Real Analysis Exchange Vol. 18(1), 1992/93, pp. 12-12

Xiaoyu Hu and S. James Taylor, Department of Mathematics, University of Virginia, Charlottesville, VA 22903

The Fractal Analysis of Products and Projections of Measures

Given a Borel measure μ in \mathbb{R}^d , Cutler [1,2] showed that

$$\hat{\mu}(x) = \liminf_{r \downarrow 0} \frac{\log \mu B(x, r)}{\log r}, \quad \hat{\hat{\mu}}(x) = \limsup_{r \downarrow 0} \frac{\log \mu B(x, r)}{\log r}$$

relate directly to the Hausdorff and packing dimensions of measure theoretic supports for μ . We say that μ is a *fractal measure* if $\hat{\mu}(x) = \hat{\mu}(x)$ for μ a.e. x. Using known and new results about the dimension properties of Cartesian products of sets and projections onto subspaces, we find the corresponding results for measures. In particular, if μ_1 , μ_2 are Borel measures in \mathbb{R} and $\mu = \mu_1 \times \mu_2$, then μ_1 , μ_2 fractal implies that $\mu_1 \times \mu_2$ is fractal. Also, if μ_{θ} denotes the measure in \mathbb{R} obtained by projecting μ in \mathbb{R}^2 onto a straight line of direction θ , then μ fractal implies that μ_{θ} is fractal for a.e. θ . These results are a corollary to an analysis of the connection between fractal properties of the support sets for μ and those for μ_{θ} ; they extend results of Haase [3].

References

- C. D. Cutler, The Hausdorff dimension distribution of finite measures in Euclidean space, Can. J. Math. 38 (1986), 1459-1484.
- [2] C. D. Cutler, Measure disintegrations with respect to σ -stable monotone indices and the pointwise representation of packing measure, Rendi del Circolo Matematico di Palermo (to appear).
- [3] II. Haase, On the dimension of product measures, Mathematika 37 (1990), 316-232.