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 Closure of Darboux Graphs

 What is the nicest class of functions with the property that the graph of any
 Darboux function would have the same closure as some member of this class? In

 1974, Hugh Miller [6] showed that the graph of any Darboux function /:/-►/,
 where I = [0, 1], has the same closure in 1 2 as the graph of some connectivity
 function g : I - ► I. Using an analogous transfinite induction argument, he
 improved this result to obtain that / = h for some almost continuous function
 h : I -► I (unpublished). In 1990, at the Seventh Annual Auburn Miniconference
 on Real Analysis, Ken Kellum asked whether the above results can be generalized
 so that the function g in Miller's theorem can be chosen to be a connectivity
 function extendable to a connectivity function from I2 into I. In this note,
 we use another technique like in [4] and [3] to show the answer is yes. To
 illustrate that Miller's result does not generalize to 72, Kellum gave an example
 of a Darboux function / : I2 - ► I2 for which / = h for no almost continuous
 function h : I2 - ► I2. We end with an equivalence between the uniform closure
 of the class of Darboux functions and the closure of Darboux graphs.

 Let / : X - ► Y . Then / is Darboux (connectivity) if f(C) (the graph of
 f'C) is connected for every connected subset C of X. We say / is peripherally
 continuous at x if for each open neighborhood U of x and V of /(x), there is
 an open neighborhood W of x in U such that f(bd(W))iV . We say / is almost
 continuous if each open neighborhood of the graph of / in X x Y contains the
 graph of a continuous function g : X -> Y. A connectivity function /:/-»•/ is
 said to be extendable if there is a connectivity function g : I2 I such that for
 all x e /, g(x, 0) = f(x). For functions from I into /, we have:

 extendable =>- almost continuous => connectivity => Darboux

 where the first arrow is from [8, Cor. 1, Prop. 2] and the second is from [8, Cor.,
 p. 261]. But for functions from In into 7m, n > 2, we have:

 peripherally continuous <=> connectivity => almost continuous

 where <*==> is from [5, Th. 1] or [9, Cor.] and [8, Th. 4] and => is from [8, Cor.
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 Let K be a simplicial complex, and let a be a point of the underlying poly-
 hedron 'K'. Then we say a subdivision L of K is obtained by starring at a if
 L is obtained from K by replacing each simplex A of K containing a with all
 simplexes of the form a * F, where F is a face of A and a £ F . Here, a * F
 denotes the join (or cone) of the point a with the set F . A stellar subdivision
 of K is obtained by starring at points ai, 02, . . . , an G 'K | in succession. Figure
 1 shows a stellar subdivision S of a 2-simplex A2 resulting from starring at a'
 and then at ao.

 a2 a2 a2

 Figure 1:

 We let tío t¿2 denote the 2-simplex with vertices wo, ui, . Other definitions
 about simplicial complexes needed for the following theorem can be found in [7].

 Theorem 1 For each Darboux function f : 7 - ► 7, there exists an extendable
 connectivity function g : 7 - ► I such that f = ģ.

 Proof. Let A1 = I. We may identify A1 with A1 x {0} and let A2 = po* A1,

 which is the cone in 72 with vertex Po = (5, and base A1 x {0}. Choose a
 countable dense subset {(xni f(xn)) : n = 1, 2, . . .} of the graph of / where each
 xn G int (7). Let D = {xn : n = 1,2,...}.

 Description of L'' Define <7(0) = /(0), (/(1) = f(l),g(po) = 0, and define g
 to be 0 at the barycenter p of A2. Define ¿7(21) = f(x 1) at the point x' G D.
 Let Si be the stellar subdivision of A2 obtained by starring at p and then at
 x'. Notice that S' = 5 in Figure 1 if a' = p and 02 = x'. Let L' denote
 the 1-skeleton of S'. For each 1-simplex a1 of L' which is not contained in
 A1, extend g linearly on a1. For each 2-simplex a2 in Si, the variation of g on
 cl(bd(<72) - A1) is < 1.

