
 Real Analysis Exchange
 Vol. 18(1), 1992/93, pp. 70-81

 G. Petruska, Department of Mathematics, University of the Witwatersrand, Jo-
 hannesburg 2050, South Africa.

 On the Relative Grid Dimension of Continuous

 Functions

 The nth grid G¡' on the unit square S = [0, 1] x [0, 1] is the se t of elementary
 closed squares of the regular n x n subdivision of S. For any E C 5, E ^ <ļ>
 let N(E , n) denote the number of elements of Gn which meet E. For a given
 subsequence of natural numbers v{n) (n = 1,2,...) the grid dimension ocu{E) of
 a set E relative to the sequence v is defined by

 /r_x r N(E,v(n)) .
 al/(E) /r_x = inf{a:limsup r - , ^ < 00} . n- ► 00 !/'Tl)a

 r N(E,u(n)) = sup{a:limsup r - = 00),
 n-ť 00 V'TŁ)a

 or equivalently
 /rix 'ogN(EMn)) , v

 c*v(E) /rix = lim sup

 n_oo lo gv(n)

 For v(n) = n (n = 1, . . .) we put otu(E) = ot(E) and this number is called the
 grid dimension. Obviously, 0 < o¿y{E) < &(E) < 2 for any v and E / <ļ>. In this
 paper we study the growth conditions on v implying au(E) = a(E) for any E
 at one hand, and on the other, with special attention to the case when E = Ty,
 the graph of a continuous function /.

 The exact value of the rarefaction index

 t - inf{ť : the grid dimension was known in the year ť}

 is not known, but certainly r < 1928. This dimension, perhaps the first time
 was used by Bouligand in [BO], 1928 (see also [MA] for references). As it turns
 out, it has been reintroduced by several authors, each giving to it a new name
 (see [FA], p. 38), and as a result, this single concept now enjoys such a long list
 of titles that seeing it, even a Spanish Grandee could turn green with envy. It is
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 mostly known as box dimension (more precisely upper box counting dimension)
 and the terms grid and relative grid dimension were introduced in [HP].

 It has been observed in [HP] (see also a remark in [FA], p. 41], that au = a,
 if v(n -f 1) < ci/(n). This allows us to compute the grid dimension on special
 grids, for instance refining the grid by a repeated halving procedure (the case
 v(n) = 2n). We may as well say, that taking only logn of the first n grids, the
 dimension will be the same as using the full sequence. It is a natural question to
 ask, that how many of the grids actually needed to make sure that the relative
 dimension equals the dimension for any set, or for any continuous graph. The
 answer is "more than log logn" in both cases, that is condition (3) below is the
 necessary and sufficient condition to ensure otu{E) = a(E) (see Theorems 1 and
 3). The main motivation of this paper (as well as that of [HP]) was to find
 badly behaving continuous graphs for which the limsup in (*) is not a limit.
 This is why we formulate the necessity of (3) in a stronger form for graphs and
 separately under Theorem 3. Grids on R have already been studied by Tricot in
 1980 (see [TR]) and Theorem 1 was obtained for one dimensional grids. Though
 the higher dimensional case is quite a staightforward generalization, we present
 here a simple proof, partly for the reader's convenience ([TR] is hardly available),
 partly because the method is needed for subsequent applications. Theorem 3
 holds true for the 3 and higher dimensional cases as well, though the construction
 needs more care because of the more complicated nature of surfaces.

