
 TOPICAL SURVEY Real Analysis Exchange Vol . 6 (1980-81)

 Uniform Ideas in Analysis

 Michael D. Rice1

 I . Introduction

 A. Nature of paper, scientific workers, and
 historical scope

 B. Notation in uniform spaces and analysis

 II. Historical Ideas

 A. Topological groups, vector spaces, and
 dynamical systems

 B. Measure and integration

 III. Modern Developments

 A. Measurable functions

 B. Descriptive set theory

 C. Uniform measures

 1 The present work is partially supported by NSF Grant
 MCS-8002778

 139



 IA. Scope of paper

 During the last ten years there has been a renewed

 interest in the subject of uniform spaces. This re-

 newed interest is'- due largely to the recognition that

 many of the mathematical ideas which are central to the

 foundations of real analysis can be discussed in a very

 natural manner using the language of uniform spaces.

 These ideas include measurable functions, sigma-fields ,

 and the theory of measure and integration. Moreover,

 one can present a reasonable argument that analysts have

 been intuitively aware of this "connection" for a long

 time - at least since the introduction of the general

 theory of integration at the beginning of this century.

 (This viewpoint has also been expressed by Berbeřian in

 his review [Bb].) A possible starting point for a de-

 fense of this remark is found in section two of the

 present work, where I have collected some instances of

 historical "uniform thinking" in analysis. The latter

 portion of the second section sets the stage for the

 discussion modern material found in section
 three. This material summarizes certain formal connec-

 tions between uniform and analytic ideas that have de-

 veloped in the last ten years.

 The formal results found in the third section and

 other new results in uniform spaces are due largely to

 the efforts of mathematicians in Czechoslovakia, France,
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 Russia, and the United States. Specifically:* in

 Czechoslovakia the research group consisting of Z.

 Frolik, M. Hušek, J. Pelant, J. Pachi, J. Vilimovsky,

 P. Ptak, P. Simon, V. Rodi, and J. Reiterman has con-

 tributed a number of new results, many of which can be

 found in the notes of Seminar Uniform Spaces 1973-1977

 (Mathematics Institute of Czechoslovak Academy of

 Sciences, Prague, denoted in this paper by [SUS]). In

 France, a number of mathematicians associated with the

 mathematical school in Lyon, including H. Buchwalter,

 R. Pupier, and A. Deaibes have contributed results to

 the theories of uniform measures and algebras of func-

 tions (see the references found in [De]) . In Russia,

 I.A. Berezanskii, V.P. Fedorova, and D.A. Raikov have

 contributed basic ideas to uniform measure theory,

 while the schools centering around V.A. Efremovič and

 Y.M. Smirnov have done basic work on proximity theory,

 uniform geometry, and dynamical systems (see the survey

 articles [EV] and [Sm]) . Finally, in the United States

 pioneering work in uniform spaces and algebras of func-

 tions was done by J.R. Isbell (see [I] ) and the uni-
 1 ,2

 form connections with the theory of vector lattices and

 approximation was greatly expanded in the work of A.W.

 Hager (see references [Ha] ). The later work of his
 ■♦-10

 students M.D. Rice and G. Tashjian discusses further

 connections between uniform spaces, measurable functions,

 and the descriptive theory of sets (see [Ri] and
 i- s
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 [Ta] ) .
 1 >2

 I would like to thank the editors of the Real

 Analysis Exchange for this opportunity to present ray

 views on the connections between uniform spaces and

 analysis. I hope- that the patterns in uniform thinking

 will be congenial and easily recognized by an intended

 audience of real analysts. I would also like to thank

 my advisor A.W. Hager for introducing me to a large por-

 tion of the subject matter found in this paper and to

 thank my friends in Prague for many good conversations

 on uniform spaces.

 IB. Notation

 A uniform structure or uniformity on a set X can

 be described in terms af entourages, pseudometrics , or

 (uniform) covers which satisfy certain axioms. For the

 most part, the latter formulation will be the most con-

 venient. Thus a uniform space will be a set X equipped

 with a family of uniform covers u which satisfies the

 following axioms: (i) if U and V are members of u,

 then i/~7={UnV : Ue£/ and Vc7} is a member of u, (ii) if

 U is a member of u and U<V (for each U in U, there ex-

 ists V in 7 such that U ç V) , then 7 is a member of u,

 and (iii) for each V in u, there exists U in u such

 that £/*= {St (U, £/) : U ¿U}<V (where St(U ,U) =

 UiU'fil/: U'n U f 0}. The uniform space will be de-
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 noted by uX. For example, if (M, d) is a pseudometric

 space, the uniformity generated by d consists of all

 covers which may be refined by covers of the form

 {B(x,r): X£M}, r>0, where B(x,r) = {y': d(x,y)<r>.

