David Ross, Department of Mathematics, Embry Riddle Aeronautical University, Daytona Beach, Florida 32114

Copson Type Inequalities with Weighted Means

1. Introduction

Copson [C] proved the following inequalities:
Theorem A Let $p>1, a_{n}>0, q_{n}>0, Q_{n}:=q_{1}+\ldots+q_{n}$ for $n=1,2, \ldots$, and $\sum_{n=1}^{\infty} q_{n} a_{n}^{p}<\infty$. Then

$$
\begin{gather*}
\sum_{n=1}^{\infty} q_{n}\left[\frac{1}{Q_{n}} \sum_{k=1}^{n} q_{k} a_{k}\right]^{p} \leq\left(\frac{p}{p-1}\right)^{p} \sum_{n=1}^{\infty} q_{n} a_{n}^{p} \tag{1.1}\\
\sum_{n=1}^{\infty} q_{n}\left[\sum_{k=n}^{\infty} \frac{q_{k} a_{k}}{Q_{k}}\right]^{p} \leq p^{p} \sum_{n=1}^{\infty} q_{n} a_{n}^{p} . \tag{1.2}
\end{gather*}
$$

In the special case $q_{k}=1, Q_{n}=n$, Hardy's inequality is obtained [HLP, p.239]. The following theorems give a pair of related inequalities recently obtained by Mohapatra et. al. [MRV].
Theorem B Let $p>1, \frac{1}{p}+\frac{1}{p^{\prime}}=1, q_{n}>0, Q_{n}:=q_{1}+\ldots+q_{n}, a_{n} \geq 0$. Write $\vec{\Delta} U_{n}=U_{n}-U_{n+1}$. If $n q_{n} \leq A Q_{n}$ and $n\left|\vec{\Delta} q_{n}{ }^{1 / p^{\prime}}\right| \leq B_{p} q_{n}{ }^{1 / p^{\prime}}$ for some constants A and B_{p} with $n=1,2, \ldots$, then for each $N \geq 1$

$$
\begin{equation*}
\sum_{n=1}^{N} q_{n}\left[\frac{1}{Q_{n}} \sum_{k=1}^{n} q_{k} a_{k}\right]^{p} \leq K(p) \sum_{n=1}^{N}\left[\frac{1}{n} \sum_{k=1}^{n} q_{k}^{1 / p} a_{k}\right]^{p} \tag{1.3}
\end{equation*}
$$

where $K(p) \leq\left[A+\frac{p^{2}}{p-1} B_{p}\right]^{p}$.
Theorem C With notation as in Theorem B, suppose $n q_{n} \leq A Q_{n}$ and

$$
\left|\vec{\Delta}\left(\frac{n q_{n}^{1 / p^{\prime}}}{Q_{n}}\right)\right| \leq C_{p} \frac{q_{n}^{1 / p^{\prime}}}{Q_{n}}
$$

Received by the editors July 24, 1991.
for some constants A and C_{p} and $n=1,2, \ldots$ Then for each $N \geq 1$,

$$
\begin{equation*}
\sum_{n=1}^{N} q_{n}\left[\sum_{k=n}^{N} \frac{q_{k} a_{k}}{Q_{k}}\right]^{p} \leq k(p) \sum_{n=1}^{N}\left[\sum_{k=n}^{N} \frac{q_{k}^{1 / p} a_{k}}{k}\right]^{p} \tag{1.4}
\end{equation*}
$$

where $k(p) \leq\left[A+p C_{p}\right]^{p}$.
For example, the assumptions in Theorems B and C are met by $q_{n}=\frac{1}{n}, Q_{n} \approx$ $\log n$. In this paper (Theorems 1 and 2 below) we obtain generalizations of Theorems B and C by viewing the right side of the stated inequalities to be special cases of the weighted means $\overline{t_{n}}=\frac{1}{P_{n}} \sum_{k=1}^{n} p_{k} q_{k}{ }^{1 / p} a_{k}$ and $\overline{\sigma_{n}}=\sum_{k=1}^{n} \frac{p_{k} q_{k}{ }^{1 / p} a_{k}}{p_{k}}$ where $p_{k}=1, P_{n}=n$.

