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 On u;-limit Sets of Triangular Maps

 1. Introduction

 A number of papers, some dating back to the Sixties (see, e.g., [Sh]), deal with
 the uMimit sets of continuous self-maps of the interval. Recently a full char-
 acterization of such sets has been found. As established in [ABCP] and [BS]
 a non- void closed subset M of I = [0, 1] is an cj-limit set for some continuous
 function /:/»-► I if and only if M is nowhere dense or a union of finitely many
 nondegenerate closed intervals. The structure of uMimit sets for some other
 classes of functions I t- ► I is studied in [BCP].

 To characterize the closed sets which can be u;-limit sets for continuous maps
 from Ek into Ek is a difficult open problem. (Here E is the set of real numbers.)
 Only partial results are known (see [C]).

 A natural approach to this open problem is to study uMimit sets in the di-
 mension two and consider only continuous maps of some special form. Triangular
 maps are a good example.

 A map F : I2 ^ I2 is called triangular if F(x, y ) = (/(x), g(x, y)), i.e. if the
 first coordinate of the image of a point depends only on the first coordinate of
 that point. The map F is continuous if and only if / : I '-+ I and g : I2 i- ► I
 are continuous. In such a case we can also write F(x,y) = (/(x), gx{y)) where
 gx : 1 1- ► I is a family of continuous maps depending continuously on x.

 Since the triangular map F splits the square 1 2 into one-dimensional fibres
 (intervals x = const) such that each fibre is mapped by F into a fibre, one may
 expect that the dynamical system (F, I2) is close, in its dynamical properties,
 to one-dimensional dynamical systems. In some aspects it is true, e.g., the
 continuous triangular maps of the square are known to obey the Sharkovsky
 cycle coexistence ordering [K]. Nevertheless, they prove to have some essential
 differences if compared with continuous one-dimensional maps (see [KoSh], [Ko]).
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 The aim of the present paper is to study u;-limit sets of continuous triangular
 maps of the unit square into itself. Our main result is the characterization of
 those u;-limit sets which lie in one fibre (see Theorem 1). The intersection of
 an uMimit set with a fibre can be an arbitrary compact subset of the fibre (see
 Theorem 2).

 2. Statement of Main Results

 Denote by Ca(/2, I2) the set of all continuous triangular maps from 1 2 into itself
 and by u>f([z, y ]) the uMimit set of the point [ x , y ] under F. In the present paper
 we try to find at least partial answer to the question what subsets of the square
 I2 can be uMimit sets for some map from Ca(/2, I2)>

 It is natural to start with the case when a whole uMimit set is a subset of

 one fibre. Trivially, as an uMimit set lying in a fibre Ia = {a} x I we can get
 any set of the form {a} x M where M is a set which can serve as an w-limit set
 for a continuous map But it turns out that also many other sets can be
 obtained. The complete answer is given by

 Theorem 1 For a G /, M C I the following two conditions are equivalent:

 (i) There is F G Ca(/2, I2) and a point [x, y] G 1 2 with u>f([*, y]) = {a} x M;

 (ii) M is a non-empty closed subset oil which is not of the form

 M = Ji U J2 U • • • U Jn U C (1)

 where n is a positive integer, i - 1,2, . . .,n, are closed nondegenerate inter-
 vals, C is a non-empty countable set, all the sets J,- and C are mutually disjoint
 and dist(Ci J¿) > 0 for at least one i G {1, 2, . . . , n}.

 From Theorem 1 and its proof it follows that a non-empty compact subset
 M of a straight line in the plane is an w-limit set for a continuous map from the
 plane into itself if and only if M (considered as an one-dimensional set) is not
 of the form (1).

 Using Theorem 1 it is easy to show that if A is a non-empty finite set then
 A x M is an uMimit set for a continuous triangular map if and only if M is a
 non-empty closed subset of I which is not of the form (1).

 The next step is not to require that an uMimit set is a subset of a fibre.
 Then the question is whether any closed subset of a fibre can be obtained as an
 intersection of this fibre and an ¿¿-limit set of F. The answer is affirmative.

 Theorem 2 Let a E I, and let M be any closed subset of I. Then there are
 F G Ca(/2, I2) and [x, y] G I2 with u>f([z, 2/]) H Ia = {a} x M .
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 3. Definitions and Notations

 /, Ia and Ca(/2, J2) have been defined above. Let C(XiY) be the set of all
 continuous maps from X into Yģ For every [x, y ] G 1 2 put 7r([x, y ]) = x. For a
 set /C C I2 let Ca(/C,/2) be the set of all continuous triangular maps from K
 into 1 2. So F G C&(K,yI2) if F G C(/C,/2) and 7r(F(a)) = 7t(F(6)) whenever
 a, 6 G /C with 7r(a) = 7t(6).

 For a compact metric space X and / G X) let /°(x) = x and /n+1(x) =
 /(/n(x)) for each x G X and natural number n. An uMimit set u>f(x) is defined
 to be the set of limit points of the sequence {/n(^)}^Lo- The range of this
 sequence will be denoted by orb/(x). If A C X and /(*4) C A or f(A) = A, A
 is called /-invariant or strongly /-invariant, respectively. Recall that u>/(x) is a
 compact and strongly /- invariant set.

 Let g G C(/, I). A set {/Ci, /C2, . . . , /Cr} of mutually disjoint subintervals of
 I is called a g-cyc'e of intervals if g(K,i) = /C,+i (mod r). In such a case we write
 /Ci i - ► X^2 i - ► * • • « - >- /Cr 1 - ► /Ci if no confusion can arise by suppressing g.

