Real Analysis Exchange Vol. 6 (1980-81)

Václav Kelar, matematicko-fyzikální fakulta UK, 186 00 Praha 8, Sokolovská 83, Czechoslovakia

ON STRICT LOCAL EXTREMA OF DIFFERENTIABLE FUNCTIONS

For an arbitrary real-valued function f defined on [0,1] denote

 $A(f) = \{x: f \text{ attains a strict local maximum at } x\},$ $B(f) = \{x: f \text{ attains a strict local minimum at } x\}.$

In this paper we give a short proof of the following theorem.

<u>Theorem</u> /Z. Zalcwasser [4]/. Let A and B be arbitrary disjoint at most denumerable subsets of (0,1). Then there exists a function F having a bounded derivative on [0,1] such that A(F) = A and B(F) = B.

The idea is based on a result of R. Fleissner and J. Foran [2]: if a function f satisfies a Lipschitz condition on [0,1], then there exists an increasing homeomorphism h of f([0,1]) onto itself such that the function $F = h \circ f$ has a bounded derivative on [0,1] /see also [1], Theorem 2.1, p. 133/. Then obviously A(F) = A(f), B(F) = B(f). Therefore it suffices to construct a function f satisfying a Lipschitz condition such that A(f) = A and B(f) = B.

Since the proof of the result [2] depends on a theorem of Zahorski [3], our proof can be in some way an answer to a question posed by A. M. Bruckner in [1], p. 44.

242

<u>Construction.</u> Suppose that the set $C = A \cup B$ is infinite. Enumerate C as a sequence $\{c_n\}_{n=1}^{\infty}$ where $i \neq j$ implies $c_i \neq c_j$. Define a sequence $\{d_n\}_{n=1}^{\infty}$ by

$$d_{n} = \begin{cases} 1 & \text{if } c_{n} \in \mathbb{A} \\ -1 & \text{if } c_{n} \in \mathbb{B} \end{cases}.$$

We shall construct a sequence of functions $\{p_n\}_{n=0}^{\infty}$. We start with $p_0 \equiv 0$. Assume we have already defined functions p_0 , p_1 , ..., p_{n-1} satisfying the conditions /l/ the function $\mathbf{s}_{n-1} = p_0 + p_1 + \dots + p_{n-1}$ is piecewise linear on [0,1];

- /2/ s_{n-1} is differentiable at c_i for all $i \ge n$; /3/ $A(s_{n-1}) \cup B(s_{n-1}) = \{c_1, \dots, c_{n-1}\};$
- /4/ s_{n-1} satisfies a Lipschitz condition with constant $L_{n-1} = 1 - 2^{-(n-1)}$

and for each j, $1 \leq j \leq n-1$

- /5/ the set {x: $p_j(x) \neq 0$ } is an interval (u_j, v_j) containing c_j ;
- /6/ s_{n-1} is not differentiable at u_j , v_j ; /7/ if $x \in (u_j, v_j) \setminus \{c_j\}$, then $d_j s_{n-1}(c_j) > d_j s_{n-1}(x)$.

Now p_n will be defined in such a way that statements /1/ - /7/ are valid for n instead of n-1 and moreover, the following conditions are satisfied: $/8/ 0 \leq d_n p_n(x) \leq 2^{-n}$ for all $x \in [0,1]$;

/9/
$$v_n - u_n < 2n^{-1};$$

/10/ $[u_n, v_n] \subset (a, b)$ where [a, b] denotes the maximal interval containing c_n on which s_{n-1} is linear.

We describe a construction for $d_n = 1$ and $s'_{n-1}(c_n) \ge 0$, the other cases being similar. Let ε be so chosen that $0 < \varepsilon \le 2^{-n}$ and $s_{n-1}(c_j) > \varepsilon + s_{n-1}(c_n)$ whenever

j satisfies
$$l \leq j \leq n-1$$
, $d_j = l$ and $c_n \in (u_j, \mathbf{v}_j)$. Put $\delta = \min(n^{-1}, c_n - a, b - c_n)$. Choose $u \in (c_n - \delta, c_n) \setminus C$. Find $\mathbf{v} \in (c_n, c_n + \delta) \setminus C$ so that $\mathbf{s}_{n-1}(\mathbf{v}) < \mathbf{s}_{n-1}(c_n) + \varepsilon \cdot (c_n - u)$. Choose $\mathbf{w} \in (c_n, \mathbf{v}) \setminus C$. Put
 $\mathbf{s}_n(c_n) = \min(\mathbf{s}_{n-1}(c_n) + \varepsilon \cdot (c_n - u), \mathbf{s}_{n-1}(\mathbf{v}) + (1 - 2^{-n}) \cdot (\mathbf{w} - c_n)),$
 $\mathbf{s}_n(\mathbf{x}) = \mathbf{s}_{n-1}(\mathbf{x})$ for $\mathbf{x} \in [0, u] \cup [\mathbf{v}, 1],$
 $\mathbf{s}_n(\mathbf{x}) = \mathbf{s}_{n-1}(\mathbf{v})$ for $\mathbf{x} \in [\mathbf{w}, \mathbf{v}]$
and define \mathbf{s}_n linearly on each of the intervals
 $[\mathbf{u}, \mathbf{c}_n], [\mathbf{c}_n, \mathbf{w}]$. Put $\mathbf{p}_n = \mathbf{s}_n - \mathbf{s}_{n-1}$.

Having defined the sequence $\{p_n\}_{n=0}^{\infty}$, set

$$f = \sum_{n=1}^{n} p_n$$
.

 ∞

The series converges uniformly because of /8/. From /4/ we see f satisfies a Lipschitz condition with constant L = 1. Using /1/ - /10/, it is not hard to prove that for each i, $x \in (u_i, v_i) \setminus \{c_i\}$ implies $d_i f(x) < d_i f(c_i)$, and if $x \in (0,1) \setminus C$, then $x \notin A(f) \cup B(f)$. Hence A(f) = A and B(f) = B. This completes the proof.

References

- [1] A. Bruckner: Differentiation of real functions, Lecture Notes in Math. 659, Springer 1978.
- [2] R. Fleissner and J. Foran: Transformations of differentiable functions, Colloq. Math. 39 /1976/, 278-281.
- [3] Z. Zahorski: Sur la première dérivée, Trans. Amer.
 Math. Soc. 69 /1950/, 1-54.
- [4] Z. Zalcwasser: Sur les fonctions de Köpcke,
 Prace Mat. Fiz. 35 /1927-28/, 57-99.