As another type of generalization of Theorem A , we consider the non-negative convex function $H(u)$ defined on $[0, \infty)$. In the special case $H(u)=u$, (1.1) could be expressed as $\sum_{n=1}^{\infty} q_{n}\left(H\left(\frac{1}{Q_{n}} \sum_{k=1}^{n} q_{k} a_{k}\right)\right)^{p} \leq\left(\frac{p}{p-1}\right)^{p} \sum_{n=1}^{\infty} q_{n}\left(H\left(a_{n}\right)\right)^{p}$.

In Theorem 3 below, we extend this result to arbitrary convex $H(u)$ and employ a weighted mean. An integral inequality with similar spirit has recently been obtained by Packpatte [P].

2. Statement of Results

In the following $K(p)$ denotes a positive constant (which may be different at different occurrences) depending on p alone, where $p>1$ and $\frac{1}{p}+\frac{1}{p^{\prime}}=1$.

Theorem 1 Assume $\left\{a_{n}\right\},\left\{p_{n}\right\}$, and $\left\{q_{n}\right\}$ are non-negative sequences for $n=$ $1,2, \ldots$ Let $P_{n}=p_{1}+\ldots+p_{n}$ and $Q_{n}=q_{1}+\ldots+q_{n}$. Denote $\vec{\Delta} u_{k}=u_{k}-u_{k+1}$ and $\overline{t_{n, p}}=\overline{t_{n}}=\frac{1}{P_{n}} \sum_{k=1}^{n} p_{k} q_{k}^{1 / p} a_{k}$. Assume

$$
\begin{gather*}
\frac{P_{k}}{p_{k}} \leq A \frac{Q_{k}}{q_{k}} \tag{2.1}\\
P_{k}\left|\vec{\Delta} \frac{q_{k}^{1 / p^{\prime}}}{p_{k}}\right| \leq B_{p} q_{k}^{1 / p^{\prime}} . \tag{2.2}
\end{gather*}
$$

Then

$$
\begin{equation*}
\sum_{n=1}^{N} q_{n}\left[\frac{1}{Q_{n}} \sum_{k=1}^{n} q_{k} a_{k}\right]^{p} \leq K(p) \sum_{n=1}^{N} \bar{t}_{n}^{p} \tag{2.3}
\end{equation*}
$$

where $K(p) \leq\left(A+\frac{p}{p-1} B_{p}\right)^{p}$.

Theorem 2 Define $\bar{\sigma}_{n, p}=\bar{\sigma}_{n}=\sum_{k=n}^{N} \frac{p_{k} q_{k}{ }^{1 / p} a_{k}}{p_{k}}$ for $n \leq N$ and $\sigma_{N+1}=0$. With notation as in Theorem 1, assume (2.1) and the following:

$$
\begin{equation*}
\left|\vec{\Delta}\left(\frac{q_{k-1}^{1 / p^{\prime}}}{Q_{k-1}} \cdot \frac{P_{k-1}}{p_{k-1}}\right)\right| \leq C_{p} \frac{q_{k}^{1 / p^{\prime}}}{Q_{k}} \tag{2.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{n=1}^{N} q_{n}\left[\sum_{k=n}^{N} \frac{q_{k} a_{k}}{Q_{k}}\right]^{p} \leq K(p) \sum_{n=1}^{N}{\bar{\sigma}_{n}}^{p} \tag{2.5}
\end{equation*}
$$

where $K(p) \leq\left(A+p C_{p}\right)^{p}$.
Theorem 3 Assume $p, q>1$ and $H(u)$ a non-negative convex function defined on $[0, \infty)$. Then

$$
\begin{equation*}
\sum_{n=1}^{N} p_{n} P_{n}^{p-q}\left[H\left[\frac{1}{P_{n}} \sum_{k=1}^{n} p_{k} a_{k}\right]\right]^{p} \leq\left(\frac{p q}{p-1}\right)^{p} \sum_{n=1}^{N} p_{n} P_{n}^{p-q}\left(H\left(a_{n}\right)\right)^{p} . \tag{2.6}
\end{equation*}
$$

Let $\varepsilon \geq 0$ and $0<\alpha<1$. Then conditions (2.1), (2.2), and (2.4) hold for $q_{n}=\frac{1}{n(\log n)^{\varepsilon}}$ and $p_{n}=\frac{1}{n^{a}}$. In this case $Q_{n} \approx \frac{1}{(\log n)^{\varepsilon-1}}$ for $\varepsilon \neq 1$ and $Q_{n} \approx \log (\log n)$ for $\varepsilon=1$, while $P_{n} \approx \frac{1}{n^{\alpha-1}}$. Corollary 1 illustrates Theorem 1 in the case $\varepsilon=0$.

