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 Copson Type Inequalities with Weighted Means

 1. Introduction

 Copson [C] proved the following inequalities:

 Theorem A Let p > 1, an > 0, qn> 0, Q„ := qi + ... + qn for n = 1,2, ... ,
 and ]C~=i 9"an < Then

 co ļ n P , v p oo

 E«» Q^^qkak ļ ^ (^zrj (I-1)
 OO OO P oo

 E«» '£'"<• <12>
 n= 1 U = n ^ k J n= 1

 In the special case qk = 1, Qn = rc, Hardy's inequality is obtained [HLP,
 p. 239]. The following theorems give a pair of related inequalities recently ob-
 tained by Mohapatra et. al. [MRV].

 Theorem B Let p > 1, Ì- + I- = 1, q„ > 0, Q„ := q1 + . . . + qn, an > 0.

 Write A Un = Un - Un+ 1- If nqn < AQn and n| A qnl^p | < Bpqnllf' for some
 constants A and Bp with n= 1,2,..., then for each N > 1

 N í i lp N Ti " lp
 n~Yl^kak i <k(P)^2 ~Yl(lkllPak (L3)

 n=l LV"jfe = l J n=l L Jfc = l

 where K(p) <1^4+ .
 Theorem C With notation as in Theorem B, suppose nqn < AQn and
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 for some constants A and Cp and n = 1,2,.... Then for each N > 1,

 N f N N [ N i/nlP

 E«. N f N s'« E N [ E2^ N i/nlP (••") n=l U=n J n=l U=n

 where k(p) < [A + pCp]p.

 For example, the assumptions in Theorems B and C are met by qn = Qn «
 logn. In this paper (Theorems 1 and 2 below) we obtain generalizations of The-
 orems B and C by viewing the right side of the stated inequalities to be special

 cases of the weighted means tn = -p^Ylk= i Pk<ļkllpa>k and 577 = ]T]fc=i °fc
 where = 1, Pn - n.

 As another type of generalization of Theorem A, we consider the non-negative
 convex function H(u) defined on [0, oo). In the special case H(u) = ui (1.1) could

 be expressed as £~=1 qn ( H £*=i qkak )) < ( jêî) £~=i qn(H(an))p.
 In Theorem 3 below, we extend this result to arbitrary convex H(u) and

 employ a weighted mean. An integral inequality with similar spirit has recently
 been obtained by Packpatte [P].

 2. Statement of Results

 In the following K(p ) denotes a positive constant (which may be different at

 different occurrences) depending on p alone, where p > 1 and ^ + y = 1.

 Theorem 1 Assume {an}, {pn}, and {qn} are non-negative sequences for n =
 1,2,

 and = t¿= -±- Y^k=i Pkqkltpdk' Assume

 (2.1)
 Pk qk

 . _ i/p'

 Pk A -
 Pk

 N P N

 J¡-J2qkak (2-3)
 n=l LVn ¿ = 1 J n=l

 where K(p) < (a + .
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 Theorem 2 Define Wn,p = = Ylk=n ^k^kpJak for n < N and <tn+' - 0.
 With notation as in Theorem 1 , assume (2.1) and the following :

 (2.4)
 y Qk- 1 Pk- 1 y Q*

 Then

 £«» [Ž U J (2-5) n=l U = n J n=l

 where K(p) < (A + pCp)p.

 Theorem 3 Assume p, g > 1 and H(u) a non-negative convex function defined
 on[0,oo). Then

 [-^¿p*ajļ <( -¡^YjtpnPnp-'(n(an))'. (2.6)
 n=l L L n k = l . J ^ ' n=l

 Let € > 0 and 0 < a < 1. Then conditions (2.1), (2.2), and (2.4) hold
 for 9" = n(loģn)* and P" = Òr- In thÌS CaSe Q» W (logn)'-' for £ # 1 and
 Qn & log(logn) for e = 1, while Pn « ^è=r- Corollary 1 illustrates Theorem 1
 in the case € = 0.

 Corollary 1 If qn = L and pn = for a > 1 then for a* > 0

 m ž - 1 ; [ioS(n'+ L 1) ¿ K = 1 t] J **<*>£ n=l m - 1 L K = 1 J n=l L k - l

 A similar corollary can be mentioned for Theorem 2.