 For A, B C I let dist(.4, B) = inf{|a - 61, a £ A, 6 G B}. Recall that
 dist(0, ^4) = inf 0 = +00 > 0. Further, let clos A be the closure of A, and if A
 is closed let max>t or min*4 be the maximum or minimum of A , respectively.
 A < B means that a < 6 whenever a G A, 6 G B. If g is a function, then g'A
 is the restriction of g to the set A. A set is countable if it is finite or infinite
 countable.

 Sometimes no distinction is made between a point x and a set {x}. If x is
 a point then by the midpoint of {x} we mean x and in the same way we define
 the end-points of {x}. Further, x U A stands for {x} U A. By f(M) = m where
 A/ is a set and m is a point we mean that f(x) = m for all x G M.

 Let T be a system of maps. Denote the domain of / by T>(f) and suppose
 that fi(x) = f2(x) whenever /1 , /2 € ? and x G 2>(/i ) flX>(/2). Then one can
 define a map g with the domain U {£>(/), / G ^7} such that g'T>(f) = / for
 each / G T. This map g will be denoted by UF. Sometimes we do not state
 the domains of maps explicitly. Note that if a map / is defined on each of the
 sets Vt , t G T and if it is not stated otherwise, then the domain of / is the set

 and n°t a larger set. The identity map on a set A will be denoted by
 id¿ or, shortly, by id if no confusion can arise by suppressing A.

 If M C I and e > 0 then a finite set {xi, x2, . . . , xn } C M is called an £-net
 for M provided that for every m G M there is x, with dist(m, x¿) < e.

 Let / G C(M, M) and e > 0. A finite sequence x'i x2, . . . , xn of points from
 M is said to be an ¿-recurrent chain of / or, shortly, an ¿-chain of / if, modulo
 n, dist(/(x,), x,+i) < e for every i = 1,2 , . . . , ra.

 A non-empty nowhere dense perfect set will be called a Cantor-like set. Recall
 that by Alexandrov-Hausdorff theorem, any uncountable Borei set contains a
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 Cantor-like set.

 If M C / is a nowhere dense compact set then every open interval disjoint
 with M and having both end-points from M will be said to be an interval
 contiguous to M .

 Finally, note that we use the notation [x,y] to denote both a point in the
 plane and a closed interval on the real line.

 4. Auxiliary Results

 Lemma 1 (Extension lemma) Let K, C I2 be a compact set, <p G Ca(/C,/2).
 Then there is a map $ G Ca(/2,/2) such that for every [x,y] G /C $(x,y) =

 Proof. Denote <p(x>y) = (/(x), g(x, y)). Since G C(/C,/2), we have
 g E C(/C,/). We are going to prove that also / : 7r(/C) •- ► / is continuous.
 (This is not true without the assumption that the set K is compact.) Assume,
 on the contrary, that / is discontinuous at a point x G 7 r(/C) . Then there is
 a sequence of points xn G for which xn - ► x and /(xn) /► /(x). Since
 I is a compact interval, there is a converging subsequence of /(xn). Without
 loss of generality we may assume that /(xn) - ► a / /(x). Take points yn with
 [xniyn] G IC. There is a converging subsequence of yn with [xniyn] G /C. There
 is a converging subsequence of yn. Without loss of generality we may assume
 that yn -+ y. Then [xn,t/n] - ► [x,y]. Since /C is closed, [x,t/] G /C. The point
 <p(x,î/) belongs to the fibre and the sequence /(x„) does not converge to
 /(x). So <p(xniyn) does not converge to <p(x,t/), and we have a contradiction
 with the continuity of (p.

 By Tietze extension theorem the functions / G C(tt(IC)1I) and g G C(/C, J)
 have continuous extensions F G C(/, I) and G G C(/2, /), respectively. Now it
 suffices to put $(x, y) = ( F(x ), G(x, y)). □

 Lemma 2 Zeť a G /, M C I be a closed set , /i G C(M, M). Suppose that for
 every e > 0 Mere is an e-chain of h which is an e-net for M. Then there are
 F G Ca(/2,/2) and, [x,y] G /2 wïM ^f([x,2/]) = {a} x M.

 Proof. Without loss of generality we may assume that a < max/. De-
 note ra = minAf. It follows from the assumptions that for every € > 0 there
 is an e-chain of h which is an £-net for M and contains the point ra. With-
 out loss of generality we may assume that these chains start at the point ra.
 Take a sequence eni n = 1,2,..., en ' 0 and a sequence cn, n = 1,2,...,
 where cn is an £n-chain of h which is an £n-net for M and starts at ra. De-

 note Ci = {ra = 2/1,2/2, • • - ,2/*:(l)}, C'2 = {m = î/Jb(i)+i, • • • > 2/fc(l)+fc(2)> • • • » Cn =
 {ra = 2/fc(i)-i - f-fc(n- i)+i j • • • > 2/fc(i)H - • Take a sequence xn, n =



 On u-limit Sets of Triangular Maps 119

 1,2,..., xn ' a and the sequence An = [xn,yn], n = 1,2,... . Denote
 the set ({a} x M)'j{Ani n- 1,2,...} by /C and define a function tp from K into
 itself as follows: <p(An) = ^4n+i> n = 1, 2, . . . , and <£>([a, y]) = [a, h(y)] whenever
 y G M. Then /C = ({a} x M) U orb^ķi, j/i]).