 Each uniformity on a set X induces a topology on X

 which is completely regular; in general we will not be

 concerned with it except when considering uniformities

 on function spaces. We will use the fact that each

 completely regular space X admits a largest uniformity

 (called the fine uniformity) which induces the given

 topology. If a family of covers u satisfies (i) and

 (iii) (resp. (iii)), then u is a basis (resp. subbasis)

 for a uniformity on X. If u is a basis for a uniformity

 on X, a family A of subsets of X is uniformly discrete

 (with respect to u) if there exists U in u such that

 each member of U meets at most one member in A.

 If uX and vY are uniform spaces, a mapping

 f: X->-Y is uniformly continuous if f-1(7) is a member

 of u for each V in v. The family of uniformly con-

 tinuous mappings from uX to vY will be donoted by

 U(uX,vY)(or simply U(X,Y) if the uniformities are

 understood). IfTR is the real numbers with the usual

 absolute value metric, U(uX, TR) will be denoted by

 U(uX) (or simply U(X)). (X) will denote the set of

 bounded members of U(X) . The sets of the form

 Z(f) = {x: f(x) = 0} and coz(f) = {x: f(x) ^ 0}, f in

 U(X) , are called (uniform) zero sets and co z ero sets,
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 respectively. The family of zero sets (resp. cozero

 sets) will be denoted by Z(uX) (resp. Coz(uX)).

 A family of mappings {fs: uX-*vY} is equi -uniformly
 continuous if for each V in v, there exists U in u such

 that U < f"1^) for every s.

 A uniform space uX is precompact (separable) if

 each member of u has a finite (countable) subcover. uX

 is complete if each u-Cauchy filter F is convergent

 (where F is u-Cauchy if each cover in u contains some

 member of F) . The completion of a uniform space uX will
 A

 usually be denoted by X if u is understood. For each

 uniformity u on a set X, there exists a largest uni-

 formity pu contained in u which is precompact. The

 completion of X with respect to pu is called the Samuel
 V

 compact i ficat ion of uX and will be denoted by X.

 We will also have occasion to use the theory of

 proximity structures , which axiomatizes the notion of

 nearness of sets and is essentially equivalent to the

 theory of precompact uniform spaces (see f°r ¿Le-

 tails) . Intuitively, the sets A and B are near

 (written A<5B) with respect to a uniformity u if every

 member of u contains a set which intersects both A and

 B (if u is derived from a pseudometric d, this simply

 means that d(A,B)=0) . If the sets A and B are not near,

 they are said to be far . A uniform space uX is said to

 be finest in its proximity class or proximally fine if

 u is the largest uniformity on X which induces the
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 notion of nearness described above. It is a classical

 result of Efremovič (seeCU^) that every metric space
 is proximally fine.

 We will also need the following terminology from

 the theory of lattice-ordered algebras. A: X-*TR will

 usually denote a vector lattice of real -valued functions

 on X which contains the constant mappings. A is

 uniformly closed if it is closed under the formation of

 uniformly convergent sequences. A is composition -clo sed

 if for each finite family f , f , ...,f_ in A and every
 12 11

 continuous mapping g: TRn -»■ TR, the composition

 X-*TR is a member of A. A is i n ve r s ion-closed

 if f in A and f(x) f 0 for every x implies 1/f is a

 member of A. Finally, A is a ring if it is closed

 under pointwise products and the ring is said to be

 Von -Neumann regular if for each f in 4, there exists

 g in A such that f2g = f.

 Finally, I will use the following terminology for

 analytic concepts. A sigma-field on the set X will

 usually be denoted by Z ; a measure on E will usually

 refer to a positive count ably additive set function and

 be denoted by y or v. The family of measurable functions

 between two measurable spaces will be denoted by M(X,Y)

 if the sigma-fields are understood; M(X, TR) will refer

 to the real line with the usual Borei structure.

 If p is a measure on Z, the notation Z (y) will re-

 fer to I equipped with the pseudometric d defined by
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 d(A,B) =ļi (AAB) , where A is the operation of symmetric

 difference .

