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 Basic Convergence Principles for the
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 1. Introduction

 The Lebesgue integral on M is a very special case of the Kurzweil-Henstock in-
 tegral. The latter by its wider scope allows the Lebesgue convergence theorems
 to be extended to integrands which are not absolutely integrable. Beyond such
 extensions the Kurzweil-Henstock integration process yields convergence prin-
 ciples that cannot even be formulated in terms of the Lebesgue theory. Such
 principles are of central concern here. Some we newly introduce. Others stem
 from the pioneering work of P.Y. Lee [8,9] and his joint work with T.S. Chew
 [10,11,12] and also from the investigative studies of R. Gordon [1,2]. Where our
 work overlaps that of others we improve formulations, extend generality, and
 eliminate irrelevant or redundant hypotheses.

 2. Preliminaries

 We begin with a review of relevant concepts involving the Kurzweil-Henstock
 integral and its differentials. For a detailed exposition see [4,5,6]. A cell I is
 a closed, bounded, nondegenerate interval in M. A tagged cell (7, t) is a cell 7
 with one of its endpoints t designated as the tag. While the ultimate objects
 of integration are differentials for which the integration process yields a sound
 definition, the immediate objects of integration are summants which generate
 the summands in the approximating sums. A summant S on a cell K is a real-
 valued function 5(7, t) on the set of all tagged cells (Iyt) in K. S is a cell
 summant if its values do not depend on the tag, 5(7, t) = 5(7).

 Each function F on K yields a cell summant A F defined by AF(I) = F(s) -
 F(r) for 7 = [r, s]. Such summants play a key role because they are additive
 on abutting cells. For 5 a summant on K and / a function on K the product
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 fS is the summant whose value at (/, t) is f(t)S(I,t). Each summant S on K
 has a lower and an upper integral: - oo < f S < f KS < oo. To define these
 integrals we need some preliminary definitions. A division K of K is a finite set
 of nonoverlapping tagged cells whose union is K. A gauge 6 on K is a function
 <5(ť) > 0 for all t in K. A tagged cell (/, t) is 6 - fine if the length of I is less than
 <$(/). A S -division is a division whose members are ¿-fine. For each division K of
 K let YLk & ke the sum of 5(7, t) over the members (/, t) of /C. For each gauge
 6 on K let S be the infimum, supremum, of the sums Yjc &
 for all ¿-divisions K of K. Define f S = sup¿ YIk6 & anc* I = ^<k6S
 where the supremum and infimum are taken over all gauges S on K . If the lower
 and upper integrals are equal then their common value defines the integral fK S
 with its value in [-oo, oo]. S is integrable if its integral exists and is finite.

 The integration process described above provides a viable definition of dif-
 ferential as an equivalence class of summants. This definition introduced in [4,5]
 is constructed as follows.

 The summants on K form a linear space S of functions. If S belongs to
 S so does 'S'. So S is a Riesz space (vector lattice). The summants S with
 JK |S| = 0 form a Riesz ideal T in S. That is, T is a linear subspace of S
 such that if S belongs to Si T belongs to T, and 'S' < 'T' then S belongs
 to T. So V = S/T is a Riesz space with the linear and lattice operations
 transferred homomorphically from S to V. A differential on K is any element
 a of V. Explicitly a is an equivalence class [ S ] of summants S on K under the
 equivalence S ~ S' defined by fK |S - 5;| = 0. For p = [ič] and <t = [5] we
 have p + ca = [R + c5] for every constant c, and 'a' = [|S|] which induce the
 properties p A a = [Ä A 5], pV a = [ÄVS], <r+ = [S+], = [S~]. The
 definitions f ^<r = f KS and fK<r = f KS of lower and upper integral of a are
 effective for a = [S]. When these two integrals are equal their common value
 defines fK <t. a is integrable if fK a exists and is finite. If <t is integrable on
 K then a is integrable on every cell contained in K. Each function F on K
 induces an integrable differential dF = [A F] with fj dF = AF(I) for every cell
 I in K. A differential a is integrable if and only if cr = dF for some function F .

 For a integrable such a function F is obtained by letting F(x) = Ąa ^ a with
 F(a) = 0. Every function F on K has its total variation given by fK 'dF' < oo.
 A differential cr on AT is summable if its variational norm n((r) = f K'<r' is finite.

 The norm n is a Riesz norm: 'p' < '<r' implies n{p) < n(<r). Under norm n
 the summable differentials on K form a Banach lattice [6]. For 1 e the indicator
 of a subset E of K the product l e <? is effectively defined by 1 e& = [Ie^] for
 <j = [5]. Effectiveness is obvious because l e is bounded, taking only the values
 0,1. E is (T-null if 1 E& = 0. A condition holds a -everywhere, or at a-all ť, in K
 if it holds on the complement of some (T-null set in K. a is tag-null if each point
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 in K is <7-null. If / is a function defined and finite (7-everywhere on K we can
 effectively define the product fa = [#S] where a = [ S ] and g is any function on
 K such that g is everywhere finite and cr-everywhere equal to /. A damper is
 an everywhere positive function on K. a is damper- summable if ua is summable
 for some damper u. a is dampable if both ua and u'a' are integrable for some
 damper u. A net of differentials aQ converges in variation to a differential a if
 the variational norm n(aa - a) 0. This does not require that aa and a be
 summable. aQ converges in damped variation to a if uaQ converges in variation
 to ua for some damper u. This convergence, newly introduced here, is much
 weaker than convergence in variation. As we shall see, it is closely related to
 convergence in measure. Being a Riesz convergence [7] it gives unique limits. A
 cell summant S is superadditive if

