RESEARCH ARTICLES Real Analysis Exchange Vol. 6 (1980-81) Roy O. Davies, Department of Mathematics, The University, Leicester,

LE1 7RH, England

Non-Monotonic Implies Very Oscillatory

Let f be a measurable real function defined on a measurable linear set E , and for each point $x_0 \in E$ let

$$A(x_0) = \{x \in E: f(x) = f(x_0)\},$$

$$A_+(x_0) = \{x \in E: (x - x_0)^{-1}(f(x) - f(x_0)) > 0\},$$

$$A_-(x_0) = \{x \in E: (x - x_0)^{-1}(f(x) - f(x_0)) < 0\}.$$

Khinchin [5] called f <u>asymptotically directed</u> (we shall write AD) at x_0 if one of the above sets (which are evidently measurable) has density 1 at x_0 . He showed that for almost all points x_0 at which $A_+(x_0)$ or $A_-(x_0)$ has density 1, x_0 is a density point of a compact set of positive measure on which f is strictly monotonic; and f is approximately differentiable at almost all points at which it is AD.

As regards the points $x_0 \in E$ at which f is not AD, Good [4] showed that at almost all of them at least one of the sets $A_+(x_0), A_-(x_0)$ has upper unilateral density 1 on both sides at x_0 . In Theorem 1 we improve "at least one" to "both", using similar reasoning. (Related results of Császár [2] appear not quite to imply this.) After drawing some conclusions about oscillatory behaviour at non-AD points, we then discuss approximate maxima and generalize a result recently given by Pu and Pu [7].

<u>Theorem 1</u>. At almost all points $x_0 \in E$ at which f is not AD, both of the sets $A_{+}(x_0)$, $A_{-}(x_0)$ have upper unilateral density 1 on both sides at x_0 .

<u>Proof</u>. There are only countably many values of α such that

the set $E_{\alpha} = \{x: f(x) = \alpha\}$ has positive measure, and f is AD at almost all points of each set E_{α} (the density points). Hence we may suppose that f takes no value on a set of positive measure. We may also suppose that E is compact and (by Luzin's theorem) that f is continuous. Under these conditions we have the following result, which together with three similar results (obtained by interchanging left, right and >, <) clearly implies our theorem.

<u>Lemma</u>. At almost all points $x_0 \in E$ at which the set {x: $f(x) > f(x_0)$ } has lower unilateral density greater than zero from the right, the set {x: $f(x) < f(x_0)$ } has unilateral density 1 from the left.

<u>Proof of the Lemma</u>. Let B_n denote the set of points $x \in E$ such that

$$0 < h \leq n^{-1} \implies m([x, x+h] \cap \{y; f(y) > f(x)\}) \geqslant n^{-1}h . (1)$$

It is sufficient to prove the assertion for B_n , which is compact. Take any point $x_0 \in B_n$ and $0 < \delta \leqslant n^{-1}$ such that

$$0 < h \leq \delta \Rightarrow m([x_0 - h, x_0] \cap B_n) > (1 - n^{-1})h;$$
 (2)
almost all points of B_n have this property for some δ .

Consider f on the compact set $[x_0 - \delta, x_0] \cap B_n$; its supremum is attained, and I claim that it is attained at x_0 . For suppose it is at a point $x_1 \neq x_0$ and $f(x_1) > f(x_0)$. Then by (1) applied to the point $x = x_1 \in B_n$,

$$m([x_1, x_0] \cap \{y: f(y) > f(x_1)\}) \ge n^{-1}(x_0 - x_1) .$$
 (3)

But no points of the set $[x_1, x_0] \cap \{y: f(y) > f(x_1)\}$ can belong to B_n , by the maximality of $f(x_1)$. Hence by (3)

188

 $m([x_1, x_0] \cap B_n) < (1 - n^{-1})(x_0 - x_1)$. This contradicts (2) for $h = x_0 - x_1$.

Hence the supremum is indeed attained at x_0 , and provided x_0 is a density point from the left of B_n it is a density point from the left of the set {y: $f(y) < f(x_0)$ }, as required.

<u>Remark</u>. Our theorem shows that at almost all points $x_0 \in E$ at which f is not AD, it is <u>oscillatory</u>, in the sense that at x_0 the set $A(x_0)$ has density zero and both of the sets $A_+(x_0)$, $A_-(x_0)$ have upper unilateral density 1 on both sides. It is easy to see that almost all points x_0 at which f is oscillatory divide themselves into two subclasses:

I. Those at which f has approximate derivative zero, and the function $f(x) + \alpha x$ is AD at x_0 for every $\alpha \neq 0$.