 It is not hard to see that yi' = {a} x A/. The inclusion uty>([a?i, yi]) C
 {a} x M follows from the facts that xn - ► a and for every n, yn G M. To
 prove the converse inclusion it suffices to take into consideration that for every
 n, cn C M is an £n-net for A/. So /C = ^([xi, yi]) Uorbv,([xi, yi]) is a compact
 set. The function <p is triangular. Further, <p is continuous at each point An
 and since h is continuous, xn - ► a and for every n, cn is an £n-chain of h with
 Sn - ► 0, (ß is also continuous at each point from {a} x M . Now by Lemma 1 we
 get a function F G Ca(/2, I2) with o;f([xi, yi]) = {a} x M . □

 In the sequel we will write h G M(£) whenever h G C(M, M) is such that
 for every e > 0 there is an ¿-chain of h which is an £-net for M . Further we will
 write M G S whenever there is an h G M (S). So Lemma 2 says that if M G £
 is a closed set then {a} x M is an urlimi t set for a triangular map.

 Lemma 3 Lei (X,p) be a compact metric space, f G C(X,X), M C Xi M =
 Mi UM2, Mi,M2 ^ 0, p( Mi, A/2) > 0. If f(Mi) C A/i then there is no point
 xq £ X with u>f(x 0) = A/.

 Proof. This is an easy consequence of Theorem 1 from [Sh] saying that if
 (X,p) is a compact metric space, / G C(X,X), x0 e X, U is an open subset
 of u>/(a?o) (in relative topology), and U / vj(x) then the closure of f{U) is not
 contained in U. □
 In the sequel, for any two subsets A, B of /, Ay B means that there is a
 continuous map of A onto B. In [BS] it is proved that if A, B C I are nowhere
 dense compact sets, A uncountable and B ± 0, then Ay B. We shall need the
 following stronger result.

 Lemma 4 Let B C I be a non-empty compact set and A G I be a compact set
 containing a Cantor-like set P such that no interval contiguous to P is a subset
 of A. Then Ay B.

 Proof. Since P y /, there is a compact subset Q C P with Q y B. It
 suffices to show that Ay Q. Every interval J = (^', q") contiguous to Q contains
 an interval contiguous to P and consequently a point which does not belong to
 the closed set A. Hence there are disjoint compact intervals J' = ( q',a ') and
 J" = (a", q") such that AC'J C J'UJ". Some of these two intervals may intersect
 the set A ' Q. Using this it is easy to see that there exists a countable system
 of compact intervals Jn such that for any m ^ n, Jn fi Q = {gn}, Jm fi Jn C
 Q) Jn n (A ' Q) / 0 and A ' Q C (Jn Jn. Now let (p be the identity map on Q,
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 and let <p be constant on every J„ fl A. Clearly <p is continuous and <p(A) - Q.
 □

 In [BS] it is defined what it means for a nowhere dense compact set M to
 be homoclinic with respect to a continuous map. We will not assume that M is
 nowhere dense. So let M C I be a compact set, and let A = {ao, . . . , o>k-i} ^ 0
 be a set of points of M . Assume that there is a system { Pn } , i = 0 , . . . , k - 1 of
 pairwise disjoint compact intervals such that M'(J¿ n Pn = A , M¿ = MC'Pn ^ 0
 for every ¿, n, and limn_>oo M¿ = a¡ for any i (i.e., every neighborhood of a,-
 contains the sets M¿ for all sufficiently large n). Let / G C(M, M), and let A be a
 ¿-cycle of / such that /(a,) = a,_i fori > 0and/(ao) = a^-i. If/(M¿) = M„~l
 for i > 0 and any n, /(M°) = ^n-í f°r n > Ū, and = a*- 1, then M
 is called a homoclinic set (of order k) with respect to /. In the sequel, the sets

 or the cycle A will be called the portions of M or the initial cycle of M,
 respectively. If A = {a}, then a will be called the initial point of M . The portion
 Mo with /(Mo) = a will be called the last portion of M .

 Clearly, if M is homoclinic with respect to / then / G M {S) and thus M G 8 .

 Lemma 5 (See the proof of Lemma 4 from [BS]). Lei M be an uncountable
 nowhere dense compact subset of I, and let either a be a bilateral condensation
 point of M or a G {min Af, max M] be a condensation point of M . Then there
 is a continuous map f from M onto itself such that M is homoclinic with respect
 to f, a is the initial point of M , /(a) = a, and all the portions Mn , n = 0, 1, . . . ,
 are uncountable. Consequently, M G S.

 Lemma 6 Let M C I be a compact set containing a Cantor-like set P such that
 no interval contiguous to P is a subset of M . Let a be a bilateral condensation
 point of P. Then there is a continuous map f from M onto itself such that M
 is homoclinic with respect to f, a is the initial point of M , f(a) = a, and every
 portion Mn, n = 0, 1, 2, . . . is a compact set containing a Cantor-like set Pn such
 that no interval contiguous to Pn is a subset of Mn. Consequently , M G S.