 Given a uniform space uX, Baire (uX> (or Baire QC))

 will denote the sigma-field generated by the uniform

 zero sets and Baire (X,M) will denote the family of

 real -valued mappings which are measurable with respect

 to Baire (X) and the usual Borei structure on the metric

 space M. The notation Bairea(X) (resp . Bairea(X,M))
 will be used to denote the Baire sets of (ambiguous)

 class a (resp. the Baire measurable mappings of class

 a - the pre-image of every open set is a Baire set of

 class a) . Souslin (X) will denote the family of sets

 which are derived from the uniform zero sets using the

 (4) - or Souslin operation (see [K]^ for the precise de-
 finition) . bi-Souslin(X) will denote the family of

 sets A such that both A and its complement are Souslin

 sets . It follows from general results on the (.A) -opera-

 tion that Baire (X) c bi-Souslin(X) is always valid.

 IIA. Historical Ideas

 The first part of this section will present several

 examples from the theories of topological groups, topo-

 logical vector spaces, and dynamical systems which illu-
 strate the historical pattern of establishing global re-

 sults from local assumptions. These global results can

 frequently be expressed in the language of uniform spaces.
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 It is reasonable to assume that the early investi-

 gation of topological groups led to the definition of a

 uniform space by Weil in [VG^. Whatever the motivation,
 it was clearly recognized that the right and left uni-

 form structures associated with a topological group re-

 flected global properties of the group, which in turn

 were derived from local assumptions. Thus a compact

 neighborhood of the identity guaranteed not only a uni-

 form cover consisting of compact sets, but also an in-

 variant Haar measure which assigned the same value to

 each member of the cover. This recognition of the role

 of uniformity led to the construction of invariant mea-

 sures in certain uniform spaces [Lo]. Conversely, it

 was also shown that the presence of a left invariant

 measure in a measurable group forced the group to be

 locally bounded (see chapter twelve in [HI 3) and hence

 by a result in LRi] the associated left uniform struc-
 6

 ture must have a uniform basis consisting of star-finite

 covers . Thus a necessary condition for the existence

 of an invariant measure can be expressed in terms of

 the uniform structure. Moreover, additional important

 properties of the enveloping algebra of the group are

 directly related to the coincidence of the right and

 left uniform structures (see the remarks in [Bb]) .

 Perhaps the most important early results in the

 theory of linear operators hinged on the use of the

 Baire category theorem to deduce uniform boundedness
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 principles (see [Dn] for a complete discussion) . These

 results essentially showed that the hypothesis of point-

 wise boundedness for a family of bounded linear opera-

 tors on a Banach space guaranteed a uniform bound on

 the norms of the operators and hence, in our terminology,

 that the family is equi -uniformly continuous. Using

 this result, one can establish the standard closed

 graph theorem. In turn, the extension of the closed

 graph theorem to the more general setting of topological

 vector spaces has required the use of various complete-

 ness assumptions (for example, V. Ptak's B-completeness

 and J.L. Kelley's use of hypercompleteness) as well as

 new assumptions on the domain space (such as the notion

 of a barreled space - see [Ht] for further details) .

 finally, the work of the French school on topological

 vector spaces has required the introduction of uniform

 structures in many settings. Here I will only mention

 the work involving the vector space topologies on

 families of mappings induced by the uniformities of

 bounded or precompact convergence, the use of equi-

 uniformly continuous families of mappings in duality

 theory, and the accompanying characterizations of com-

 pleteness. These examples once again illustrate the

 fundamental idea that analysts have often resorted to

 the language of uniformities to state results of a

 global or collective nature.

 Before turning to real analysis proper, I would
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 also like to remind the reader of the extensive modern

 usage of the language of uniformities in the theory of

 dynamical systems. For example, key ideas in stability

 theory (such as an almost periodic motion) depend on

 the underlying uniform structure and Lyapunov stability

 is based on equi-uniform continuity (see [Sa] and [Se]

 for further details) . The work of the Russian school

 has illustrated the usefulness of considering uniform

 and proximity structures on vector fields and

 Riemannian spaces in connection with questions in

 differentiable dynamics. ([EV] contains a large number

 of references on these contributions.)

 IIB. Measure and integration

 This subsection is divided into an initial part

 involving measure and a second part motivated by the

 integral. The second part leads naturally into the

 modern theory of uniform spaces, while the first part

 has not been integrated into a modern uniform space

 context .

