Real Analysis Exchange Vol. 18(1), 1992/93, pp. 22-??

Donald W. Spear, Milwaukee, WI

Constructions Which Control Dimensions

Nowhere dense, perfect sets in [0, 1] are the focus of this investigation. They are analyzed in terms of the Hausdorff $(dim_{\mathcal{H}})$, packing $(dim_{\mathcal{P}})$, lower Minkowski $(dim_{\underline{M}})$ and upper Minkowski $(dim_{\overline{M}})$ dimension functions. For an arbitrary set F, it is necessary that

 $\dim_{\mathcal{H}} F \leq \dim_{\mathcal{P}} F \leq \dim_{\overline{\mathcal{M}}} F$ and $\dim_{\mathcal{H}} F \leq \dim_{\mathcal{M}} F \leq \dim_{\overline{\mathcal{M}}} F$.

It is the objective of this investigation to produce a construction that realizes, after being given

$$0 < h < p < s < u < 1$$
,

a set X with $h = \dim_{\mathcal{H}} X$, $p = \dim_{\mathcal{P}} X$, $s = \dim_{\underline{M}} X$, and $u = \dim_{\overline{M}} X$. The set $E = \{0\} \cup \{1/n : n \in \mathbb{N}\}$, is a simple set for which $\dim_{\mathcal{H}} E = 0 = \dim_{\mathcal{P}} E$, but $\dim_{\underline{M}} E = 1/2 = \dim_{\overline{M}} E$. Notice that the points 1/n approach 0 "more slowly" than the geometric series $\{2^{-n} : n \in \mathbb{N}\}$.

Lemma 1 If $X = \bigcup_{n=1}^{\infty} W_n$, then $\dim_{\mathcal{H}} X = \sup_n \{\dim_{\mathcal{H}} W_n\}$ and $\dim_{\mathcal{P}} X = \sup_n \{\dim_{\mathcal{P}} W_n\}$. Likewise, if $X = \bigcup_{n=1}^m W_n$, then $\dim_{\underline{M}} X = \sup_n \{\dim_{\underline{M}} W_n\}$ and $\dim_{\overline{M}} X = \sup_n \{\dim_{\overline{M}} W_n\}$.

Lemma 2 If T is a similarity map, T(E) has the same, respectively, Hausdorff and packing dimension as E.

Eventually nonoverlapping dyadic intervals $\{L_{j,k}\}$ in [0, 1] will be picked and respectively subsets, $\{X_{j,k}\}$. Each $X_{j,k}$ will be a similar copy of a symmetric Cantor set, $K^{\zeta^{j}}$, with $\dim_{\mathcal{H}} K^{\zeta^{j}} = h$ and $\dim_{\mathcal{P}} K^{\zeta^{j}} = p$. For $X = \bigcup_{j,k} X_{j,k}$, $\dim_{\mathcal{H}} X = \sup_{j,k} \{\dim_{\mathcal{H}} X_{j,k}\}$ and $\dim_{\mathcal{P}} X = \sup_{j,k} \{\dim_{\mathcal{P}} X_{j,k}\}$.

Let $\gamma > 0$ and $m_j = [\gamma^j]$. For large enough $j \ge j_0$ and an appropriate positive integer c, set $I_j = \{1, 2, \dots, [2^{u\gamma^{j+c}}]\}$ and choose the dyadic intervals

$$L_{j,k} = \left[2^{m_j} + (k-1)2^{-m_{j+c}}, 2^{-m_j} + k2^{-m_{j+c}}\right],$$

where $k \in I_j$. For $k \in I_j$, place a reduced by $2^{-m_{j+c}}$ similar copy of K^{ζ^j} into $L_{j,k}$ and call it $X_{j,k}$. Finally, set

$$X = \{0\} \cup \bigcup_{j=j_0}^{\infty} \bigcup_{k \in I_j} X_{j,k}.$$