 5(7) + S(J) < 5(7 U J) for all abutting cells 7, «7. (1)

 S is subadditive if the reverse inequality holds in (1). For S superadditive,
 ~ 00 < & = Ik*7 - f°r every gauêe For S subadditive, S(K) <
 Ik a - YIk 6 & < oo. Since 'AF' is subadditive, the total variation of F is
 n(dF) = fK 'dF' = J2K 6 |AF|. The members W of a set W of summants are
 uniformly summable if each W is summable and YIk b'W' - ► f K'W I uniformly
 for all W in W as S - ♦ 0. Explicitly, given e > 0 there exists a gauge S
 such that Y1K 6 1 W| < f K 'W' -f e for all W in W. The members W of W are
 uniformly equivalent to 0 (W « 0) if each W ~ 0 and the W9 s are uniformly
 summable. That is, 6 1^1 ^ uniformly for all W in W as S - ► 0. The
 W9 s are uniformly integrable if W - Aw « 0 where dw = [W] for each W in W.
 These uniform conditions are properties of the particular summants, not of the
 differentials.

 3. The general convergence problem.

 Our focus is on the following problem: Given the hypothesis

 (A) dFn = [ Tn ] on K = [a, 6] with Fn(a) = 0 for all n in the set N of positive
 integers, and for each tagged cell (7, t) in K, T„(7, t) - ► T(7, t) as n - ► oo

 find supplementary conditions that yield a function F on K satisfying the two-
 fold condition

 (B) Fn(t) - ► F(t) for all t as n - ► oo, and dF = [T].

 Our first result is a reformulation (C) of (B) which helps to provide solutions to
 the convergence problem.

 Theorem 1. Given (A), condition (B) is equivalent to
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 (C) Given e > 0 there exist complementary subsets A,B of K, a gauge 6 on
 K, and a summant W > O on K such that

 s U|AF„ -Tn '<£ for all n, (2)
 K

 w
 K

 and

 for each 6-fine (7, ź) with t in B there exists p in N such that (Ą)

 |AF„(7) - rn(/,t)| < W(I,t) for all n>p.

 Proof. Let (A) and (B) hold. We shall show (C) holds with A null, B = K>
 and W superadditive. Under (B), A F ~ T. So given e > 0 there is a gauge
 6 for which ^2K6 |AF - T' < e/2. Let W be the cell summant defined by
 W (I) = ^2j6 |A F - T| + A/i(7) where h is an increasing linear function on
 K with 0 < A h(K) < e/2. Since W is superadditive, 6 W ^ W(K) < e.
 This gives (3). For (7, t) 6- fine |AF(7) - T(7, *)| < 6'A F - T' < W (I) since
 A/i(7) > 0. Thus, since A Fn - Tn - ► A F - T under (A) and (B), we get (4)
 with B = K. Conversely let (A) and (C) hold. Given x a in K = [a, 6]
 let J = [a,®]. Since Fn{a) = 0, Fn(x) = A Fn(J). Given e > 0 apply (C) to
 get AyBySjW. Take a ¿-division J of J. Then |Fm(x) - = |A Fm -
 AFn|(J) < |A Fm - Tm I + Zj I Tm - Tn I + Zj I Tn - AFn'. This gives
 lirnm)n_+oo|Fm(x) - ÍV|(®)| < since linim,«-*«, Y^j 'Tm - Tn 1 = 0 because
 Tn - ► T, and

 + <2e (5)
 J J

 by (2), (4), (3). So the Cauchy criterion for the convergence of Fn(x) holds. This
 lets us define F(x) = linvwoo Fn(x) for all x in K. Thus A Fn - Tn converges
 to A F - T. So (5) for the case x = 6, J = K gives | AF - T'<2e for every
 ¿-division /C of K. Thus A F ~ T. That is, dF = [T]. □

 For an equivalent formulation of (C) in Theorem 1 we can replace (3) by
 the usual demand that W be superadditive and W{K) < e. Indeed, if we define
 W*(I) = YjI6 W we get a superadditive W* > 0 with W < W* at ¿-fine tagged
 cells and W*(K) = 6 W < e. The proof of Theorem 1 shows that under
 (A) the special case A null, B = K of (C) is actually equivalent to (C). At the
 other extreme the special case A = K, B null gives the following elementary
 but important solution of the convergence problems.
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 Theorem 2. If (A) holds and the Tn 's are uniformly integrable then (B) holds.

 Proof. Apply Theorem 1 with A = K , B null, W = 0, and the conclusion
 that (A), (C) with (4) vacuous imply (B). □

 The role of uniform integrability in convergence theorems has been studied
 by R. Gordon [2] for the case Tn(J, t) = fn(t)Ax(I) with x{t) = t , the identity on
 K . Uniform integrability lies at the base of the controlled convergence theorem
 [10].

 4. The convergence problem under hypothesis (D).

 Throughout this section we assume the following hypothesis.

 (D) Let a be a damper-summable differential on K = [a, 6]. For all n in N let
 dFn = fna with Fn(a) = 0 and /n - ► / ^-everywhere on K.

