Real Analysis Exchange
Vol. 18(1), 1992/93, pp. 17-17

James Foran, Department of Mathematics, University of Missouri at Kansas
City, Kansas City, MO 64110

Translates of a Set Which Meet It in a Set of
Positive Measure

It is well known that the Cantor ternary set C satisfies C + C = [0, 2]. One
can observe this by considering the set C x C and noting that this set meets each
line z + y = k when k € [0,2]. It is also easy to observe from C x C that lines
z+y = k which intersect C'x C in a set of positive s’~measure (s’ = log2/log3)
are those which pass through the corners of squares in the construction of C x C;
that is, points (z,y) where z and y are endpoints of intervals contiguous to C.
This implies that there are exactly countably many numbers a so that (C+a)NC
has positive s'-measure. This yields some curious open questions regarding s—
sets (measurable sets of non-zero finite s—-measure): Given a compact s-set E
in R" with s < n, how large can the s-measure of {t : s-m((E +t) N E) > 0}
be? Perhaps it can have positive s-measure? Perhaps it can be no larger in
dimension that [[s]]? If E C R" is an s-set where s < n is not a whole number,
can F 4+ F be an s-set?

It is shown in the paper on which this talk is based that any singular, o-
finite, Borel regular measure m, whose support is E (with m(E) = 0 in R"™)
satisfies m({t : ma((E + t) N E) > 0}) = 0. From this result it follows that,
if E is an s-set or even a set of o-finite s-measure in R" with s < n, then
m({t : s-m((E +t)N E) > 0}) = 0. This fact is then used to show that each
s-set in R™ with s < n is a non-measurable set with respect to any of the
approximating measures s-ms for any § > 0.
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