 We remark that in the case pn = 1, Pn = ^ we obtain Theorems 1 and
 2 of [MRV], although the condition in Theorem 2 of that paper differs slightly
 from (2.4). Furthermore, the conditions (2.1), (2.2), and (2.4) are satisfied by
 Qn = Pn = with 0 < a, ß < 1. However, the resulting inequalities may
 be obtained directly from [MRV] by choosing qn =
 In Theorem 3, if H(u) = eu/p, pn = 1 and p = q, we obtain the following:

 Corollar, 2 , exp (1 £?., «,) < (&)'£!„*■.
 In particular, if a* = logó*, 6* > 0, then

 N_ / n ' 1/n X 2 'P N

 Ein N_ 'jk n M / S Girr) 'F X 2 1/ 'P E»- N n=l 'jk = l / 'F 1/ n = 1
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 3. Proofs

 Proof of Theorem 1: Write Tn = Pnt¿ = Ylk=i To = 0.

 A Tk := Tk - Tk-i - qkdk - -
 Pk 'P P' J

 Hence for A Ck '= Ck - Ck+i

 o S

 - ¿(gnï^Â).
 Using (2.1) and (2.2) we now have

 1 I"-1 1
 ln<^~ 1 ^Bpqkllp'h +Aqn-1'^

 U=i

 and hence by Minkowski's inequality

 / N ' */P /N 'l!p /N X1^

 (Lin/«'] ^ +(E9«('ń')PJ
 / Ñ , » "]P' !/P / N ' 1!p

 ^ flpļEī» Q^ÍllkllP% , "]P' j ' .
 Now using Copson's inequality; that is

 N / r> 'P / 'P *

 -(^ / 'P S,nV *

 with bk = qk~1tptki we complete the proof with K(p) < A + Bp

 Proof of Theorem 2: Recall <7/v+i = 0 and oñ = J2kLn pk^kpkP(lk , and
 hence Pk A ÕT = Ą(5T- 0T+I) = mjk1/pajfc- Then qkak = A Wk
 and we have

 Qkak _ Qk1^ Pk _
 k k=n _ k k=n Pk <Tk k k=n k k=n
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 = - E
 fc=n+l V ' P*"1// Pn

 Using (2.1) and (2.5) we have

 N N 1/v /p /

 E0*a* ^ ^ L -õra* M 1/v /p - + , Ai» ¿ -l/p- L -õra* M - + , Ai» ¿ -l/p- a»' k = n y k *=n+l

 We now write, using Minkowski's inequality,

 / N * V' 1/P / 1/P

 (e^E^ / N * V' ) SĄ

 We now apply the second Copson's inequality, namely

 N ( N 'P N

 n=l 'k=n Wk / 1c = 1

 with bk = qk~ltp0k to complete the proof with K(p) = (A- f pCp)p.
 For the proof of Theorem 3, we will require the following lemma:

 Lemma 1 ([DP]) If p > 1 and zn> 0, n = 1,2,..., then

 'k = l / k = 1 '> = 1 /

 Proof of Theorem 3: By Jensen's inequality, since H{u) is convex,

 š (" Ci ft-) )' s Ś"'--
 Now apply Lemma 1 to the larger side with z¿ = p*//(afc )

 N n IP N n Tfc ļ P"1
 J2P»P»~" !>*#(«*) Y,PrH(ar)
 n=l La: = 1 J n= 1 jfc = l Lr=l
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 Rearranging and denoting Qn = 5Z£=1 PkH(dk), the above inequality may be
 written

 N N N

 Y,PnPn-qQnP < !>*#(«* W* E PnPn~ą ■
 n=l Jb = l r'- h

 Observe now that

 h- < il. + íPi dx ^ ri-« i p*1- 1 - q ai-«

 and therefore

 AT JV

 n=l 9 Jt = l

 JV (AT ļ J/P f N 1

 {Efeo'} f N 1
 by Holder's inequality. To complete the proof, divide both sides by the last
 factor on the right and observe that if this factor is zero, then the theorem is
 certainly true.

 I would like to thank the referees for their valuable comments which lead to

 improvements in the proofs of the theorems.
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