 Let NK be the set of all positive integer- valued functions N on K. Using this
 partially ordered set to index nets of summants and their differentials we can
 formulate some solutions of the convergence problem. The main source of our
 results is the following definition.

 For each N in let pn = [Rn] with Rn(I, t) = AFn(7) for n = N(t). (6)

 For convenience we shall combine the proofs of our next two theorems.

 Theorem 3. Let (D) hold. Then px converges in variation to fa as N - ► oo
 in .

 Theorem 4. Let ( D ) hold. For each e > 0 let there exist a gauge S on Kì P in
 and a summant U > 0 on K such that Y2K 6 U < e and

 'A(Fm - Fn)(I)' < U(I,t) for (/, t) ¿-fine and m,n>P(t). (7)

 Then there is a function F on K such that Fn - ► F as n - ► oo in N, and
 dF = fa.

 Proof. Let e > 0 be given. To prove Theorem 3 we shall find P in such
 that

 n(PN ~ f<r) < s for all N > P in NK. (8)
 Since a is damper-summable there is a damper w small enough so that

 n{wa) < e/2. (9)
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 By annihilating /n and / on a cr-null set we may assume fn - > ► / everywhere
 on K. This has no effect on the differentials fna or fa. Choose P in NK large
 enough so that for each t in K

 I fn{t) - /(01 < w(t) f°r n > ^(0- (10)

 We contend that P satisfies (8). Choose a summant S representing a. Then
 AFn ~ fnS since dFn = fna by (D). So for each n in N we can choose a gauge
 Sn such that J2k 'af» - fnS' < e/2n+1. Define V„(7) = J] J- |AFn - fnS'
 and V(I) = ]Cn€N^»("0 ^or eac^ ce^ ^ K' Since Vn is superadditive and
 0 < Vn < e/2n+1 we can conclude that

 V is superadditive and V(K) < e /2. (11)

 Moreover,

 |AFn - fnS I < V at ¿„-fine tagged cells. (12)
 For each N in define the functions 6^ > 0 and fs on K by

 SN(t) = Sn(t) and /jv(0 = /n(0 with n = N(t). (13)

 Using (6) and (13) we reformulate (12) as (14).

 I -ß/v - ÍnS' < V at 6n- fine tagged cells. (14)

 For N > P in N* (14) and (10) give 'RN - fS' < 'RN - fNS' + 'fN - /||S| <
 V -f w'S' at 6iv-fi ne tagged cells. Taking upper integrals we get n{pN - fa) <
 V(K) + n(wa) < e/2 + e/2 = e by (11) and (9). So (8) holds giving Theorem 3.

 To prove Theorem 4 we contend that there is a summant W > 0, P in
 and a gauge 6 on K such that YIk anc*

 |AFn(J) - /„(ť)5(/, 01 < W(J, 0 at ¿-fine (15)

 (/, 0 for all n > P(t).

 Then Theorem 4 will follow from Theorem 1 applied with A null, B = K, and
 Tn = fnS. We may assume that P in Theorem 4 is large enough to satisfy (10),
 and S small enough so that S < Sp with Sp given by (13), and by (9)

 ^M5|<e/2. (16)
 K

 Then for (/, t) ¿-fine, p = P(t), and n> p

 'AFn-fnS' < |AFn-AFp| + |AFp-/pS| + |/P-/n||S| (17)
 < U + V + 2u>|S| at (/,<)
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 by (7) with m = p, (12) with n = p, and (10). Let

 W = U+V + 2w'S'. (18)

 Then ¿2k*w < Y,k*U + V{K) + 2Y,k6w'S' < e + e/2 + e/2 = 2e by the
 hypothesis on ř/, (11), and (16). (15) follows from (17) and (18). □

 Definition (6) leads to the following concise reformulation of Theorem 4.

 Theorem 5. If (D) holds and there exists P in such that Rm - Rn is
 uniformly summable for all M,N > P in N*, then there is a function F on K
 such that Fn - ► F and dF = fa.

 Proof. Let e > 0 be given. By Theorem 3 there exists P in with

 n(pM - Pn) < e/% for all M,N > P in N*. (19)

 By the hypothesis of uniform summability there is a gauge S such that for some
 P in large enough to satisfy (19),

 *1 Rm - Rn I < n(pM - Pn) + e/8 for all M,N > P. (20)
 K

 By (19) and (20),

 53 'l Rm - Rn' < e/4 for all M, N > P. (21)
 K

 Let Q+(/, t) = 1 if t is the left endpoint of /,0 if t is the right endpoint. Let
 Q- = 1 - Q+. Q+ indicates that I is situated at t- f. indicates that I is
 situated at ť- . Define the cell summant t/+ by

 U+(I)= sup y3¿Q+|ñM - Rn' (22)
 M,N>Pj

 with a similar definition for £/_, replacing + by - in (22). Let U = U+ + U- .
 By (21) and (22), U+(I<) < e/4. Similarly U-(K) < e/4 . So U(K) < e/2 < e.
 We contend that £/+, U _ and hence U are superadditive. Let cells I = [r, s] and
 J = [s, t] abut at s with union L = [r, t]. Consider any ¿-divisions X oî I and J
 of J . Then J U J is a ¿-division C of L. Given M' , M2 , Ni , 7V2 > P let M = Mi
 and N = N' on L ' J , M = and N = on J . Then