 Description of Lm+i(m > 1): Suppose we have constructed a simplicial
 complex Sm so that each 2-simplex of Sm meets A1 and so that the underlying
 polyhedron |Sm| is the closure of a neighborhood of A1 in A2, and let Lm denote
 the 1-skeleton of Sm. Suppose that we have defined g on cl(|Lm| - A1) U (A2 -
 'Sm') so that the following conditions hold:

 ( 1 ) X 1 , . . . , X fYi are vertices of Sm •
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 (2) g is linear on each 1-simplex of Lm which is not contained in A1.

 (3) g - f on the boundary of each 1-simplex of Lm contained in A1.

 (4) For each 2-simplex <t 2 in Sm , the variation of g on cl(bd(<r2) - A1 ) is <

 (5) g maps A2 - |Sm| continuously into I.

 For the inductive step, we would have to construct Sm+ 1 and its 1-skeleton
 Lm+ 1 and define g on cl(|Lm+i| - A1) U (A2 - |Sm+i|) so that conditions (1) -
 (5) hold for m - hl. For simplicity, we instead give a description of just So and
 Lo which would be similar to the general case.
 Define g(x o) = /(#2) x2 € D. For argument's sake, we may suppose

 #2 < SI denotes the stellar subdivison of Si obtained by starring at xo.
 Let K be any stellar subdivision of S{ , and suppose p is a 1-simplex of K with
 vertices a and 6 such that piA1. If /(a) ^ /(6), then since / is Darboux, there
 exists a point x in p such that f(x) = the midpoint of the line segment
 in I with endpoints /(a) and /(&). But if /(a) = f(b)> there may or may not be
 a point x in int(/>) for which f(x) = = = /(6). To remedy this
 situation, we show how to construct a stellar subdivision K of 51" that satisfies
 the following condition:

 (6) If p is a 1-simplex of K with vertices a and b such that piA1 and f(a) =
 /(6), then f(x) = f(a) = f(b) for all x € p.

 Let <T' = [0,^2], (To = [x2,a?i], and (t3 = [xi,l]. For i = 1,2,3, let <rt =
 [ciydi]. One of the following three cases holds for each <r,.

 Case 1: /(ct) ^ f{di). Then there exists a point x in (t, such that f(x) =
 f(cj)+f(dj )

 2

 Case 2: /(c¿) = /(d¿) and / is constant on <rt-. Then every point x in
 satisfies f(x) = IhúilíÉút

 Case 3: /(e») = /(f/t) and there exists a point tu in <r¿ such that
 /(ct) = /(c/¿). Suppose Xki is the first point of D ¡11 int(íT¿) at which g lia s not yet
 been defined such that f(xi¡t) # /(c¿) = /(c/¿). At Xki9 define g(xkt) = f(xkt ).
 Subdivide by starring at Xkt. Then there exist points x in [c,-,#*.] and x' in
 [xktydi] such that f(x) = an(ļ =

 Examining which cases hold for cri , <72, and <73, and starring at the point Xk{
 of D whenever Case 3 occurs, we finally construct a stellar subdivision K of 5J"
 that satisfies (6). For example, K would look like Figure 2 if Case 3 occurred
 for both a i and a 2 and if Case 1 or 2 occurred for (73.

 Define a continuous function $ : A2 - ► I that is linear on each 2-simplex
 p 2 = UQU1U2 of A' by the formula $(/0u0+/rüi+/2U2) = fo¿/(uo)+/i¿Kui)+/2</(t*2)
 where I0J1J2 > 0 and /0 + /1 + /2 = 1.
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 /K°

 / ' K

 0 Xk, X1 Xk2 X2 1

 Figure 2:

 Let Kļ be the first barycentric subdivision of K. K' results from starring
 at the barycenter of each 2-simplex in K and then at the barycenter of each
 1-simplex in K. In other words, K' is obtained by drawing the medians of all
 the triangles belonging to K. We describe another first derived subdivision A'1
 of K and a simplicial homeomorphism l' : A'1 - ► K' a s follows.