 Proof. Let Jn, n = 0,1,2,... be disjoint compact intervals such that
 U~=o Jn D P ' {a}, limn_oo Jn = a, Jn D P = Pn are Cantor-like sets and
 {min Jfi, max«7n} C P . Since no interval contiguous to P is a subset of M , there
 are disjoint compact intervals Kn with Kn D Jn and U^Lo £n D M ' {a}. Then
 for every n, Mn = tCn H M is a compact set containing a Cantor-like set Pn such
 that no interval contiguous to Pn is a subset of Mn. By Lemma 4, for every
 n there is a continuous map fn from Afn+i onto Mn. To finish the proof take
 / = (JÍT=o fn and extend / to the set M by putting f(a) = a and /(Mo) = a. □

 Lemma 7 Let M C I be a compact set having uncountably many connected
 components. Then M G S.
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 Proof. Only countably many of the components of M are intervals. Denote
 their union by A. Then M = AUB where B is disjoint with A and uncountable.
 Take a Cantor-like set P C B. Then no interval contiguous to P is a subset of
 M and by Lemma 6, M G £. □
 Before stating next lemma we need some notation. Let A C / be a countable

 compact set. Define a transfinite sequence {*4a}a<n of subsets of A as follows:
 Ao = A, Ay = fia< yAot if 7 is a limit ordinal, and Ay is the derivative (i.e.,
 the set of limit points) of Ay-i otherwise. Clearly, for any such A there is an
 ordinal ß < Cl such that Aß is non-empty and finite (and hence, .4/3+1 = 0).
 This ß is called the depth of A and is denoted by d{A). The set Aß is said to
 be the kernel of A . Instead of Aß we also use the symbol Ker(.4). The points
 from Aa ' Aa+i are said to have depth a with respect to A. The depth of a
 point X with respect to A is denoted by d(x'A). Clearly, if a point x G A has
 depth a (with respect to A , then there is a punctured neighborhood U of x (i.e.,
 a neighborhood of x without the point x) such that all points from U fi A have
 depths less than a (with respect to *4). Otherwise x would have depth at least
 a-f 1. So there is a neighborhood V = UU{x] of x such that Ker(l/fl.4) = {x}.

 Lemma 8 ( See Lemma 6 and its proof in [BS].) Lei A , B be countable compact
 sets with d(A) > d(B ), and let Ker B = {b}. Then there is a continuous map f
 from A onto B such that f(Ker A) = Ker B.

 Lemma 9 (See the proof of Theorem S in [BS].) Let A be an infinite countable
 compact subset of I. Then there is a continuous map f from A onto itself such
 that A is homoclinic with respect to f and Ker A is the initial cycle of A.

 Lemma 10 Let K C I be a compact set of the form K = J U C where J is
 a compact interval or a singleton, C is non-empty countable and disjoint with
 J , and dist(C , J) = 0. Then there exist a non-empty compact set L C C with
 distĻL^K, ' L) > 0 and a map g G £(£) such that g'J is the identity map and
 g(L) is the midpoint of J . Consequently , /C G S. (In what follows, the set L will
 be called the last portion of IC with respect to g.)

 Proof. Denote by m the midpoint of J and by C+ or C~ the set of all
 x G C with x > max J or x < min J, respectively. We distinguish two cases.
 Case 1. Only one of the sets and C~ has zero distance from J . Without

 loss of generality we may assume that dist(C+, J) = 0 and C~ is either empty
 or non-empty and dist(C~, J) > 0.

 Since the point max J is limit for C+ , the set clos C - C U ma xJ can
 be expressed in the form clos C = A U B where A and B are disjoint, C~ C
 By A H clos C+ < ßfl clos C+, A is an infinite countable compact set, Ker A =
 {max J}, and B is a countable compact set. Even in the case when C~ is empty
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 we may, without loss of generality, assume that B is non-empty (finite or infinite
 countable).
 By Lemma 9 there is a continuous map / 4 from A into itself such that A

 is homoclinic with respect to f¿ with the initial point max J and a last portion
 Ao> Denote g = ./U|*4'w4o. We are going to extend g to the set /C. First of all,
 define g(x) = x for every x G J.
 If B = {61, Ò2, . . .,6r} is finite, put g(Ao) = 61, g(bi) = bi+ll i = 1,2, . . .,r-

 1, and g(br) = ra. Here L = {6r}.
 If B is infinite, then we can use Lemma 9 to obtain a continuous map fß

 from B onto itself such that B is homoclinic with respect to f& with an initial
 cycle P and a last portion L. Take a point p € P. Put g{Ao) = pi g{x) = f&(x)
 for every x G B'L and g(L) = m.
 In every case we have found a last portion L of K and a continuous map g

 from K onto itself with the desired properties. Since g G £(£) we have /C G S.
 Case 2. Both the sets C+ and C" have zero distance from J.

 Denote Q+ = J U C+, Q~ - J U C~. From Case 1 which has already been
 proved we know that there are continuous maps g+ and g~ with g+ G Q+(£)
 and g~ G Q~(£)> Since g~'J = g+'J we can define g = g+Ug~ . Then g G £(£),
 and thus K G £. In the considered Case 2 we define the last portion of K with
 respect to g to be that of Q+ with respect to <7+ . □

 Now let M be a compact subset of I of the form

 00

 M='JjnUC (2)
 n=l

 where all the sets C and J,-, ¿=1,2,..., are mutually disjoint, ¿=1,2,...,
 are compact intervals, and C is a countable set (empty or non-empty). Clearly,
 C is nowhere dense. Denote J = clos(|J~=1 Jn). Then J is compact, and since
 (Jn=i Jn C J CM, both the sets M ' J and J ' ļJ^Li Jn are countable.

 Consider the map h from I into itself defined by h(x) = x - A([0, Jn),
 where A is the Lebesgue measure. Any component of J is either a point from
 J ' l£°=i Jn or an interval Jn for some n. A component x of J is said to be limit
 provided that h(x) is a limit point of the set h(J). Similarly, we define a limit
 component from the right or left.