 53 Q+'Rm, - Rni I + 53 Q+'RM3 -RN2' = J2Q+'RM-RN'. (23)
 1 J c
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 By (22) and (23), £/+(/) + U+(J) < ř/+(L). So Í7+ is superadditive. By a similar
 proof so is . Hence U is superadditive. Thus YIk 6U ^ U(K) < € • Moreover,
 I Rm - = Q+'Rm ~ Rn' "I" Q-'Rm ~ -ßjv| ^ y+ ■+■ U- = U at ¿-fine tagged
 cells for M}N > P. This gives (7) by (6). So Theorem 4 gives Theorem 5. □

 We remark that in the converse direction the hypothesis of Theorem 4 implies
 the uniform summability condition in the hypothesis of Theorem 5. Indeed, (7)
 gives I Rm - Rn I < U at all <5-fine tagged cells for M>N > P. So ^2^6'Rm -
 Rn I < 12k < £ • Thus 12k 6'rm - Rn I < ti(pm - Pn) + e for M, N > P,
 giving the uniform summability of Rm - Rn for Mì N > P.
 In Theorem 4 we may assume that U is superadditive and U(K) < e. (See
 our remark at the end of the proof of Theorem 1.)
 A special case of Theorem 4 is Corollary 8.15 on p. 48 in [9] where Lee treats
 the case c = dx and U = ¿Ax for x the identity x(ť) = t . This makes the
 Fn s equidifferentiable dx-eve ry where since at dx-all t we have F^t) = fn(t)
 and fn(t) - « ► f(i) as n - > oo.
 Our next two theorems are concerned exclusively with the integrablity of fa
 under (D). The question of convergence of the functions Fi, . . . , Fni . . . is not
 addressed. Theorem 6 treats the integrability of fa in terms of its primitives,
 d F = fa. Theorem 7 does not involve F .

 Theorem 6. Given (D) and a function F on K the following six conditions are
 equivalent:

 (i) dF = fa ,

 (ii) pH converges in variation to dF as N - ► oo in NK ,

 (iii) ļim n{pN - dF) = 0 as N - ► oo in f$K,

 (iv) pn converges in damped variation to dF as N oo in fiK,

 (v) given £ > 0 and P in NK there exist N > P in f$K and a gauge S on K
 such that

 X^ltfjv-AFICe, (24)
 K

 (vi) given a cell J in K, e > 0, and P in NK there exist N > P in and a
 gauge S on K such that

 'AF(J) - ^2 Rn I < s for every ¿-division J of J. (25)
 J

 Proof. The equivalence of each of the conditions (ii), (iii), and (iv) with (i)
 follows directly from Theorem 3. (v) is just an explicit formulation of (iii). So we
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 need only prove that (v) implies (vi) and that (vi) implies (i). To show that (v)
 implies (vi) let J, £, P be given. Apply (v) to get N and 6. For J any ¿-division
 of J (24) gives 'AF(J) - Y,j Rn I = IE jAF- Ä„| < £/|AF - RN' <

 < £- So (25) holds, giving (vi). To prove (vi) implies (i) let
 J, € be given. By Theorem 3 we may assume that P provided by (vi) is large
 enough so that

 n(fa - pn) < e for all N > P in NK. (26)
 Condition (vi) gives some N > P such that by (25)

 A F(J)-e< J pN < J ^pN <AF(J) + £. (27)

 By (26) and (27), A F(J) -2e< ^pn - e < / ^ + Jjfcr - pN < J^fa <
 f j f<* < f jf<r~PN + JjPn < e + JjPn < AF(J) + 2e. That is, AF(J)-2e <
 fjfv < J jf<r < AF(J) + 2e. Since e is arbitrary, fj fa = A F{J) for every cell
 J in K. That is, fa = d F by Theorem 5 in [5]. □

 On M Theorem 6 generalizes a result of P.Y. Lee (Lemma 1 on p. 99 in [8],
 Theorems 9.3 and 21.4 and Corollary 9.4 in [9].) Lee considers only the case
 a = dx for x the identity function on K. Moreover, his hypothesis demands
 the convergence Fn -+ F which according to our Theorem 6 is irrelevant. Lee's
 conditions seem to be awkward and ambiguous formulations of our conditions
 (v) and (vi) in Theorem 6.

 Theorem 7. Let (D) hold. Then fa is integrable if and only if the lower and
 upper integrals of pjy over K converge to the same finite limit as N - ► oo in
 NK.

 Proof. Given e > 0 apply Theorem 3 to get P in satisfying (26). Then
 for all N > P in we have

 -e < -n(f<r -pn) < i ( fa - pN) < [ (f<r - pN) (28)
 J-K J K

 < n(f<r - pN) < c.

 So

 / PN - £ < I PN + I ( fcr - Pn) < I f<r (29)
 J-K J-K Ł.K Í-K

 - / fa<l (fa - PN) + i PN < £ + I PN-
 J K J k J K J K
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 If the lower and upper integrals of pN over K converge to_the same finite limit

 c as N - ► oo in NK then (29) gives c - e < f Kf<r < f Kf& < £ + c for all
 e > 0. So fKfcr = c. Conversely this implies f kPn = Ik(Pn - fv) + c and

 / kPN = Jk(pn - f<r) + C. So by (28) c-e < ¿kPn < JkPn < c + e for all
 N > P. That is, both J kPn and J kPn converge to the finite limit c as N - ► oo
 in N*. □

 5. Hypothesis (D) with a = dg for g continuous,
 'dg' dampable

 Another solution of the convergence problem is suggested by the following for-
 mulation of the fundamental theorem of calculus (Theorem 17 in [5]): Let gi /, F
 be functions on K with g continuous and |cř<7| dampable. Then dF = fdg if and

 only if ^-(0 = f(t) at d<jr-all t , and every cř^-null set is dF-null.

