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 Comments on ja Functional Equation

 In this note we study all solutions of the equations

 (1) f(x+s) » af(x) and f(x+t) ■ bf(x)

 a>0, b>0, and s/t irrational

 where a,b,s, and t are real numbers. In Rudin's book, Real and Complex

 Analysis Mcgraw-Hill (1974) p. 190, Problem 19, equation (1) appears

 with a=b=l . In this casa, any Lebesgue measurable solution, f, must be

 Lebesgue equivalent (i.e. equal a.e.) to a constant. In the more gen-

 eral case ( a>0 and b>0) investigated here we obtain the following

 results.

 THEOREM . _I¿ there is ¿ nonzero solution of ( 1 ) which is positive at

 some point and bounded above on some interval . then ac * bs .

 Conversely,

 THEOREM. If at - bs, then f(x) = cax^s is a_ so lut ion to (1) and

 furthermore, every Lebesgue measurable solution to ( 1 ) is_ equivalent to

 f..

 Finally, we show that:

 THEOREM. There is a_ solution to. (1) which is not equivalent to a.

 continuous function.
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 The motivation for this study was to determine in what sense the

 function f(x) » 2X is characterized by the functional equation f(x+l) »

 2f(x)* That is, what conditions can be appended to the functional equa-
 ť

 tion f(x+l) » 2f(x) to insure that any solution is equivalent to f(x) »

 2* .

 As an initial remark, notice that if f(0)=l and f satisfies (1)

 then for integers m and n, f(ms) » am and f(nt) » bn, so that for y »

 ms+nt,

 f (x+y) » f(x)f(y).

 That is, (1) reduces to a restricted Cauchy equation where the restric-

 tion is that one of x or y lies in the set

 (2) D 3 {ms+nt : m and n are integers} .

 This set D plays an important role in our investigation.

 To better understand the the solutions to (1) we will investigate

 the general form of any possible solution.

 First, let rļ and r2 be any two rational numbers. Then there exist

 unique integers m and n and a 4-tuple (pi ,qi ,P2,q2) such that

 ris+r2t * (ms+nt) + (pis/qļ + P2t/q2')» and

 (Pi.qi»P2>q2) e B = ((pi»qi,p2»q2) : Pi and <ii are

 nonnegative integers with

 Pi relatively prime to q¿ if pj/O.

 Let H be a Hamel Basis for the reals which contains both s and t,

 and let C be the linear span of {s,t} . Let C' be the subspace spanned
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 by H-{s,t} . If X is any real number, then x has a unique representa-

 tion as

 X cf (rļs+ r2t) + y

 where rļ and iļ are rationals and y £ C' . Now, if F is any real valued

 function defined on bXC , then

 (3) f(x) » ambnF(pļ ,qļ ,P2 ,q2 »y)

 satisfies (1), and it can easily be verified that all solutions to (1)

 have this form.

 We now give two results which will be needed in our further

 analysis of the solutions of (1). The first result is well known.

 LEMMA. 1 . The set . D. defined in (2_) is. dense in the reals if and

 only if sj t_ .is. irrational.

 LEMMA. 2 . Suppose that f is a solution of (1_) and that f. .is bounded

 above on some interval. Then f. is. bounded above on every finite inter-

 val.

 Proof. Suppose that f is bounded above on some interval J=[c,d],

 and suppose further that there is a compact interval I and f(xn)-»eo for

 some sequence in I. As I is compact, we can assume that x^-^y for some y

 in I. Let I' be a neighborhood of y contained in I such that the length

 of I' is less than (d-c)/4. Let J' be a subinterval of J such that for

 any v, w in I, J' + (v-w) C J. Choose Uļ and U2 in D such that u]£l' and

 U££J"; then for sufficiently large n, xn = x'n + (uļ-u2) for some x'n£J.
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 But then,

 fCxn) " f(x'n + ui +u2> " ambnf(x'n)

 and this contradicts the fact that fC^).

 We are now ready to prove our main results.

 THEOREM 1 . I £ there is a, nonzero solution of ( 1 ) which is positive

 at some point and bounded above on some interval, then aŁ = bs

 Proof. Suppose f(y) > 0 and define two supplementary functions as

 follows :

 g(x) ■ a~x/sf(x), and h(x) = b~x/tf(x).

 Then g and h are periodic with periods s and t respectively, and these

 functions are related by:

 g(x) = ax/sb-x/th(x)

 Now if at > bs, then

 g(y±nt) = [a'i/sb-l/tjylnthiy)

 which diverges as n->co since h(y) = 0. Hence, ac < bs. A symmetric argu-

 ment using h(x) ™ a- x/sbx/tg(x) shows that bs < at.

 THEOREM 2. If a^=bs then f(x) = ca x/s is a solution to (1), and

 furthermore, every Lebesgue measurable solution to. (1) is. equivalent to

 this function, f .

 Proof. It is easily verified that f(x) = cax/s is a solution to

 (1) when at=bs. Suppose at=bs and g(x) is a Lebesgue measurable solu-
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 tion to (1). Let

 G(x) » a~x/sg(x)

 Then, it is easy to show that G(x) is periodic with periods s and t.