 Clearly, J has at least one limit component. The depth of a component x of
 J with respect to J is defined to be that of the point h(x) with respect to h(J)
 and is denoted by d(x' J). A component x of J having zero depth is necessarily
 an interval Jn and has a positive distance from J'Jn. Finally, define the depth
 of J, d(J) = d(h(J)) and the kernel of J, Ker J = /i"x(Ker h( J)).

 Lemma 11 Lei Mil be a compact set of the form (2) such that the set J =
 clos (|XLļ Jn) has only one limit component P. Then there exists a non-empty
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 compact set LiM with dist(L, M'L) > 0 and a map g G M(£) such that g'P is
 the identity map and g(L) is the midpoint of P. Consequently, M G S. (In what
 follows , the set L will be called the last portion of M with respect to g.)

 Proof, (a) Reduction of the problem. First of all we are going to show that
 we can, without loss of generality, assume that P < M'P.

 Suppose we have proved the lemma when the component P is limit only from
 one side. Then the lemma is also true if P is limit from both sides. In fact, one
 can take M+ = {x G M : x > minP}, M~ = {x G M : x < maxP}, the
 corresponding maps g+ G M+(£) and g" G M~{£) and define g = g+ U g" .
 Finally, one can take the last portion of M+ with respect to <7+ as the last
 portion of M with respect to g.

 So let P be limit only from one side, say, from the right. Suppose we have
 proved the lemma when dist(C"",P) > 0, where C~ = {x G C : x < minP}.
 Then the lemma is also true if dist(C~,P) = 0. In fact, in this case take
 an interval [minP - minP[ meeting no J„ and having a positive distance
 from the set {x G M : x < minP - Ć}. Denote /C = {minP} U C¿", where
 Cq = {x G C : minP- 6 < x < minP}. By Lemma 10, there is a map g' G JC(£)
 leaving minP fixed. Denote Q = M'Cq . According to our assumption, the
 lemma holds if we take Q instead of M . So there is a map <72 G Q(£) such that
 g2'P is the identity and a set L is the last portion of Q with respect to <72- Then
 g = gļ U 02 belongs to M(£), g'P is the identity, and L can be taken as the last
 portion of M .

 Thus, we have shown that we can restrict ourselves to the case when P is
 limit only from the right and dist(C"",P) > 0, i.e. M is of the form M =
 M' U P U M2, M' < P < M2 and dist(Mi, P) > 0. But, obviously, the lemma
 holds for the sets of such a form if and only if it holds for the sets of the form
 M = P U M2 U Mi, P < M2 < Mi and dist(M2, Mi) > 0.

 We have reduced our problem to the following one: Prove the lemma under
 the additional assumption that P < M'P .

 (b) Proof of the reduced problem. Let, additionally, P < M'P. The system
 of those intervals Jn, n = 1,2,..., which are different from P can be divided into
 two systems A and B as follows: If dist(Jn, C ) is positive or zero, then Jn G A
 or Jn G B, respectively. Let B± be the system of those intervals from B whose
 both end-points are limit for the set C . If only the right or left endpoint of an
 interval from B is limit for C, then let it belong to B+ or B~ , respectively. If the
 right end-point of an interval B G B is limit for C, then there is a neighborhood
 of max B intersecting C in a set C+(B) such that C+(B) has a positive distance
 from M'(B U C+(B)) and all the points from C+(B) have their depths with
 respect to clos C+(B) = {max B } fl C+(B) less than the point max B has. If
 max B is not a limit point for C, put C+(B) = 0. The set C~(B) is defined
 analogously, and C(B) = C+(B) C'C~(B).



 124 Kolyada and Snoha

 Now suppose that the system B is infinite. Then at least one of the systems
 J3+, B ~ and B * is infinite. We can assume that B * is infinite. (If not, we
 proceed analogously with B+ or B~ instead of B ¿ . Then the procedure is even
 less complicated than now. In the sequel, we will always assume that is
 infinite whenever B is infinite.) Consider the set

 5={maxP}U ļ^J ({max B) U C+(B))
 t3eB±

 and denote <f(max P'S) = ra. All points from S lying in a punctured neigh-
 borhood of max P have their depths with respect to S less than ra. Fur-
 ther, if ra' < ra, then in any punctured neighborhood of max P there is
 a B G B^ such that d(max #|*S) > ra' (in the opposite case it would be
 d(max P'S) < ra' .) It follows from this that there is a sequence of intervals
 from B^ converging to max P such that the depths of maxima of these inter-
 vals with respect to S form a non-decreasing sequence. Further, realize that
 d(max #|S) = ¿(max ß|{max B} U C+(ß)). Similarly, as we have chosen the
 sequence of intervals from B * , we can choose a subsequence from this sequence
 such that the depths of minima of the intervals from the subsequence form a
 non-decreasing sequence, too. (Here the depth of min B is taken with respect
 to {min B} U C~(B).)

 As a result of this consideration we can see that if B is infinite, say, if
 B± is infinite (the two other cases are similar to this one), then we can write
 B = B1UB2 where £?2 = B'Biy B' = {#* , n = 1,2,...}, limn_>oo B' = max P
 and the sequence {e/(min ß* |{min B'} U C~(ß* ))}Jf=1 as well as the analogous
 sequence for maxima, is non-decreasing. Here we can, without loss of generality,
 assume that the system B2 is infinite. Finally, recall that for every n, {min B„}
 is the kernel of clos C~(B') = {min B') U C~(#* ) (and similarly for maxima).

