h(a)<h(b))$ let $c \in(h(a), h(b))$. There are points a_{1}, b_{1} such that $a<a_{1}<b_{1}<b$ and $k\left(a_{1}\right)<c<k\left(b_{1}\right)$. Since the sequence $\left(f_{n}\right)$ converges uniformly to k, there is an index n such that $f_{n}\left(a_{1}\right)<c<$ $f_{n}\left(b_{1}\right),[a, b] \subset(-n, n)$ and $1 / n<\min \left(a_{1}-a, b-b_{1}\right)$. From the continuity of f_{n} it follows that there is a point $z \in\left(a_{1}, b_{1}\right)$ such that $f_{n}(z)=c$. There is an index $i<k(n)$ such that $z \in\left[a_{n i}, a_{n, i+1}\right] \subset(a, b)$. Since $f_{n}\left(P_{n i}\right)=f_{n}\left(\left[a_{n i}, a_{n, i+1}\right]\right)$, there is a point $w \in P_{n i}$ with $f_{n}(w)=f_{n}(z)=c$. Consequently, $w \in A \cap(a, b)$, and $h(w)=k(w)=f_{n}(w)=f_{n}(z)=c$, since $f_{k}(w)=f_{n}(w)$ for $k \geq n$. This completes the proof.

Remark 4 In our discussion with Dr. T. Natkaniec he remarked that if $\mathrm{cl} A$ is a nondegenerate interval and if there is $f \in D(A) \cap C_{0}(A)$ which is non constant, then A contains a nowhere dense (in \mathbb{R}) subset having the cardinality of the continuum. Since there exist c-dense (in \mathbb{R}) sets A such that for every set $B \subset \mathbb{R}$ of the first category the intersection $B \cap A$ is countable (for example, Lusin sets), there are sets $A \subset \mathbb{R}$ such that cl $A=\mathbb{R}$ and $A \cap I$ has the cardinality of the continuum for every open interval I and $C_{0}(A) \cap D(A)$ is nowhere dense in $C_{0}(A)$.

Problem 1 Suppose that cl A is a nondegenerate interval and for every open interval I with $A \cap I \neq \emptyset$ the intersection $A \cap I$ contains a nowhere dense set having the cardinality of the continuum. Is the set $D(A) \cap C_{0}(A)$ dense in $C_{0}(A)$?

References

[1] R. Duda, Wprowadzenie do topologii, I, PWN Warszawa 1986.

[^0]: *Research supported by KNB research grant (1992-94) No 211449101
 Received by the editors October 7, 1991