Corollary 1 If $q_{n}=\frac{1}{n}$ and $p_{n}=\frac{1}{n^{\alpha}}$ for $\alpha>1$ then for $a_{k} \geq 0$

$$
\sum_{n=1}^{N} \frac{1}{n}\left[\frac{1}{\log (n+1)} \sum_{k=1}^{n} \frac{a_{k}}{k}\right]^{p} \leq k(p) \sum_{n=1}^{N}\left[\frac{1}{n^{\alpha-1}} \sum_{k=1}^{n} \frac{a_{k}}{k^{\alpha+1 / p}}\right]^{p}
$$

A similar corollary can be mentioned for Theorem 2.
We remark that in the case $p_{n}=1, P_{n}=\frac{1}{n}$ we obtain Theorems 1 and 2 of [MRV], although the condition in Theorem 2 of that paper differs slightly from (2.4). Furthermore, the conditions (2.1), (2.2), and (2.4) are satisfied by $q_{n}=\frac{1}{n^{\beta}}, p_{n}=\frac{1}{n^{\alpha}}$ with $0 \leq \alpha, \beta<1$. However, the resulting inequalities may be obtained directly from [MRV] by choosing $q_{n}=\frac{1}{n^{\beta}}$.

In Theorem 3, if $H(u)=e^{u / p}, p_{n}=1$ and $p=q$, we obtain the following:
Corollary $2 \sum_{n=1}^{N} \exp \left(\frac{1}{n} \sum_{k=1}^{n} a_{k}\right) \leq\left(\frac{p^{2}}{p-1}\right)^{p} \sum_{n=1}^{N} e^{a_{n}}$.
In particular, if $a_{k}=\log b_{k}, b_{k}>0$, then

$$
\sum_{n=1}^{N}\left(\prod_{k=1}^{n} b_{k}\right)^{1 / n} \leq\left(\frac{p^{2}}{p-1}\right)^{p} \sum_{n=1}^{N} b_{n}
$$

3. Proofs

Proof of Theorem 1: Write $T_{n} \equiv P_{n} \overline{t_{n}}=\sum_{k=1}^{n} p_{k} q_{k}{ }^{1 / p} a_{k}$ with $T_{0}=0$.

$$
\overleftarrow{\Delta} T_{k}:=T_{k}-T_{k-1}=p_{k} q_{k}^{1 / p} a_{k}, q_{k} a_{k}=\frac{q_{k}^{1 / p^{\prime}}}{p_{k}} \overleftarrow{\Delta} T_{k} \quad\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)
$$

Hence for $\vec{\Delta} C_{k}:=C_{k}-C_{k+1}$

$$
\begin{aligned}
0 & \leq l_{n}:=\frac{1}{Q_{n}} \sum_{k=1}^{n} q_{k} a_{k}=\frac{1}{Q_{n}} \sum_{k=1}^{n} \frac{q_{k}^{1 / p^{\prime}}}{p_{k}} \overleftarrow{\Delta} T_{k} \\
& =\frac{1}{Q_{n}}\left(\sum_{k=1}^{n-1} T_{k} \vec{\Delta} \frac{q_{k}^{1 / p^{\prime}}}{p_{k}}+\frac{q_{n}^{1 / p^{\prime}}}{p_{n}} T_{n}\right)
\end{aligned}
$$

Using (2.1) and (2.2) we now have

$$
l_{n} \leq \frac{1}{Q_{n}}\left[\sum_{k=1}^{n-1} B_{p} q_{k}^{1 / p^{\prime}} \overline{t_{k}}\right]+A{q_{n}}^{-1 / p} \overline{t_{n}}:=l_{n}^{\prime}+l_{n}^{\prime \prime}
$$

and hence by Minkowski's inequality

$$
\begin{aligned}
\left(\sum_{n=1}^{N} q_{n} l_{n}^{p}\right)^{1 / p} & \leq\left(\sum_{n=1}^{N} q_{n}\left(l_{n}^{\prime}\right)^{p}\right)^{1 / p}+\left(\sum_{n=1}^{N} q_{n}\left(l_{n}^{\prime \prime}\right)^{p}\right)^{1 / p} \\
& \leq B_{p}\left(\sum_{n=1}^{N} q_{n}\left[\frac{1}{Q_{n}} \sum_{k=1}^{n} q_{k}^{1 / p^{\prime}} \overline{t_{k}}\right]^{p}\right)^{1 / p}+A\left(\sum_{n=1}^{N} \overline{t_{n}} p\right)^{1 / p}
\end{aligned}
$$

