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 Constructions Which Control Dimensions

 Nowhere dense, perfect sets in [0, 1] are the focus of this investigation. They
 are analyzed in terms of the Hausdorff (dim-x), packing (dim-p), lower Minkowski
 ( dirriM ) and upper Minkowski (dim-jj) dimension functions. For an arbitrary
 set F 1 it is necessary that

 dimjiF < dim-p F < dimjj-F and dim^F < dim'f_F < dim-^F.

 It is the objective of this investigation to produce a construction that realizes,
 after being given

 0<A<p<s<ti<l,

 a set. X with h = dim^X, p = dim-p X , s = dim^X, and u - dimjj-X. The set
 E = {0} U {l/n : n G N}, is a simple set for which dim-^E = 0 = dim-pE , but
 dim'f_E = 1/2 = dimjjE. Notice that the points 1 /n approach 0 "more slowly"
 than the geometric series {2~n : n G N}.

 Lemma 1 If X = U then dim-^X - supn{dim-H Wn} and dim-pX -
 sup n{dim-pWn}. Likewise , if X - U™_ l Wn , then dim^X = sup n{dim'fWn}
 and dimjj-X = sup n{dimjjWn}.

 Lemma 2 If T is a similarity map , T(E) has the same, respectively , Hausdorff
 and packing dimension as E.

 Eventually nonoverlapping dyadic intervals {£/,*} in [0, 1] will be picked and
 respectively subsets, {Xjtk}. Each Xjt * will be a similar copy of a symmetric
 Cantor set, K^J , with dim-^K^3 = h and dim-p = p. For X = 'JjticXj) *,
 dim-ftX = supj k{dim-HXj k} and dim-pX = sup;- k{dim-pXjk}>

 Let 7 > 0 and mj = [7-*]. For arge enough j > jo and an appropriate

 positive integer c, set Ij = ļl,2, . . ., 2"7J+CJ ļ- and choose the dyadic intervals

 Ljtk = [2mj + (k - l)2""m>+c, 2~m> + k2-m"c] ,

 where k G Ij- For k £ Ij, place a reduced by 2~mj+c similar copy of K*>J into
 Ljfk and call it Xj¿> Finally, set

 00

 * = {0} u U (J xjtk.
 3=30 kąij
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