 Lemma 1. Let 1 < k < n be arbitrary integers, E C S. Then

 N(EìJc)<4N(E,n) (1)

 N(E,n)<(?- + 2)2N(E,k). (2)

 Proof. Let Q 6 Gn and k < n. If Q does not contain a vertex of G*, then
 Q is either covered by the interior of a square from G*, or it is covered by the
 interior of the union of two adjacent elements of Gk . If Q contains a vertex v
 of the grid G*, then there are at most four elements of Gk joining at v. Taking
 union of these squares, the interior of this union contains Q. Therefore in each
 case N(Qik) < 4 and hence (1) follows. Turning to (2) we observe, that an
 interval of length 1/k can intersect at most j + 2 non-overlapping intervals of
 length 1/n and hence an element of Gk cannot meet more than (£ + 2)2 elements
 of Gn, that is N(Q , n) < (f- -f 2)2. Therefore

 N(E,n)< N(Q>n)<(j + V2N(E,k).
 Qr'E*<t>
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 Theorem 1. Let v{n) (n = 1, 2, . . .) be a subsequence of the natural num-
 bers. If

 Um log-(»+ l) =
 n-KX> lo gv(n)

 then au(E) = c¿(E) for any E E S.

 Proof. For any k we can choose n with v(n) < k < v(n+ 1), then by (1) we
 have N(E, k ) < 4N(E, v(n -f 1)), and hence

 log N(E, k) < log 4 ^ log N(E, v(n -f 1)) logi/(n+l)
 log k ~ logv(n) logi/(n + l) 'ogi/(n)

 Taking the limsup on both sides we obtain otv(E) > &(E) and the proof is
 complete.

 Corollary 1. However slowly the increasing sequence p(n) tends to infinity,
 for a > 1, b > 1 and

 i/(n) = a

 we have av{E) = ot(E).

 Proof.

 log log -f 1) - log log v(n)

 = log6 f Vp(n+1) -JL±* - p(n)J » ) < - logj (2+1 _ p(n)J » ) = Î3» _ o. Vp(n+1) - p(n)J - logj ' p(n) _ p(n)J = p(n)

 Theorem 2. Let two sequences /i(n), i/(n ) be given. If

 i rm = i, (4)
 n - oo logi/(n)

 tijen a^i?) = a/i(£,)(£' C 5).

 Proof. Let n run through the integers satisfying v(n) < //(n). Taking
 logarithms in (1) we obtain

 'ogN{E,v{n)) log N(E,ļi(n)) log n(n)
 lo gv(n) ~ log /i(n) 'ogi/(n)

 and similarly, by (2) and (4) we get

 log N(E, n(n)) log ¿¿(n) log N(E,v(n)) +
 log /i(n) 'ogv(n) ~ logora)
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 Referring to (4) again,

 ,imsup ■<*"(£."("» = ,imSup
 n- oo lo ei/in) n- »00 log /i(n)

 By symmetry we obtain the same result on the sequence v(n) > //(n) and hence
 au{E) = as stated.

 The next statement easily follows from Theorem 2.

 Corollary 2. Let a subsequence n(n) = v(kn) of v(n) be given. If for any
 arbitrary sequence jn of integers satisfying kn < jn < kn+i - 1 we have

 logi/(Ar„)
 lim ļ
 n- oo ļ log Ąjn)

 then aK(E ) = av(E) for any E C S. (Notice that

 n-oo lim log y v(kn - 1) =i n-oo log v(kn + ' - 1)

 is equivalent to our assumption .)

 Proof. Let E be given and let a sequence pn be selected such a way that

 «,(£) = lim IosWMpM
 n- oo log l/(pn)

 Since we have a limit here, we may further rarify pn, and hence suppose without
 loss of generality, that kl(n) < pn < t/(n)+ 1 - 1 (n = 1,2,...) for a suitable
 sequence £(n). By our assumption and Theorem 2 we have aK0 ¿(E) = otu(E),
 that is aK(E) > au(E). On the other hand, aK(E) < otu(E) is obvious, and
 hence the statement.

 Lemma 2. For every sequence v(n) and for every natural number N there
 exists another sequence ß(n) such that

 (i) fi(n - 1) I /x(n), n(n) > 2 n(n - 1) (n = 2, 3, . . .);

 (ii) every fi(n) is a full Nth power: n(n)l!N 6 Z (n = 1, 2, . . .);

 (iii)
 log v(n v + 1) ' - log//(n + l) lim sup v ' - lim sup . . ;;

 n- >oo log u(n) n_oo log//(n) . .
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 (iv) aì/(E) = &n(E) for every E £ S.