 Theorem 8. Let g be a continuous function on K = [ a, 6 ] with 'dg' dampable.
 Let dFn = fndg on K with Fn(a) = 0 for all n in N. Let A , B be complementary
 subsets of K such that A is dg-null, 1aAF„ is uniformly equivalent to 0 for all
 n, fn - ► / on B, and given a damper w on K there is a gauge 6 on K such that
 for each 6-fine (/, t) with t in B there exists p in N satisfying

 |A Fn(I) - fn(t)Ag(I) I < w(t)'Ag(I)' for all n (30)

 such that n> p.

 Then there is a function F on K such that Fn(t) - ► F(t) as n - ► oo for all t in
 K, and dF = fdg.

 Proof. Given e > 0 choose a damper w such that

 [ w'dg' < e. (31)
 Jk

 Choose ó as hypothesized. Since l,4|AFn| integrates uniformly to 0 we may
 assume that S is also small enough so that

 ^T^lyilAFnl < e for all n (32)
 K

 and by (31)

 (33)
 K
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 Apply Theorem 1 with Tn(J, t) = ÌB(t)fn(t)Ag(I) and W{T, t) = w(t)'Ag(I)'.
 Since 1 aTtx = 0 (32) is just (2) in Theorem 1. (33) is (3), and (30) gives (4).
 Tn - ► T with T = lßfAg. So Theorem 1 gives Theorem 8. □

 Note that (30) can be replaced by the inequality

 limn-oo 'AFn(I) - f(t)Ag(I)' < w(t)'Ag(I)' for all 6-fi ine

 (7,ť) with t in B. This condition is necessary for the conclusion of Theorem 8.
 The uniform integrability to 0 of 1a | AFn| in Theorem 8 is a reasonable condition
 to demand. Our next theorem shows this.

 Theorem 9. (a) 7/Sn(/,ť) - ► S(I, t) as n - ► oo for each tagged cell (/,ť) in
 K , and l^Sn is uniformly equivalent to 0 for all n in N, then 1^5 is equivalent
 to 0.

 (b) IfdFn converges in variation to dF and 1 AdFn = 0 for all n, then 1a AFn
 is uniformly equivalent to 0 for all n.

 Proof. To prove (a) just apply Theorem 2 with Tn = 1,4 Sn and T = 1^5.
 Given the hypothesis in (b) we contend that l>i|AFn| integrates uniformly to 0,
 that is, given e > 0 there is a gauge 6 such that for all n in N

 53ťU|AF„|<e. (34)
 K

 To find such a 6 use the given convergence n[d(Fn - F)] - ► 0 to choose p in N
 large enough so that

 n[d(Fn - F)] < e/2 for all n > p. (35)

 Then take S small enough so that both

 < e/2 for n = l,...,p (36)
 K

 and

 53łU|AF|<e/2. (37)
 K

 Such 6 exist for (36) because 1 AdFn = 0, and for (37) because 1 AdF = 0
 which is implied by 'ÌAdF' = 1A 'dF - dFn' < 'dF - dFn' - ► 0 in variation. Now
 Ek SU'AFn' < Y:k (lA'AFn-AF'+J2K 4U|AF| < J2K s'AFn-AF'+e/2 =
 n[d(Fn - F)] -f e/2 by (37). This gives (34) for n > p by (35). (34) holds for
 n < p by (36). So (34) holds for all n in N. □
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 6. Sigma-convergence in variation of dFn with
 sigma-uniform summability of A(Fm - Fn)

 Our next result deals exclusively with the additive summants A Fn and the
 differentials dFn they represent for a given sequence of functions Fn on K.

 Theorem 10. Let . . . , Fn, ... be a sequence of functions on K = [a, b] with
 Fn(a) = 0. Let Ei, . . . , E',*, ... be a sequence of disjoint subsets of K covering K
 such that

 given i in N and e > 0 there exist p in N (38)
 and a gauge S on K such that for all m^n^p

 ^ťlEi|A(Fm-F„)|<e.
 K

 Then there is a function F on K such that Fn(t) - ► F(t) as n - ► oo for all t in
 K. Moreover , for each i in N

 1 EidFn converges in variation to 1 as n - ► oo. (39)

 Finally if there is also some p in N such that

 1 Eid{Fm - Fn ) is summable for all m, n > p and all i (40)

 then

 dFn converges in damped variation to dF. (41)

 Proof. Given e > 0 let e% = e/2l. So YIíçn € * = € • ^PP^y (38) with e - Si to
 get p = pi and 6 = 6{. Since in (38) <5,- is operative only on E{ we can replace Si
 by S defined by S(t) = ¿¿(ť) for t in Ei. Given a cell J in K take a ¿-division J
 of J . Take k in N large enough so that all of the tags t for (/, /) in J belong to
 E' U • • • U Ek. Let q be the largest of the integers pi , . . . , p*. Then for m,n>q
 (38) gives |A(Fm - Fn)J' < Y,j |A (Fm - F„)| = Ej lE.|A(^m - F„)| <