 All things considered, we need to prove the lemma when P < M'P and

 M = P U y A U (J(ßu C(B )) u v (3)
 AeA Be B

 where V = C'(P U (Jßeß If B is infinite then B = B' U #2 •
 Now we are going to define seven maps which will be useful later.
 ( o ) (Definition ofy?o>so ancf Lo when A is finite and non-empty and B is in-

 finite.) Let A = {*4i, . . . , Ar}, and let B be infinite. Consider the system B' =
 {Ą, n = 1,2,...} described above. By Lemma 8, there are continuous maps gn
 and hnì n= 1, 2, . . . , such that g' (clos C+(#})) = max A' , /ii(clos C~(#})) =
 min>ti and for n = 2, 3, . . . , gn (clos C^'(B]l)) = clos C+(Bļļ_1), gn(m&x B„) =
 max Bļļ_li /in(clos C~(Bļļ)) = clos C"{B'_l)1 hn{ min B„) = min B'_l. Fur-
 ther, let / be the map such that f'P = id, / is linear and increasing on each
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 of the intervals #* , n = 1,2,... and Ai , i = 1, 2, . . . , r - 1 and /( B 1) =
 for n = 2, 3, . . . , /(#}) = A' and f(Ai) = *4¿+i> ¿ = 1, 2, . . . , r - 1. Now let
 <^o = /UU^L^nU/in). Since P is the only limit component of J, lim^oo B„ =
 max P. Thus <po is a continuous map from PU[JBeBļ(BUC(B))U(AiU. . .Uv4r_i)
 onto P U ^ ^(®)) ^ LM- Finally, denote *4r by Lo and the midpoint
 of P by so .

 (i) (Definition of <p' and L' when A is fìnite and non-empty.) Let A =
 {*4i , . . . , Ar } , and let ip bea continuous map from (Ai U ... U Ar - 1 ) onto (Ai U
 . . . U Ar- i ) such that <pi'Ai is linear and <pi(Ai) = Ai+ 1, i = l,2,...,r - 1.
 Denote *4r by L' .

 (ii) (Definition of <po,S2 and Li when A is infinite.) Let A = {A^Ai, . . }.
 Define a map (p2 from (PU|J A)'*4i onto P'j[JA such that (fi'P is the identity
 map, (ß2 'Ai is linear and <£>2 (*4») = Ai-i, ¿ = 2,3,.... Clearly, <p2 is continuous.
 Denote the midpoint of P by and A' by L2.

 (iii) (Definition of <£>3, S3 and L3 when B is finite and non-empty.) Let B =
 {#1, . . .,£?¿}. Denote /C,- = Bi U C(Bì), i = 1, . . . ,s. According to Lemma 10,
 for every i = 1, 2, . . . , s there is a map g ¿ £ /C,-(£) and a last portion W» of /C,-
 such that gi'B{ = id and gi(Wi) = ra¿, where is the midpoint of Denote
 /1 == i = 1, . . .,s, and define /i, by /i,(W¿) = rat+i> i = 1, . . .,s - 1.
 Then <p3 = |JJ=1 /»Uļjjz/ /i, is a continuous map from (JJ=1 onto (JJ=1 £*•
 Finally, denote the midpoint of B' by S3 and Hs by L3.

 (iv) (Definition of y?4, s4 and L4 wAen 5 is infinite.) Let B = {ßi, #2, . . .},
 and let /C¿, m¿, ?ť», and /,• be defined as in (iii) (now for all i = 1,2,...).
 Further, define </, by qiÇHi) = 1 for 2 = 2,3, - Let /0 be the identity map
 on P. Then <¿>4 = U^0 ^ ^ 0* ÌS a continuous map from (P U U¿^i £») V 1
 onto P U U¿^i Finally, denote the midpoint of P by s4 and 7ťi by L4.

 (v) (Definition of <£>5,55 and when V is non-empty and has a positive
 distance from P.) Let V ^ 0 and dist(X>, P) >0. If V is finite, V = {di, . . . , dj,
 then define <p5 from {di, . . . , dť_i} onto {d2,...,dt} by <p<>(di) = d¿+i, ¿ =
 1, 2, . . . , t - 1 and denote s5 = <¿1, L5 = {dť}. Now let T> be infinite. By Lemma
 9, there is a continuous map / from V onto itself such that V is homoclinic
 with respect to /. Take a point from the initial cycle of V and denote it by «5.
 Denote the last portion of V with respect to / by L5 and put ^>5 = f'V'L$.
 Then <ps is a continuous map from V'L$ onto V.

 (vi) (Definition of (pç, sq and Lq when T> has zero distance from P.) Suppose
 that dist(X>, P) = 0. Then there is a decomposition V = (Ji^i such that
 P < . . . < T>n < . . Ē < V 2 < V' and dist(X>¿, X>¿+i) > 0 for every i. Clearly,
 Vi, i = 1,2, . . ., are countable compact sets, and limn_,oo Vn = max P. Let n
 be any positive integer. By (V), there are a point sg e T>nì a compact set L%'Dn
 and a continuous map <pg from Vn'LV; onto £>n'{s£} (if Vn is finite) or onto Vn
 (if Vn is infinite). Further, for n = 2, 3, . . . define tpn by xpn(Ll-) = s^"1. Let
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 fo be the identity map on P. Then <pe = fo U^Li ^5 U U^°=2 ^ n ls a continuous
 map from P U V'L' onto P U V. Finally, denote the midpoint of P by 56 and
 L' by I6-

 Now we are ready to finish the proof of the lemma. The following notation
 will be useful: If W is a set and w is a point, then ( W - ► w) denotes the constant
 map / defined on W such that f(W) = w.

