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 Weighted Inequalities in Function Spaces

 The problem of characterizing non-negative locally integrable (weight) func-
 tions u and v on M+, for which Hardy's inequality

 {L°°uix) [JÓ mdt]9 dxY ^c{j~ «w w dxY ,0<p,?<oo, (1)
 holds for all non-negative / G IĄ has been completely solved. The formulation
 for the discrete version of this result in the index range 1 < p, q < oo is

 Theorem 1 ([1],[4]) Suppose 1 < p, q < oo and are se9uences
 such that Uk > 0, v* > 0, k G N. Then there exists a constant B > 0, such that

 lži"" ¿a* ļ (2)
 UeN L*=i J J UeN J

 holds for all non-negative sequences {a*} G j, if and only if

 (i) in case 1 < p < q < oo

 f oo i i f m Ì *
 = SUp I Yl "n > I < °° [n=m J ln = l ) I

 (ii) in case 1 < q < p < oo

 { meN L»=m YlUn oo J q r Ln=l Ž m Vn~P' J r v ™P' J X f I ļ

 oo q m I

 L»=m YlUn J q Ln=l Ž Vn~P' J v ™P' f I < °°' meN L»=m J Ln=l J J

 where £ = ^ ^ and p' , q' are the conjugate indices of p and q, respectively.

 In this talk we discuss weight characterizations of inequalities of the form
 (1) and (2), where the weighted Lebesgue spaces are replaced by more general
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 function spaces. Specifically, we consider weighted amalgams ^ (£&), 1 < p,q <
 oo, which consist of functions locally in L £ and whose integrals over [n, n + 1]
 form an tq sequence. Under the norm

 II/IU.,= |e [J" w(x)'f(r)'"dxļ'^,
 (q (L£ ) becomes a Banach space.

 A generalization of (1) and (2) in a different direction is obtained by replac-
 ing the weighted Lebesgue spaces by weighted Orlicz spaces. We discuss, in
 particular, under what conditions the modular inequality

 un¿a* u°ļ <Ap~i I s p(a»vi)tw (3)
 UeN L *=i J J UeN J

 holds for all non-negative sequences {«n}n€p^ and certain Young's functions
 P and Q. In fact, conditions on the weight sequences {u£}n6fsj, í^níneN'
 j = 0, 1 are given which are equivalent to (3). Of course, the choice Q(x) = xq ,
 P(x) = xp, 1 < p < q < oo, u' = = 1 for n G N in (3) yields Theorem l(i).

 In higher dimensions, applications of the corresponding continuous form of
 the inequality provide weighted Friedrich type inequalities.
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