 - f„)| < J2Ì= i £> < £ ■ That is, given a cell J and e > 0
 there exists q in N such that |A Fm(J) - AFn(J)' < e for all m,n > q. This
 is just the Cauchy criterion for the convergence of A Fn(J) as n - ► oo. For
 J = [a,t' we have A Fn(J) equal to Fn(t) since Fn(a) = 0. So we can define
 F(t) = lirrin-oo Fn(t). For any ¿-division /C of K (38) gives for all m, n >
 Pi, YIjc lEt |A(Fm - Fn)| < a. As m oo this gives |A(F - Fn)| < Si
 for all n > pi since Fm - ► F. So 1eJA(F - Fn)' < a < e for all ¿-divisions
 /C of K and all n > p,-. Taking upper integrals we get

 n(ÌEi 'dF - dFn') < a < £ for all n > (42)
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 This gives (39). If we also have (40) then l£?ťd(F - Fn) is summable for all n > p
 and all i since n[ÌEid(F - Fn)] < n[ÌEid(F - i^m)] + n[l Eid(Fm - Fn] < oo for
 m exceeding and p, by (42) and (40). Now (39) is just

 n[ÌEtd(F - Fn)] - ► 0 as n - ► oo. (43)

 So for each i we can choose ct- in (0, oo) such that

 n[ÌEtd(F - Fn)] < Ci for all n > p. (44)

 Take a¿ in (0, 1) such that < 00 • Define the damper u by u(t) = a¿
 for i in E{. Given a > 0 take k in N large enough so that YlTLk a*c* ^ a • Then
 since u = Theorem 7 of [5] gives

 n[ud(F-Fn)] < ^2n[ailEid(F-Fn)]
 • €N

 = ^2ain[íE,d(F- Fn)}
 k oo

 < ^2 n[lEd(F - Fn)] + ^2 aici
 1=1 i-k

 k

 < Ti[lg|<i(F - Fn)] + ot
 i- I

 for n > p by (44). Hence by (43) lim„-oo n[ud(F - Fn)] < a. This gives (41)
 since a is arbitrary. □

 The condition (38) in Theorem 10 is called "generalized "P-Cauchy" by R.
 Gordon [2]. Gordon treats only the case dFn = fndx for x the identity function
 and fn - ► /. His hypothesis demands that Fn - ► F. Our Theorem 10 reveals
 that this assumption is redundant. (38) is equivalent to the twofold condition:
 For each i in N, 1 EidFn converges in variation as n - ► oo, and there exists pi
 in N such that the summants l^.A(Fm - Fn) with m, n > pi are uniformly
 summable. P.Y. Lee introduced a condition he calls "oscillation convergence"
 which implies (38). (See Definition 9.5 in [9].)

 7. Convergence in damped variation and convergence in
 measure.

 The concept of convergence in measure with respect to a summable differential
 a is motivated by the following theorem.
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 Theorem 11. Let a be a summable differential on K. Let <71, . . . , gni ... be a
 sequence of nonnegative functions on K . Then the following three conditions are
 equivalent:

 (a) If e > 0 and En is the set of all t at which gn(t) > £ then n(l^ncr) - ► 0 as
 n - ► 00,

 (b) n{gna/l + gn) - > - 0 as n -*> 00,

 (c) n( 1 A gn a) - ► 0 as n - ► 00.

 Proof. Given e > 0 let En = g~1(s1oo). The inequalities -ļ-lEn < <
 1 A gn < e 4- 1 En are easily verified. They imply -L-n{lEn<r) < n <
 "(1 A gn cr) < en((r) + n(l£ncr). Taking upper limits as n - ► 00 we get the
 equivalence of (a), (b), and (c). □

 For a sequence of functions fn on K and a a summable differential on K
 we say that /„ converges in measure to / with respect to a if any, hence all,
 of the conditions (a), (b), (c) hold for gn = 'f - fn'. This concept is closely
 related to convergence in damped variation of fn(T to fa. Let us investigate this
 relationship in our next two theorems.

 Theorem 12. Let a be a summable differential on K . Let v, /, /1, . . . , /n, . . . be
 functions on K such that 'fn' < v for all n a -everywhere, and fn converges in
 measure to f with respect to a. Then fnc r converges in damped variation to fa.

 Proof. Let w = l/l+v+|/| and gn = ' fn-f'- Since gn < |/n|+|/| < v+|/| <r-
 everywhere, 1 -f gn < 1 -f v -|- |/| cr-every where. So w < 1/1 + gn (7-every where.
 Clearly w(t) > 0 for all t in K. Also wgn'a' < <7nM/l + gn. By the convergence
 in measure criterion (b) in Theorem 11 this gives the convergence in variation
 to 0 of wgn'a', that is, the convergence in variation of wfna to tufa. So fna
 converges in damped variation to fa. □

 (For the measure induced by a summable a see [6] Prop. 8.)
 We can get a converse to Theorem 12 if cr is absolutely integrable and the

 damper is measurable with respect to a. For dg > 0 on K a function w on A'
 is dg-measurable if 1 Edg is integrable for each set E of the form w~l{c , 00) with
 c in R. cfy-measurability is preserved under the usual algebraic and sequential
 limit operations on dp-measurable functions [5].



 Basic Convergence Principies for the Kurzweil-Henstock Integral 109

 Theorem 13. Let dg > 0 on K , and wfndg converge in variation to wfdg for
 some dg-measurable damper w on K. Then fn converges in measure to f with
 respect to dg.

