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 On Approximate Peano Derivatives
 Definition. We say that a function / defined on M has a k- th approximate

 Peano derivative at some point a: G M if there are numbers f'(x), •• • , fk(x) and
 a set Vx of density 1 at a: so that

 tk

 f(x + t) = f(x) + </l(x) + • ■ + -j^fk(x) + tk€k(xyt)

 where lim^ev,,*- o ^k(Xyt) = 0. The coefficient fk(x) is called the k- th approx-
 imate Peano derivative of / at x.

 In [2] the authors introduced the concept of a path derivative as a unifying
 approach to the study of a number of generalized derivatives. Namely since
 many generalized derivatives like approximate and Peano derivatives possess
 most of the properties of ordinary derivatives, the authors in [2] were looking
 for a framework within which all of these derivatives could be presented.

 The perspective they chose was to consider just those derivatives of a function
 F at a point x which can be obtained as

 lim fi.i-f(.i
 y€Ex, y->x y - X

 for appropriate choices of sets Ex. One generalized derivative, then, differs
 from another only by the choice of the family of sets {Ex : x G M} through
 which the difference quotient passes to its limit. For example, an approximately
 different iable function F permits a choice of sets {Ex : x G M} so that each Ex
 has density 1 at x; for a Dini derivative each set may consist only of a sequence
 converging to x. This framework includes any generalized derivative for which
 the derivative at a point is a derived number of the function at that point.
 Since Mařík has proved that fk(x) is a derived number of /*_ i at a point x, we
 see that this concept of path derivatives also includes fc-th approximate Peano
 derivatives. (See [3].)

 But in order to get some properties for path derivatives, like those possessed
 by Peano or approximate derivatives, we require that the family of sets {Ex :
 x G M} satisfy various "thickness" conditions. These conditions relate to the
 "thickness" of each of the sets Ex and the way in which two of the sets intersect.
 The authors [2] proved that path derivatives with certain type of conditions im-
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 posed on the family of sets {Ex : x G R}, have many of the properties possessed
 by approximate and Peano derivatives. We will show that approximate Peano
 derivatives are path derivatives with {Ex :iGl) satisfying some of the inter-
 section conditions introduced by the authors mentioned above. In proving this
 assertion, we won't use any known results for approximate Peano derivatives. So
 this can be regarded as a new approach to studying approximate Peano deriva-
 tives. Namely all of the properties possessed by approximate Peano derivatives
 that are known will be obtained directly from the corresponding properties of
 path derivatives. The main tool will be a decomposition of approximate Peano
 derivatives which we will discuss next.

 Let C be the family of all continuous functions on R, A the family of all
 differentiate functions on R and A' the family of all derivatives on R. If T
 is a family of functions defined on R, then by [r] we denote the family of all
 functions / on R with the following property: for each n G M there exist vn G T
 and a closed set An such that / = vn on An and = R. In [1] (Theorem
 2) it is shown that the following four conditions are equivalent:

 (i) There are g , h and k in A such that h' , k' G [C] and / = g' + hk' .

 (ii) There is a G A' and ip G [C] such that / = ip + i¡j.

 (iii) The function / G [A'].

 (iv) There is a dense open set T such that / is a derivative on T and / is a
 derivative on R ' T with respect to R ' T.

 In this paper we show that approximate Peano derivatives are in [A'] and hence
 they are Baire 1 functions. This will enable us to show that a Jb-th approximate
 Peano derivatives, /it, is a path derivative of the (k - l)-st one with respect
 to the nonporous system of paths satisfying (k - l)-st one with respect to the
 nonporous system of paths satisfying the I.I.C. condition. In particular /* is a
 selective derivative of fk-i>
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