 Proof. Let //(1) = 1. Suppose that /i(n) has been defined and for 1 < k < n
 properties (i) and (ii) hold true. We choose now the least k = kn such that
 u(k) > 2 N/i(n), then put

 ''(n+1)= (7^)
 where [z] stands for the integer part of x. Properties (i), (ii) are obvious by
 induction. Also,

 =

 and hence

 !FTT log/ť(n) - '• (5) log/ť(n)

 Thus putting /c(n) = f(fcn)> Theorem 2 implies aK (E) = a^E). If kn<j<
 kn+ 1 - 1 then by the minimum choice of kn+' we obtain

 "(*») < "(J) < v(kn+ 1 - 1) < 2Nß(n + 1) < 2Ni/(kn), (6)
 hence

 , < log HJ) < , , -/Vlog2
 - logt/(fc„) - log !/(£„)'

 and Corollary 2 implies aK(E) = au{E), that is ot^E) = au(E). Making use of
 (6) again we also obtain

 logť(j + 1) logf(fcn-n) _ Iogt/(fcn + i) logt/(fcn + i - 1)
 log v(j) - log^(A;„) ~ log^(À:„+i - 1) logi/(fc„)

 logĶfcn+i) / N log 2 '
 - logt/(fcn+i - 1) V logv(kn))'

 thus
 log v(n + 1) log i/(Arn+i)

 lim sup - :

 n_oo log i/(n) / ' n_oo logi/(fcn)
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 and now (iii) follows by (5), making our proof complete.

 Our next theorem shows that Theorem 1 is the best possible, even for con-
 tinuous graphs.

 Theorem 3. Suppose that the sequence i/(n) satisfies

 log i/(n + 1)
 r = lim sup - :

 „^oo log v(n)

 Then for every e > 0 there exists a continuous graph Tf such that

 + (8)

 Remarks.

 1. With some extra pain, e could be eliminated from (8). But we do not know
 anyway, what would be that best lower estimate in (8) (see the Problem
 below).

 2. The extreme case r = oo, that is 2 = a(Tj) = a„(r /) + 1 was stated and
 proved in [HP], Theorem 7, under the stronger condition that the limit
 (not just the limsup) in (7) was infinity.

 3. It has been pointed out by the referee that, a shorter and simpler con-
 struction gives even a sharper result in Theorem 3, if any subset E C S
 can be considered. He showed that assuming (7), there exists E C S such
 that

 a(E) = ME) + (9)

 His construction yields a set E = C x C, where C is a suitable Cantor type
 set on the line (this method readily generalizes for higher dimensions).
 Unfortunately I was not able to transform E into a perfect subset of a
 continuous graph. A tilting transformation like r : (x,y) h- ► (x -f y, y)
 looks promising, because it does not change the relative grid dimension.
 But to ensure that r(E) is a graph above its projection, we need also a
 strong independence w.r.t translations 'C fi (C + x)| < 1 for any iÇC,
 which looks hard to control together with the dimensional requirements.
 Thus the following problem remains open.

 Problem. Is (9) available for graphs? More generally, assuming (7) for i/,
 determine inf^ supr/(a(ry) - a„(r/)).
 We shall use the following notations and definitions:
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 • [ X ] denotes the integer part of x'

 • in what follows, c denotes a quantity which may depend on n, it may vary
 from side to side of equations an inequalities or from formula to formula,
 but 0<a<c<6<oo must hold, where a and b are constants;

 • 1 77 1 denotes the cardinality of the set H'

 • for C G Gn we put H(C) = U{Q : Q G C};

 • prx and pry denote the projections onto the x and y axis, respectively;

 • C G Gn (and the corresponding H(C)) is said to be a column, if prx(ļQ') =
 prx{Q 2) for any Q',Q2 G C and pry(H(C)) is an interval; the length of
 this interval is denoted by ||C|| or ||/f(C)||;

 • C G Gn (and the corresponding H(C)) is said to be a graph, if H{C) is
 connected, pr + x(H(C)) = [0, 1], and for any Q G C the set C' = {Q' G
 C : prxQ' = prxQ} is a column, for any graph C we put ||C|| = ''H(C)'' =
 maxjUC'll : C' C C, C' a column}.