 To finish the proof, recall that M is of the form (3) and distinguish the
 following three cases.

 Case 1. A is empty. Then B is infinite. Define

 g = <p4 U (L4 -► Si) U (pi U (Li -► s4)

 where i = 4 if T> is empty, i = 5 if V is non-empty and dist(Z>, P) > 0, and i = 6
 if dist(Z>, P) = 0. Finally, put L - Li. Then it is easy to see that L and g have
 all the desired properties.

 Case 2. A is infinite. Define

 9 = <P 2 U (¿2 Si) U <pi U (Li -+ Sj) U <pj U (Lj -> «2)

 where

 i = 2 if B is empty,

 i = 3 if B is non-empty and finite,

 i - 4 if B is infinite,

 j = i if V is empty,

 j = 5 if V is non-empty and dist(T>, P) > 0, and

 j = 6 if dist(X>, P) = 0.

 Put L = Lj. Again, L and g have all the desired properties.
 Case 3. A is non-empty and finite. Then B is infinite. We can write (see(3))

 M = Mo U My where

 Mo = PL) (J (BUC(B))U [J A
 BÇBi AÇA

 and

 Mi = PU [J (BL)C(ß)) UV
 ßeß3

 The proof will be shorter if we use the fact that, without loss of generality,
 we may assume that Bi is infinite. Then Mi is of the form (2), and P is the
 only limit component of the set clos Uße£2 ^ Case 1, the lemma holds
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 for Mi, i.e., there exists a map / G Mi(£) such that f'P = id. Further, consider
 <po, so and Lo from (o). Then

 9 = /U (po U (L0 - ► s0)

 and L - Lo have all the desired properties.
 The proof of the lemma is complete. □

 Lemma 12 Let Mil be a compact set of the form (2). Then there exist a compo-
 nent P of J - Jn, a non-empty compact set L'M with dist(L> M'L ) >
 0, and a map g G M(£) such that g'P is the identity map and g(L) is the mid-
 point of P. Consequently , M G S.

 Proof. We are going to prove the lemma by transfinite induction on the
 depth of the set J. Clearly, d(J) > 1.

 Let d(J) = 1. If / has only one limit component, then it suffices to use
 Lemma 11. So, let Ker(J) = {Pi,...,Pr} for some positive integer r > 1.
 Consider a decomposition M = Mi U . . . U Mr where M¿, i = 1, 2, . . . , r, are
 mutually disjoint compact sets with P¿iM¿. For every i = 1, 2, . . . , r, the set M¿
 satisfies the hypothesis of Lemma 11, and thus there are a non-empty compact
 set LiiMi with dist (L¿, M¿'L¿) > 0 and a map g{ G M,(£) such that g¡'Pi = id
 and gi(Li) = ra¿ where mi is the midpoint of P¿. Now take

 r

 9 = UfclWl u (L, - AÍ,+l(mod r)»
 1 = 1

 and put P = P' and L = Lr. Clearly, <7, P and L have all the desired properties
 and thus M G S.

 Now suppose that the lemma holds for every set M of the form (2) such that
 the depth of the corresponding set J is less than a > 1 and take a set M with
 d(J) = ex. We are going to prove that the lemma holds for this set M. We may
 assume that Ker( J) contains only one component P of J, since in the opposite
 case one can use the same argument as above, when d(J) = 1. Further, for the
 same reasons as in the proof of Lemma 11, we may assume that P < M'P.
 Since d(P'J) = d(J) = a > 1, there are mutually disjoint compact sets M* , k =
 1,2,... such that M = M*, P < ... < Mk < ... < M2 < Mi and each
 of the sets Mk contains infinitely many intervals. Hence, for every k = 1,2,...,
 the set Mk is of the form (2), i.e., Mk ~ (Jn=i J n ^ Ck where all the sets Ck
 and j£, n = 1,2,..., are mutually disjoint. Here j£, n= 1, 2, . . . , are compact
 intervals and Ck is a countable set. Denote Jk = clos((J~=i Jk). Since Ker J =
 {p} and d(J) = a, we have d( Jk) < a for every k. By the induction hypothesis,
 the lemma holds for every Mk. Thus, for every k there are a component Pk
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 of J*, a non-empty compact set LkiMk with dist (L*, M'Lk) > 0, and a map
 gk € Mk(£) such that gk'Pk = W and <7jt(£jfe) = rrtk where m* is the midpoint
 of Pk. Now take

 oo oo

 g = idp U (J gk'Mk'Lk U (J (Lk -* m*- i) U (Li -► m)
 Jb = l k=2

 where m is the midpoint of P. Finally, put L = L'. Then g , P and L have all
 the desired properties, and thus M £ £.

 The proof of the lemma is finished. □

 5. Proofs of Main Results

 Proof of Theorem 1. (i) »-► (ii). Let (i) be fulfilled, F(u, v) = (/(u), 0u(^)).
 Then M is a non-empty closed subset of I and the set {a} x M is strongly
 F-in variant. So, /(a) = a and g{M) = M where g = ga. Suppose M is of
 the form (1). Clearly, C is nowhere dense. Since C is countable and g(M) =
 M, the intervals are permuted by gi i.e., they form one or several cycles of
 intervals. Call an interval Jt- isolated or limit if its distance from C is positive
 or zero, respectively. Since M is assumed to be of the form (1), there is at least
 one isolated interval. Denote by A the union of all isolated intervals. Clearly,
 dist(*4, M'A) > 0. The set A cannot be ^-invariant, since otherwise the set
 {a} x A would be F-invariant and by Lemma 3, the set {a} x M would not be
 an cj-limit set of F.