 Proof. Let gn = |/n - /1. Given e > 0 let En = PñH^00)- We contend

 n(ÌEndg) - ► 0 as n - ► oo (45)

 thereby giving (a) of Theorem 11. Clearly

 ^En < (1 - mw)+ + mwÌEn for all m, n in N. (46)

 Since w is ¿^-measurable, (1 - mw)+dg is integrable. So by (46)

 n(lEndg) < / (1 - mw)+dg + mn(wlEndg). (47)
 Jk

 By the definition of En , sÌEn < 9n- So en(wlEndg) < n(wgndg). The last term
 goes to 0 as n - y oo by hypothesis. So n(wÌEndg) - ► 0 as n - ► oo. Hence (47)
 yields

 < I (l - mv)+dg forali m in N. (48)
 Jk

 Since w(t) > 0 for all t in K, (1 - mv)+ ' 0 as m / oo. Thus

 / (1 - mw)+ dg ' 0 as m / oo (49)
 J K

 by the bounded convergence theorem. (48), (49) give (45). □

 Theorem 14. Let dg > 0 on K and /1, . . . , /n, ... be dg-measurable functions
 on Ii with fn - ► f dg- everywhere. Then for F a function on K , dF = fdg if
 and only if fndg converges in damped variation to dF.

 Proof. Under the hypothesis of Theorem 14 the bounded convergence the-
 orem gives the classical result that fn converges in measure to / with respect
 to dg. Since a convergent sequence in M is bounded, the convergence fn -+ f
 (/-every where yields the existence of v such that |/n| < v dg-eve ry where for

 all n. So by Theorem 12 fndg converges in damped variation to fdg. Since
 limits under convergence in damped variation are unique we get the conclusion
 of Theorem 14. □

 If dFn = fndg with dg > 0 then fn is ^-measurable. So for er = dg > 0
 Theorem 14 allows us to adjoin to the six conditions (i), . . . , (vi) in Theorem 6
 a seventh condition: (vii) fndg converges in damped variation to dF.
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 8. The Cauchy and Harnack extensions.

 The Cauchy and Harnack extensions served to evaluate particular types of im-
 proper integrals. Such integrals are improper only in the sense that they are
 excluded by the inadequate definitions of the integral given by Riemann and
 by Lebesgue. In the wider context of Kurzweil-Henstock integration there are
 essentially no improper integrals. As Washek Pfeffer says, if an integral can be
 calculated then it should be integrable. For example, to integrate a summant
 S over a half-line [a,oo) map [a,oo) topologically onto [a, 6) with a < 6 < oo,
 transforming S into a summant S* on [a, 6). Extend S* to a summant on [a, 6]
 by setting S*(I, t) = 0 if I has 6 as an endpoint. The lower and upper integrals
 of S* over [a, b] define the corresponding integrals of S over [a, oo).

 With Kurzweil-Henstock the Cauchy and Harnack extensions become con-
 vergence theorems. (See Corollaries 7.10 and 7.11 in [9].) We present here
 general versions of these convergence theorems. In terms of our basic conver-
 gence problem these have Tn = A Fn and T = A F with supplementary condi-
 tions giving Tn - ► T trivially and implying dF = a. In the Harnack extension
 we have Fn = Gi -f • • • + Gn with some stringent conditions on the functions
 G', ... , G m ... The essence of the Cauchy extension is the implication (iv) =>
 (i) in Theorem 15 for b cr-null.

 Theorem 15. Let a be a differential on K = [a, 6] with b a-null. Let c be a real
 number. Then the following are equivalent :

 (i) a is integrable on K and its integral over K equals c,

 (ii) There is a function F on K such that dF = a and AF(K) = c,

 (iii) There is a function F on K such that F(b-) = F(6), dF = a on every
 cell J in [a, b), and AF(K) = c ,

 (iv) a is integrable on every cell J in [a, 6) and as x - ► b- .

 Proof. The equivalence of (i) and (ii) is a basic result noted in the introduc-
 tion. It is essentially Henstock's Lemma [5]. To prove that (ii) implies (iii) note
 that F given by (ii) is continuous at b because b is <r-null, that is, dF- null. To
 prove that (iii) implies (iv) we have a = dF on J by (iii). So a is integrable on
 J = [a, x ] for a < x < b and fj a = fj dF = A F(J) = F(x) - F(a) which as
 x - ► b- converges to F(b) - F (a) = AF(K) - c by continuity of F at b. This
 gives (iv).

 To complete the proof we prove that (iv) implies (ii). Define the function F
 on K by

 F(x) = a for a < x < 6, and ^(6) = c. (50)
 Ja
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 Take a sequence bn - > b with bn < 6n+i < b. Then (50) implies dF = c on
 [a, 6„+i]. So l[a,6n] ö" - = 0 on [a, 6n+i], hence on [a, b] since bn < &n+l < 6.
 That is, [a, 6n] is cr - dF null for each n in N. The point 6 is a - dF null since
 6 is cr-null by hypothesis, and dF- null by (50) with continuity of F at 6 by (iv).
 So K is the union of countably many a - d F null sets [a, 6i], • • • , [a, 6n], • • • and
 b. Hence K is cr - dF null. That is, a - d F = 0 on K which gives a = dF.
 Finally, by (50) AF(I<) = F(b) - F (a) = c - 0 = c. □

 Our next two theorems are generalized formulations of the Harnack exten-
 sion.