Now using Copson's inequality; that is

$$
\sum_{N=1}^{N} q_{n}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n} q_{k} b_{k}\right)^{p} \leq\left(\frac{p}{p-1}\right)^{p} \sum_{n=1}^{N} q_{n} b_{n}^{p}
$$

with $b_{k}=q_{k}-1 / p \overline{t_{k}}$, we complete the proof with $K(p) \leq A+B_{p}\left(\frac{p}{p-1}\right)$.
Proof of Theorem 2: Recall $\overline{\sigma_{N+1}}=0$ and $\overline{\sigma_{n}}=\sum_{k=n}^{N} \frac{p_{k} g_{k}{ }^{1 / p_{a_{k}}}}{P_{k}}$, and hence $P_{k} \vec{\Delta} \overline{\sigma_{k}}=P_{k}\left(\overline{\sigma_{k}}-\overline{\sigma_{k+1}}\right)=p_{k} q_{k}^{1 / p} a_{k}$. Then $q_{k} a_{k}=q_{k}{ }^{1 / p^{\prime}}\left(\frac{P_{k}}{p_{k}}\right) \vec{\Delta} \bar{\sigma}_{k}$ and we have

$$
\sum_{k=n}^{N} \frac{q_{k} a_{k}}{Q_{k}}=\sum_{k=n}^{N} \frac{q_{k}^{1 / p^{\prime}}}{Q_{k}} \frac{P_{k}}{p_{k}} \vec{\Delta} \bar{\sigma}_{k}
$$

$$
=-\sum_{k=n+1}^{N}\left(\vec{\Delta}\left(\frac{q_{k-1}^{1 / p^{\prime}}}{Q_{k-1}} \frac{P_{k-1}}{p_{k-1}}\right)\right) \bar{\sigma}_{k}+\bar{\sigma}_{n} \frac{q_{n}^{1 / p^{\prime}}}{Q_{n}} \frac{P_{n}}{p_{n}} .
$$

Using (2.1) and (2.5) we have

$$
\sum_{k=n}^{N} \frac{q_{k} a_{k}}{Q_{k}} \leq C_{p} \sum_{k=n+1}^{N} \frac{q_{k}^{1 / p^{\prime}}}{Q_{k}} \bar{\sigma}_{k}+A q_{n}^{-1 / p} \bar{\sigma}_{n}
$$

We now write, using Minkowski's inequality,

$$
\begin{gathered}
\left(\sum_{n=1}^{N} q_{n}\left[\sum_{k=n}^{N} \frac{q_{k} a_{k}}{Q_{k}}\right]^{p}\right)^{1 / p} \leq C_{p}\left(\sum_{n=1}^{N} q_{n}\left[\sum_{k=n+1}^{N} \frac{q_{k}^{1 / p^{\prime} \bar{\sigma}_{k}}}{Q_{k}}\right]^{p}\right)^{1 / p} \\
+A\left(\sum_{n=1}^{N}{\overline{\sigma_{n}}}^{p}\right)^{1 / p}
\end{gathered}
$$

We now apply the second Copson's inequality, namely

$$
\sum_{n=1}^{N} q_{n}\left(\sum_{k=n}^{N} \frac{q_{k}}{Q_{k}} b_{k}\right)^{p} \leq p^{p} \sum_{k=1}^{N} q_{k} b_{k}^{p}
$$

with $b_{k}=q_{k}-1 / p \bar{\sigma}_{k}$ to complete the proof with $K(p)=\left(A+p C_{p}\right)^{p}$.
For the proof of Theorem 3, we will require the following lemma:
Lemma 1 ([DP]) If $p>1$ and $z_{n} \geq 0, n=1,2, \ldots$, then

$$
\left(\sum_{k=1}^{n} z_{k}\right)^{p} \leq p \sum_{k=1}^{n} z_{k}\left(\sum_{j=1}^{k} z_{j}\right)^{p-1}
$$