 The two propositions below are to be verified easily, and the details are left
 to the reader (see also [IIP]).

 Proposition 1. If Ck is a sequence of graphs such that H(Ck+i) C H(Ck)
 and 1 1 Cjb 1 1 - ► 0, then DH(Ck) is the graph of a continuous function.

 Proposition 2. Let a graph C C Gn be given. Let M = JcN , k > 2 and
 1 < A < k. Then there exists a graph D C Gm (called the X-refìnement) such
 that

 (i) H(D ) C 11(C),

 (ii) denoting Dq = {Q' : Q' G Dy Q' C Q}, k' < 'Dq' < k( A + 1) holds for
 every Q G C (hence k''C' < 'D' < k( A + 1)|C| holds as well);

 (iii) for A < [k/ 2] we may prescribe ||D|| < |||C||Š

 The special cases A = 1 and A = [Ar, 2] (refinements of l5* and 2nd kind) are
 illustrated on the figure, showing how the columns of the finer graph are selected
 and connected to each other, and also that in the second case the norm is about
 the half of the previous one. In the general case we choose A new columns in
 each of the former columns, and in each old square we need at most k connecting
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 Figure 1: Refinement of the first kind, k = j£ = 8 and refinement of the second
 kind, k = jļr = 9

 smaller squares between them, which explains k(' + 1) in the upper estimate.
 The choice of A controls the change of the dimension of the underlying graphs.

 Proof of Theorem 3. Let us suppose now, that f(n) satisfies (7) and
 choose 1 < u < r. Let A, B,N be natural numbers, A 4- B = N and let
 P = Q = 77- Referring to Lemma 2 we can replace v(n) by another sequence
 satisfying (i), (ii), (iii) and in particular, preserving the relative grid dimension.
 Thus we can suppose without loss of generality, that v(n) itself satisfies (i), (ii),
 (iii) of Lemma 2. Applying (7) we can select a subsequence kn such that for
 every n, lo gv(kn + 1) > u 'ogv(kn). Let

 t(n) = v(kn)pi>(kn + 1)* (n = 1, 2, . . .).

 Since ¿/(n),¿/(n + 1) are perfect Nth powers, i(n) is an integer and v{kn) |ź(n),
 t(n)'i/(kn -f 1). We define two sequences of graphs L(n ) C G„(n), T(n) C G*(n)
 by induction as follows. Let L( 1) = G>(i), and suppose we have defined the
 graph L(n ) C G„(n) for some n. If n = kj, then we apply Proposition 2 using
 a refinement of second kind (À = [Ar/2]) on L(kj) and we get a finer graph
 T(j) C Gt(j ); next we continue by a refinement of first kind on T(j) and obtain
 the finer graph L(kj + 1) C Gi/(fc>+ 1). If, on the other hand, kj -f 1 < n < kj+i
 for some j, then again referring to Proposition 2, we apply a A refinement to
 obtain L(n + 1) C GV^+i) such a way that the ratio should change as
 little as possible in the block kj + 1 < n < kj+i. Accordingly, A is chosen as
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 follows: if

 log|Z,(n)| > log I L(kj + 1)|
 logi/(n) - logi/(Är;- -I- 1)

 then we choose the largest possible A for which

 log 'L{n + 1)1 < logici + 1)1
 logí/(n+l) - logt/(ij- + 1)

 holds (put A = 1, if the opposite inequality holds for any A). If

 log|L(n)| < log I L(kj + 1)|
 logť(n) log i/(kj + 1)

 then A is the least possible to validate

 log|L(n+ 1)| > log 'L(kj + 1)1
 logi/(n + 1) - log v{kj + 1)

 (put A = k, if the opposite inequality holds for any A), By (ii) of Proposition 2
 we have