II. Those at which f is not approximately differentiable, and each of the functions $f(x) + \alpha x$ is also oscillatory. We might call f weakly and strongly oscillatory in these two cases. Only constant functions have approximate derivative zero everywhere, so no function is everywhere weakly oscillatory on IR.

Now let f be an arbitrary real function defined on an arbitrary linear set E, and let M = M(f) denote the set of points $x_0 \in E$ at which f has an <u>approximate strict maximum</u>, that is, for which the set $\{x: f(x) < f(x_0)\}$ has density 1 at x_0 with respect to inner measure. Pu and Pu [7] showed, in the case when E is the whole line, that if f is measurable then M has measure zero, and if f is continuous then M is also meagre. Their first conclusion can be regarded as a corollary of the results of Khinchin and Good quoted earlier, and in fact Theorem 5.21 of Gsászár [2]

189

implies that it is valid without the measurability assumption. In Theorem 2 we provide a slight generalization of this fact.

<u>Theorem 2</u>. For almost all points $x_0 \in E$, for every $\epsilon > 0$ there exist arbitrarily small intervals I containing x_0 such that

$$\mathbf{m}^*[\mathbf{I} \cap \{\mathbf{x} \in \mathbf{E}; \mathbf{f}(\mathbf{x}) \ge \mathbf{f}(\mathbf{x}_0)\}] > (1 - \epsilon)\mathbf{m}(\mathbf{I}) .$$

<u>Proof.</u> Suppose not; then for some $\epsilon > 0$, $\delta > 0$ there exists a subset E_0 of E of positive outer measure such that $x_0 \in E_0 \cap I \& 0 < m(I) < \delta \implies m*[I \cap \{x \in E: f(x) \ge f(x_0)\}] \le (1 - \epsilon)m(I)$. (4) . Choose an interval I_0 with $m(I_0) < \delta$, such that

$$\mathbf{m}^{*}(\mathbf{E}_{0} \cap \mathbf{I}_{0}) > (1 - \epsilon)\mathbf{m}(\mathbf{I}_{0}) .$$
 (5)

Let
$$\lambda = \inf\{f(x): x \in E_0 \cap I_0\}$$
 and choose a sequence (x_k) of
points of $E_0 \cap I_0$ such that $f(x_1) \ge f(x_2) \ge \dots \Rightarrow \lambda$. Now
 $m*[I_0 \cap \{x \in E: f(x) > \lambda\}] \le \lim_k m*[I_0 \cap \{x \in E: f(x) \ge f(x_k)\}] \le$
 $\le (1 - \epsilon)m(I_0) < m*(E_0 \cap I_0)$

by (4) and (5), so

$$m^{\ast}[E_{0} \cap I_{0} \cap \{x \in E: f(x) \leq \lambda\}] > 0.$$

In view of the definition of λ , this implies that the set

$$\mathbf{E}_0 \cap \mathbf{I}_0 \cap \{\mathbf{x} \in \mathbf{E}: \mathbf{f}(\mathbf{x}) = \lambda\}$$

is of positive outer measure; but at any point x_0 of this set at which it has upper density 1 (with respect to outer measure), it is clear that (4) is contradicted.

<u>Remark</u>. Various generalizations to \mathbb{R}^n have been proved in [1], [3], [6], and [8], as a referee has pointed out. I am grateful for comments from him and the editor.

- [1] Á. Császár, <u>Sur la structure des ensembles de niveau des</u>
 <u>fonctions réelles à deux variables</u>, Acta Sci. Math. Szeged 15 (1954), 183-202.
- [2] A. Császár, Sur la structure des ensembles de niveau des fonctions réelles à une variable, Colloq. Math. 4 (1956-7), 13-29.
- [3] J. Foran, <u>On the density maxima of a function</u>, Colloq. Math. 37 (1977), 245-254.
- [4] I. J. Good, <u>The approximate local monotony of measurable</u> <u>functions</u>, Proc. Camb. Phil. Soc. 36 (1940), 9-13.
- [5] A. Ya. Khinchin, <u>Recherches sur la structure des fonctions</u> <u>mesurables</u> I, II, Rec. Math. Soc. Math. Moscou 31 (1924), 265-285, 377-433.
- [6] R. J. O'Malley, <u>Strict essential maxima</u>, Proc. Amer. Math. Soc.
 33 (1972), 501-504.
- [7] H. W. Pu and H. H. Pu, <u>On the approximate maxima of a function</u>, Rev. Roum. Math. Pures et Appl. 24 (1979), 281-284.
- [8] L. Zajíček, <u>A note on preponderant maxima</u>, Colloq. Math., forthcoming.

Received July 28, 1980