 Let p2 be any 2-simplex of K with a 1-face p in A1 with endpoints a and
 b and midpoint p. In case f(a) ^ /(6), then there exists a point x in p such
 that f(x) is the midpoint <É>(p) of the line segment from f(a) to f(b). In case
 /(a) = /(6), then by (6), f(x) = /(a) = f(b) = $(p) for all x in p. So in either
 case, a point x can be chosen in int(p) such that f(x) = $(/>). A first derived
 subdivision of each such p2 can be obtained as in Figure 3 by starring first at
 the barycenter of p2> then at x, and then at the barycenter of each 1-face of p2
 that does not lie in A1. For each 2-simplex p2 of K with no 1-face in A1, form
 the first bay centric subdivision of p2. This resulting first derived subdivision of
 K is Kl. Define the homeomorphism i' : K1 - ► Ā'i this way. If v is a vertex
 of K 1 and v = some x , where x is as in Figure 3, then £'(v) = £'(x) = p. But
 if the vertex v ^ x, then £'(v) = v. Now extend l' from the vertices of A'1 so
 that it linearly maps simplices of K1 to simplices of K'.

 Define a continuous function : A'1 - ► I by = $ o It turns out that
 $1 is linear on each 2-simplex V0ViV2 of A'1 and that <$i is given by the formula

 {/o$(t>o) li$(p) + + 13^=; o '*$(*>*) + ¡2$(V2) if ví = if x no Vi = x
 o

 li$(p) + 13^=; '*$(*>*) if ví = x

 where loyhyio > 0, lo + /i + h = 1> and x is as in Figure 3. Then $i(#) =
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 ax b a ^ b f(a) i»^) f(b)
 pcA1 P

 part of K part of K i

 Figure 3:

 *(/i(s)) = *(p) = /(*)•
 Figure 4 is obtained from Figure 3 the following way. Figure 4 illustrates

 the second barycentric subdivision A'2 of A (i.e., A'2 is the first bary centric
 subdivision of A'i) and illustrates the first barycentric subdivision K' of K1 . It
 also illustrates another first derived subdivision K2 of A'1 obtained in a similar

 way as A'1 was obtained from K. That is, if pi is a 1-simplex of K' that is a
 subset of A1, then x' is a point chosen in int^J-1 (/>,•)) such that /(x¿) = $(p¿),
 where denotes the bary center of pi . Define a simplicial homeomorphism £2 :
 A'2 - ► A'i in a similar way as i'. Namely, if v is a vertex of K2 and v =
 some then ^2(v) = ^2 (^¿) = which denotes the midpoint of £[l(pi).
 But if the vertex v ^ then £ï(v) - v . Then extend £2 so that it maps
 each 2-simplex of A"2 linearly to a 2-simplex of A'*. The continuous function
 $2 : A'2 - ► I defined by $2 = $ o £' o £2 is linear on each 2-simplex of A2 and

 «2(*o = Wi(W))) = ®(/i(a,o) = m.) = fW)-Ē
 Continuing in this fashion, we obtain for each positive integer n an nih derived

 subdivision Kn of A", the first barycentric subdivision A'""1 of AT1""1, a simplicial
 homeomorphism £n : Kn - ► A'""1, and a continuous function 3>n = <£ o £x o £2 o

 o £n : Kn - ► I which is linear on each 2-simplex of Kn . For some positive
 integer TV, the variation of : A^ - ► 7 on the boundary of each 2-simplex in
 Kn is < ^ because <£ is uniformly continuous on A2 and the mesh of the nih
 barycentric subdivision Kn of K approaches 0 as n - ► 00.