 AÍí(ír|¿(n)| - |i(n + 1)1 - (A + 1)!^)^|L(n)|' (10)
 that is, the upper estimate for the A refinement is the same as the lower estimate
 for A -I- 1 refinement. Taking the logarithm and dividing by lo gv(n + 1), (10)
 shows that is located in an interval of length

 log(l + j) < 1
 logi^(n + 1) log i/(n + 1)

 Therefore, by the optimal choice of A as described above, we obtain

 log |Z,(rz)| _ log 'L(kj + 1)| < 1 (k<n< 3 *•+,). 3 (11) log v{n) logi/(fcj + l) logi/(kj + 1) 3 3

 Since y L(n + 1)|| < ||¿(n)|| for any n and ||¿(*„ + 1)|| < ||T(n)|| < f ||I(fcn)||,
 by Proposition 1

 oo

 Y j = fl H(L(n))
 n = 1

 is indeed the graph of a continuous function. There remains to show, that
 the dimensions of Tj satisfy the estimate as stated. By the definition of Tj
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 the estimates 'L(n)' < N(Tj , v{n)) < 9|L(n)| and 'T(n)' < N(Tj , t(n))i are
 obvious, thus

 ai/(r/) = and a(r/) > a<(r/) > lim sup iSiJZllîli.
 logi/(n) log<(n)

 By (11)

 lim sup iogi^+i)i = lim j logi/(fc¿ + l) „ logi/(n)
 Therefore

 /T> ' 1- log 'L(kn + 1)1
 o»(r;) /T> ' = hmsup 1- log„(1.n + 1) • (12)

 Finally we have to compute 'L(kn -f 1)| and |T(n)|. We have

 I TÍU I 1M v(Jcn ~f" 1) if-pt v{kn + 1) t(n )2
 I I TÍU ( I 1M 11 = c-iM-|r(n)l if-pt = '-¡W

 M*n + l)V+,lr„ „
 = c M*n l-Rw-J +

 Here c < 4. Taking logarithms and introducing the notation

 log 'L(kn + 1)|
 *•- log„(t„ + l) -<1+i>

 we obtain by (11)

 loge logiz(tn) /log|¿(tn)| A I 3
 logí/(¿n+l) logl/(in+l) V logl/(kn) J - u n 1 log v(kn-') '

 that is, applying this for n = 2, . . . , n -f 1 we get

 dn+1<^.+¿_zu; un un Un~3
 j = 1

 where y j = log^kj^ -* 0. Therefore dn - ► 0 and by (12) we get

 °v(r/) = 1 + q, (13)

 moreover, making use of (11) once again

 |imļogļĻM = I +
 r»->oo lo gv(n) v 7
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 holds true. Taking the logarithms in

 |T(n)l = c^|£(i:n)l'

 (14) and the definition of t(n) imply

 log |T(n)| > logc+ 2 log<(n) - 21ogf(fcn) + (1 + q - tj) logi/(fcn)

 = log c -f- logť(n) - r¡'ogi>(kn) + q 'ogu(kn + 1) (15)

 for arbitrary r¡ > 0 and large n. By the definition of the sequence {&„}, there
 holds the estimate logf(fcn + 1) > ulog¡/(fcn), or equivalently, as shown by a
 short computation

 log i /(fc„+ 1) > - ^ - log<(n). p+uq

 Putting this in (15) we obtain

 log|T(n)| > logc + ~~1~loSť(n)

 and since r¡ was arbitrary, a((r /) > This and (13) imply

 «(I-/) - a„<r,) > «,(!•,) - «.(IV) > - (l + ,) = •

 By elementary calculation, the function F(x,y) = (x + V = 1) attains
 its maximum for y = and here

 _ ys-i
 r max - r- - •

 V« r- + 1 -

 Therefore, if we choose the rational number q = ^ close enough to , we
 obtain

 Since e > 0 and u < r are arbitrary, the proof is complete.

 Acknowledgement. The author is indebted to the referee for his valuable
 comments and suggestions.
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