Proof of Theorem 3: By Jensen's inequality, since $H(u)$ is convex,

$$
\sum_{n=1}^{N} p_{n} P_{n}^{p-q}\left(H\left(\sum_{k=1}^{n} \frac{p_{k}}{P_{n}} a_{k}\right)\right)^{p} \leq \sum_{n=1}^{N} p_{n} P_{n}^{p-q}\left(\sum_{k=1}^{n} \frac{p_{k}}{P_{n}} H\left(a_{k}\right)\right)^{p} .
$$

Now apply Lemma 1 to the larger side with $z_{k}=p_{k} H\left(a_{k}\right)$

$$
\sum_{n=1}^{N} p_{n} P_{n}^{-q}\left[\sum_{k=1}^{n} p_{k} H\left(a_{k}\right)\right]^{p} \leq p \sum_{n=1}^{N} p_{n} P_{n}^{-q} \sum_{k=1}^{n} p_{k} H\left(a_{k}\right)\left[\sum_{r=1}^{k} p_{r} H\left(a_{r}\right)\right]^{p-1}
$$

Rearranging and denoting $Q_{n}=\sum_{k=1}^{n} p_{k} H\left(a_{k}\right)$, the above inequality may be written

$$
\sum_{n=1}^{N} p_{n} P_{n}^{-q} Q_{n}^{p} \leq p \sum_{k=1}^{N} p_{k} H\left(a_{k}\right) Q_{k}^{p-1} \sum_{n=k}^{N} p_{n} P_{n}^{-q} .
$$

Observe now that

$$
\sum_{n=k}^{N} \frac{p_{n}}{P_{n}^{q}} \leq \frac{p_{k}}{P_{k}^{q}}+\sum_{j=k+1}^{N} \int_{P_{j-1}}^{P_{j}} \frac{d x}{x^{q}} \leq P_{k}^{1-q}+\frac{P_{k}^{1-q}}{q-1}=\frac{q}{q-1} P_{k}^{1-q}
$$

and therefore

$$
\begin{aligned}
& \sum_{n=1}^{N} p_{n} P_{n}^{-q} Q_{n}^{p} \leq \frac{p q}{q-1} \sum_{k=1}^{N} p_{k} H\left(a_{k}\right) Q_{k}^{p-1} P_{k}{ }^{1-q} \\
& \sum_{n=1}^{N} p_{n} P_{n}^{-q} Q_{n}^{p} \leq \frac{p q}{q-1} \sum_{k=1}^{N}\left(\frac{p_{k}}{P_{k} q}\right)^{1 / p}\left(\frac{p_{k}}{P_{k} q}\right)^{1 / p^{\prime}} P_{k} H\left(a_{k}\right) Q_{k}^{p-1} \\
& \sum_{n=1}^{N} p_{n} P_{n}^{-q} Q_{n}^{p} \leq \frac{p q}{q-1}\left\{\sum_{k=1}^{N} \frac{p_{k}}{P_{k} q} P_{k}^{p}\left(H\left(a_{k}\right)\right)^{p}\right\}^{1 / p}\left\{\sum_{k=1}^{N} \frac{p_{k}}{P_{k} q} Q_{k}^{p}\right\}^{1 / p^{\prime}}
\end{aligned}
$$

by Holder's inequality. To complete the proof, divide both sides by the last factor on the right and observe that if this factor is zero, then the theorem is certainly true.

I would like to thank the referees for their valuable comments which lead to improvements in the proofs of the theorems.

References

[C] E.T.Copson, Note on Series of Positive Terms. J. Lond. Math. Soc. 2 (1927), 9-12.
[DP] G.S. Davies and G.M. Petersen, On an Inequality of Hardy's (II). Quart. J. Math. (Oxford) (2) 15 (1964), 35-40.
[IILP] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, 1988.
[MRV] R.N. Mohapatra, D.C. Russell, K. Vajravelu, Copson's Inequalities for Series and Their Variations, General Inequalities 6, pp. 49-58, Birkhäuser-Verlag, 1992.
[P] B.G. Pachpatte, A Generalizalion of an Inequality of Hardy, Indian. J. Pure Appl. Math., 21 (1990), 617-620.