 Thus there is an isolated interval K' such that the interval /C2 = g(IC 1) is
 limit. Consider the 0-cycle of intervals K' y-* IC2 ^ . . . i-+ Kr K' generated
 by K'. Using the continuity of g and the nowhere density of C one can find
 mutually disjoint neighborhoods 17» of /C¿, i = 1, 2, . . . , r such that if we denote
 Qi = Ui H M, then Qj = Kj whenever Kj is isolated, <7(<2¿)iQt+i(mod r) and
 dist(Q¿, M'Qi) > 0 for i = 1, 2, . . . , r. Now denote U¿=i Qi by Q an<^ suppose
 that Q = M. Then, since Q' = /Ci, no point from Q = M is mapped by g into
 the non-empty set Q2'^2- This contradicts the fact that g(M) = M .

 So M'Q ķ 0. Then dist(Q, M'Q) > 0 and F({a} x Q)i{a} x Q and so by
 Lemma 3, the set {a} x M cannot be an u;-limit set of F. This contradiction
 finishes the proof of (i) (ii).

 (ii) i- ► (i). Owing to Lemma 2 it suffices to prove that (ii) implies that M G S.
 So let (ii) be fulfilled, i.e., let Mil be a non-empty compact set which is not of
 the form (1). First of all realize that if M is nowhere dense or a union of finite
 number of intervals, then we are done since by [ABCP,BS] such sets are u;-limit
 for maps from C(/, I). Further, if M has uncountably many components, then
 by Lemma 7,MGÍ and we are done again. Finally, if M is a compact subset
 of I of the form (2), then M £ £ by Lemma 12.
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 So it remains to consider the case when M is a compact subset of I of the
 form M = J' U J2 U . . . U Jn U C where n is a positive integer, J¿, ¿ = 1,2,..., n,
 are closed intervals, C is a non-empty countable set, all the sets and C are
 mutually disjoint, and dist(C, Jt) = 0 for every i = 1,2, Then take
 mutually disjoint compact intervals V¿, i = 1, 2, . . . , n such that for every 1, VJ
 is a neighborhood of and (J"=1 VļjA/. Denote C, = C fl and /C, = Jt U C¿.
 According to Lemma 10, for every i = 1,2, ...,n there is a map <7, G £,(£)
 and a last portion of /C,- such that Qi'Ji = id and gi(Li) = mt where m¿ is
 the midpoint of Then / = ULi^l^A^» U < U m¿+i(mod n))) belon8s to
 M ( S ) and thus M £ S.

 Proof of Theorem 2. Without loss of generality we can assume that a = 0.
 Owing to Theorem 1, it suffices to consider the case when M is of the form (1).
 Let M2 be the union of those intervals on the right hand side of (1) which have
 positive distances from C, and let Mi = M'M2. Then both the sets M' and
 A/2 are non-empty, and dist(A/i , A/2) > 0.

 Fix mi G M'. From the (ii) 1- ► (i) part of the proof of Theorem 1 we get that
 Mi € £. Similarly as in the proof of Lemma 2, there is an /1 G C(A/i, M') such
 that for every e > 0 there is an ¿-chain of /1 which is an e-net for Mi and starts
 at mi . Take a sequence £,-,¿=1,2,..., a ' 0 and a corresponding sequence
 c¡ of such chains. Denote ct = {mi = yj , yĻ . . . , i = 1,2, ... . Clearly, we
 can assume that ¿(1) < k( 2) < . . . < k(i) < . . ., and that for every ¿, the chain
 C{ is the concatenation of at least two copies of a chain.

 Further, it is well known (see, e.g., [ABCP]) that there is an f2 G C(A/2, A/2)
 such that for some m2 G A/2, the set orb/2(m2) is dense in A/2.

 Let a%r = 21_r - 2~,_r for r = 1,2,..., k(i) and i = 1,2,.... For every
 r = 1,2,... there is a positive integer j such that a{ is defined. Note that
 2"r < 4 < al*1 < . . . < 21-r and lim^oo aļ+n = 21"r. Define points Ą =
 far' 2/*(¿)+i-r] and ßlr = [ar> for r = 1,2,..., ¿(i) and i = 1,2,.. ..
 Denote

 /C = (({0} U {2"n, n = 0, 1, 2, . . .}) X M)

 Hi) Hi)

 U (J U Mr} U (J U{ß'}.
 » odd r=l i even r=l

 Then JC is a compact subset of I2. We are going to define a map y? G Ca(£, /2).
 For any points zi G Afi and z2 € M2 put

 ^([0,^]) = [0,/t(*t)L ^

 - [OJ ^ť(mod2)+l]) ^ - l}2j
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 tp{[2-n,zt]) = [21-n , ft(zt)', ť = 1,2 and n = 1,2,...;

 V{A',) - A'_ j, s = 2,3,...k(i) and i = 1,3,5, ...;

 pMÍ) = ß&Vi)' '"=1.3,5,...;
 <p(BÍ) = s = 2,3,..., k(i) and » = 2,4,6, ...;

 V(BÍ) = 4I/+1). ¿ = 2,4,6,....

 Then <p is a map from I2), and thus, by Lemma 1, it has an extension
 $ G Ca(/2, I2)- It is not difficult to see that fi Io = {0} x M, which
 finishes the proof. □
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