 And, in fact, the set of periods of G contains the set D which is every-

 where dense. This periodicity of G on D then insures that the set of

 points of density of each of the sets Ea = {x:G(x) > a > is either of

 full measure or of measure zero. As G is measurable, this entails that

 G(x) is constant a.e. and the theorem is verified.

 REMARK 1. It is easy to construct a discontinuous solution of (1),

 as follows:

 (ambn 0 if for x^D x = ms+nt in D 0 if x^D

 Then f is continuous nowhere, but, f is measurable since f =* 0 a.e.

 REMARK 2. Consider equations (1) with the assumption that s/t is

 rational. If f is a nonzero solution of this new system of equations,

 then

 at » bs, and

 f (x) » ax/ sG(x)

 where G(x) is a periodic function of fundamental period p and p has the

 property that p divides every integral linear combination of s and t.

 To see that this is the case, one can use an argument analogous to that

 used in THEOREM 2. above; the exception is that although G has periods s
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 and t, the set of all periods is not dense.

 Now in what follows we will construct a solution of (1) which is

 not equivalent to a continuous function. Actually our aim is obtain such

 a solution which is also Lebesgue measurable, but, unfortunately, we are

 unable to determine the measurability of our example. In the case of the

 Cauchy equation, any solution that is different from the exponential

 equation is automatically not equivalent to a continuous function. For

 our equation (1), however, this question is more difficult.

 THEOREM 3 . There is a. solution of ( 1 ) which is not equivalent to a^

 continuous function.

 Proof. For this example we need to define the following sets.

 E = {rļs+r2t+y : y i C',y>0,rļ and r2 are rational, rļ>0}

 F a {rļs+r2t+y : y e C',y>0,rļ and r2 are rational, rļ<0}

 G a {rļs+r2t+y : y £ C',y>0,rļ and r2 are rational, rļ<0}

 J » {rļs+r2t+y : y s C',y<0,ri and r2 are rational, rļ>0}

 U =* {rļs+r2t : ri and r2 are rational}

 Notice that the union of these sets is the reals, and that E^FjG^J^nd

 m(U)=0 where m() denotes Lebesgue measure. In what follows, m*(-) and

 m*() denote Lebesgue outer and inner measure respectively. First observe

 that C' is not Lebesgue measurable and indeed C' has zero inner measure

 and full outer measure in every interval. Without loss of generality we

 assume b-l . Now let x=rļs+r2t+y where y £ C' and rļ and r2 are rationals.

 To get our example, we substitute in (3) for F the function which is 1

 for y>0 and 0 for y<0. This implies that in (3), the function f(x) is at

 least 1 either on the set E or G depending on whether a>l or a< 1 ; also,
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 f(x)=*0 on FU J. Suppose that there is a continuous function g such that

 (x)^g(x)}) f 0.

 Then since the outer measure of both of the sets EUG and FU J is posi-

 tive in every interval, g must assume the value of 0 as well as values

 in excess of 1 in every interval. This, of course, contradicts the con-

 tinuity of g, and f has the desired properties.

 REMARK 3. Suppose s-s(a) is a function whose domain is the positive

 reals, and that f is a function which satisfies the functional equation

 (4) f (x+s(a)) » af (x)

 for every real number x, and every positive real a. Notice that for any

 nonzero solution of (4), the function s must necessarily be 1-1, and

 consequently, the set {s(a):a>0} is uncountable. Hence, there are

 numbers a and b such that s(a)/s(b) is irrational. This means that a

 nonzero solution of (4) is also a solution of (1) for suitable s and t.

 Consequently, if there is a solution of (4) which is positive at some

 point and bounded above on some interval, then the ratios s(a)/s(b) must

 be lna/lnb. This means that there is a nonzero constant k such that for

 each positive a, s (a) = klna.

 REMARK 4. The results of this paper do have some generalizations in

 the context of metric topological groups, and in this remark we give one

 of them. Let G and H be metric topological groups, a,b £ H, s,t £ G,

 and f:G- be a mapping such that

 (5) f(xs) = af(x) and f(xt) = bf(x)
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 for each z in G. Suppose that {s,t} generates G in the sense that the

 set of all words in s,s~lJt,t~l is dense in G. Then, any nontrivial f

 satisfying (9) has the following property.

 THEOREM. Suppose that f (U) is_ sequentially compact for some open

 set U, .iņ Ģ_. Then, f (K) is. sequentially compact whenever Ķ is .

 Proof. Let K be a sequentially compact set in G. If f(K) is not

 sequentially compact, then there exist > y in K such that the

 sequence {fCxa)} has no convergent subsequence. Since G is a topological

 group, there exists an open set V and a neighborhood U(y) such that

 U(y)U(y)~lv C 0. Let u,v be two words in s and t such that u£ U(y) and v£

 V. Now, for any x £ U(y), x=(xu~l)v(vxu-lu) £ Uv-1u. Since f satisfies

 (5) and f(U) is sequentially compact, it is clear that f(Uv~lu) is

 sequentially compact. But for large n, xn £ u(y) and f(xn) £ f(U(y))C

 f(Uv~lu), which implies that fix^) has a convergent subsequence. This is

 a contradiction and the proof follows.

 Received November Z, 1980
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