 Let S2 = {cr : is a face of some 2-simplex a2 G KN for which cr2nA1 ^ 0}.
 |Sr2 1 is the closure of a neighborhood of A1 in A2. Let L2 be the 1-skeleton of
 S2. Observe that |S2| fl |Li|i|L2|. Define g = on cl(|L2| - A1) U (A2 - |S2|),
 and conditions (1) - (5) hold when m = 2.

 We now suppose that for all m > 1, conditions (1) - (5) hold and |Sm+i |U|Lm|
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 Figure 4:

 is a subset of |Lm+i|. Condition (1) ensures that the mesh of Sm approaches
 0 as m - ► oo. By construction, g is continuous on A2 - A1 and peripherally
 continuous at each point of A1 fl [IJm = i cKl^m| - A1)]. Suppose xq G A1 -
 Um=i cl(|Lm| - A1). For every ??i, xq lies in the interior (relative to A2) of a
 2-simplex srn of Sm such that as m - ► oo, sm - ► x'o and the variation of g on
 cl(bd(sm) - A1) approaches 0. If we choose ym G bd(sm fl A1), then ym -+ xo.
 Define <7(xo) to be a cluster point of /(j/i ), /(2/2), • • •• Then g : A2 - ► I is
 peripherally continuous at xq and therefore a connectivity function. The graphs
 of / and the extendable function f/ļ A1 have the same closure because g = f on
 the set A1 fl [|Jm=i cKl^m| - A1)] containing D and because of the above way
 g{xo) is defined at the other points xo of A1.

 Question. In Theorem 1, can g be chosen to be measurable whenever / is?
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 A real- valued function / : I - ► R is defined to be in the class U if for every
 interval [ayb]il and every subset A of [a, b] with less than c-many points, the
 set /([a, 6] - A) is dense in the closed interval with endpoints f(a) and /(6). A
 function / : I - ► R is in the uniform closure of the class V of Darboux functions
 if it is the uniform limit of a sequence of Darboux functions fn : I - ► R. That
 is, / is a closure point of V in the space of all functions I - ► R with the metric
 g of uniform convergence described in [1] this way: For functions f,g : I - ► Ä,
 let <r(/, g) = sup{|/(ar) - </(x)| : x € /}■

 ( 1 it<r(f,g) = oo
 Define e(f,g) = <

 I i+/(ñ) otherwise.

 According to [2], the class U is the uniform closure of V. The uniform closure
 V and closure of a Darboux function turn out to be related in the following sense:

 Theorem 2 Let /:/-►/. Then f £V if and only if

 (a) f is bilaterally c-dense in itself and unilaterally at the endpoints, and

 (b) there exists a function g : I - ► I such that g G V and f = g.

 Proof. Suppose / € V = U . This implies that (a) holds [2]. Miller gave an
 argument that / 6 V => (b) like this: For each x € /, fO({x} x I) is connected,
 which along with (a) is enough to conclude as in Theorem 1 of [6] that there
 exists a connectivity function g such that / = g. So (b) holds.
 Now suppose (a) and (b) hold. Let [a,6]i/, and let A be a subset of [a, 6]

 with less than c-many points. We may as well suppose /(«) < w < f(b). Since
 / is bilaterally dense in itself and f = ģ for some Darboux function g : I - ► 7,
 there exist c,d E [a, b] such that g(c)ig(d) 6 (/(a), f(b)) and ^(c) < w < g(d).
 Given e > 0, there exists a point ( z ,u>) of g and therefore of / that belongs to
 (a, b) x (w- e, w+e). Therefore some point (a?o, f(x o)) lies in (a, b) x (w-e, w+e).
 Because / is c-dense in itself, there is a point u E (a, 6) - A such that (u, f(u)) E
 (a, b) x (w - e,w + e). Then f(u)_E (w - 6,10 + e) implies /([a, 6] - A) is dense
 in [/(a),/( 6)]. That is, f £U = V.
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