 Theorem 16. Lei Ji, . . . , Jn> ... be a sequence of nonoverlapping cells in K =
 [a, b ]. Lei D be ihe complemeni in K of J' U Ji U • • • . Lei G i, . . . , Gn, ... be a
 sequence of coniinuous functions on K such ihai

 1 JndGn = dGn on K for all n in N (51)

 and
 oo

 y^HGnlloo < oo where ||G||oo = sup |G(*)|. (52)
 n=l

 Then ihere is a unique differential <j> on K such ihai

 IjnĆ = dGn for all n in N (53)

 and

 D is <¿>-null. (54)

 Moreover , <j> is iniegrable. Specifically, <j> = dF for F ihe coniinuous function
 defined by

 oo

 F(x) = ^Gn(x) forali X in K. (55)
 n= 1

 Thus ,
 oo

 A F(I) = AGn(I) for every cell I in K (56)
 n=l

 and

 Jk /*=£/" Jjn (57) Jk n=1 Jjn

 Proof. Define the continuous function F by (55) where the series converges
 absolutely and uniformly by (52). (56) follows directly from (55). By (51) and
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 the continuity of Gn

 AGn(I) = A Gn(I H Jn) for every cell I in K. (58)

 If I is contained in Jn then, since the J,'s are nonoverlapping, (56) and (58) give
 AF(I) = A Gn(I). So dF = dGn on Jn. Thus, since F and Gn are continuous,
 1 JndF = 1 JndGn by (51). That is, (53) holds for <ļ> = dF.

 Let e > 0 be given. To prove (54) we need a gauge 6 on K such that

 E^IAFl<£ (59)
 K

 for every 6-di vision /C of K. To get such a gauge take N large enough so that
 by (52)

 Y ll^n||oo < ^/4. (60)
 n>N

 Then take S on K so that

 S(t) < dist(ż, Ji U • • • U Jjv) for all t in D. (61)

 Such S exist because D is disjoint from the closed set J' U • • • U Jn- Consider
 any ¿-division K of K. We contend that (59) holds. Let (/i, *i), . . . , (/m, tm) be
 those members of K whose tags belong to D. By (61) I' U • • • U Im is disjoint
 from Ji U • • • U Jn> So by (56) and (58)

 E
 /C ť=l t=l n>N

 < eEiag«(7»)I-
 n>N i = l

 Each Jn cannot contain any of the tags t' , . . . , tm since they belong to D and Jn
 is disjoint from D. So Jn cannot contain any of the cells /1, . . . , Im. Hence, Jn
 meets at most two of these nonoverlapping cells. So by (58) at most two terms
 in the sum |AC?n(/i)| are nonzero. Therefore, since each term is bounded
 by 2||Gn||oo, JļiLi |AGn(/«)| < 4||Grn||00 which with (62) and (60) gives (59).
 So IpdF = 0 giving (54) for (j> = dF. <f> is tag-null since F is continuous. To get
 (57) apply (56) with I = K to get fK <f> = J K dF = AF(K) = Yl™=i A Gn(I<) -
 £~=i Sk dG " = £~=1 Ik = E~=1 fjn $ by (53) and the tag-nullity of <j>.

 Now consider any differential <ļ> on K satisfying (53) and (54). To show that
 <f> is unique we must prove <j> = dF for F given by (55). Since both <ļ> and d F
 satisfy (53), 1 jn<ļ> = dGn = 1 jndF. So 1 jn <j)-dF = 0. That is, Jn is <1>-dF null.



 Basic Convergence Principles for the Kurzweil-IIenstock Integral 113

 So is D since it is both </>-null and dF-null by (54). Thus K = D U J' U J 2 U • • •
 is <j) - dF null. That is, <j> - dF = 0,0 = dF. □

 Theorem 17. Let cr be a tag-null differential on K = [a, b]. Let Ji, . . . , Jn, • • •
 be a sequence of nonoverlapping cells in K such that cr is integrable on each Jn,
 there exists c < 00 such that

 °° [
 I I [ cr' < c for every sequence of cells In (63)

 n= 1 ^In

 such that In is contained in Jn for all n ,

 and Ipcr is integrable for D the complement in K of J' U J2 U • • • . Then cr is
 integrable on K and

 f f ~ Í
 / a = / 1^(7 -f / CT. (64)
 JK JK ¿rí Jjn

 Proof. Since a is integrable on Jn and tag-null at the endpoints

 / *= Jk / (65) Jjn Jk

 Thus we can define Gn on K by

 Gn(x) = í 1 jncr. (66)
 J a

 Gn is continuous since g is tag-null. By Henstock's lemma [5]

 dGn = 1 jn(T. (67)

 By (67) and (63) |AG„(/n)| < c for all cells In contained in Jn. Hence
 00

 r d'am G„(I<) < c < 00. (68)
 n = 1

 <?„(«) = 0 by (66). So
 HCnlloo < diam G„(/v). (69)

 The inequalities (68) and (69) give (52). Apply Theorem 16 to get <j> satisfying
 (53) and (54). By (67) cr - lpcr satisfies (53) since D is disjoint from each Jn.
 It clearly satisfies (54). So by uniqueness cr - 1 £>cr = <j>. That is, cr = l^cr + <ļ>.
 Integrating this we get (64) from (57) since 1 Jn<j> = dGn = lJn<r by (53) and
 (67). □
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