 1. Measure

 In the theory of outer measures one already en-

 counters a concept of nearness for sets (essentially

 known to F. Riesz) . The very definition of a metric

 outer measure on a metric space (X,d) requires that

 y*(A) + y*(B) = ji*(A[jB) when d(A,B) >0, that is, if
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 the sets A and B are far, the set function acts in an

 additive manner. There is no difficulty in substituting

 the phrase "A is far from B with respect to a proximity

 6" and defining a 6 -outer measure. If Z is the stigma-

 field of y* - measurable sets, one can easily show that

 Baire(uX) c £ for every uniformity u which induces the

 proximity 5. In another direction, given an arbitrary

 outer measure y*, one can define a concept or nearness

 by saying that A and B are far in y*(A)+y*(B) = y*(AljB).

 To my knowledge, there has been no systematic examina-

 tion of this interplay between proximity and measure.

 The classical idea of absolute continuity provides

 another excellent illustration of uniform thinking.

 Let y and v be finite measures on (X,E). It is well

 known that y is absolutely continuous with respect to

 v if and only if the mapping y : I(v)-»-TR is uniformly

 continuous. Furthermore, the Vitali -Hahn -Saks theorem

 says more about this relationship: if yn <v,

 n » 1,2,..., and lim yn(E) exists for all E in 2 , then
 n-*-°°

 the family (yn) is equi -uniformly continuous on 2(v).

 In addition, the pointwise limit y= lim yn is countably
 n-*»

 additive and the countable additivity is uniform - if
 00

 E 3E s ... with r' E^ 1 = 0 and r>0, there exists m such 12 ... i=l 1

 that y_ (E )<r for all n=l,2,... Moreover, Dubrovskii
 n m

 [Duj showed that the uniform countable additivity of a

 family of measures is equivalent to equi -uniform
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 continuity of the family with respect to a fixed £(v).

 Hence one can see that the concepts mentioned above are

 only different expressions of the same uniform phenomena.

 Without citing further examples, I will only say that

 this uniform phenomena is the key to all known charac-

 terizations of compactness, not only in the setting of

 spaces of measures, but also in the setting of function

 spaces (Arzela-Ascoli theorems) (see [DS3 for specific

 results in these directions) .

 2. Integration

 Of course, the work on absolute continuity dis-

 cussed above is related to convergence theorems for

 integrals. This fact has been known for a long time:

 in 1907 Vitali [Vj proved that whenever the" Lebesgue

 integrals fn converge to the integral the

 indefinite integrals fn, n»l,2,... must be uni-

 formly absolutely continuous with respect to Lebesgue

 measure. Therefore any condition on the pointwise

 convergent family (fn) which guarantees the convergence

 of the integrals must, in some sense, be a "collective"

 condition (like equi -uniform continuity, although this

 condition does not insure the convergence of the in-

 tegrals) . The well known Monotone and Dominated Con-

 vergence theorems supply such sufficient conditions,

 which will be discussed below in connection with the

 inversion property. In turn, the Monotone Convergence
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 theorem is incorporated in the definition of the

 Danieli integral as a linear functional defined on a

 space of real-valued functions, with the Riesz re-

 presentation theorem representing the connection be-

 tween the two approaches to integration theory (see

 the historical notes in chapters 3 and 4 of [DS]) .

 In the early 1940's A.D. Alexandrov [A] developed

 a theory of linear functionals on families of real-

 valued functions and a related theory of measures. This

 theory was based on what he called A-spaces and A -map s ;

 in our terminology we can recognize his completely nor-

 mal A-spaces as exactly the pairs (X,Z(X)), where Z(X)

 is the family of all zero sets with respect to some

 uniformity on X, and his A-maps as the functions

 f: X-»-Y such that the pre -image of each zero set is a

 zero set (see [Ha^, pages 542-545 and CHaJ^ for a
 detailed discussion) . Given a uniformly closed vector

 lattice A: X-*-H, Alexandrov defined Z to be the family

 of zero sets of members in A and C(X,Z) to be the family

 of A-maps (relative Z) from X to the real line. The

 properties of linear functionals on A and C(X,Z) were

 discussed and related to certain measures on the field

 and sigma-field generated by Z . In particular, a re-

 presentation theorem was established that related the

 continuous linear functionals on the bounded members of

 C (X , Z) to the regular finitely additive measures on the

 field generated by Z. (This result is essentially
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 found in CDS], IV. 6.2 for normal topological spaces.)

 Furthermore, if the family Z satisfied a compactness

 condition (#) every countable subfamily of Z with the

 .finite intersection property has non-empty intersection,

 then the measures could be chosen to be regular and

 countably additive on the sigma-field generated by Z.

 The preceding construction evidently raises a

 number of questions. What is the relationship between

 A and C(X,Z)? What are the properties of C(X,Z)? Why

 can one obtain a satisfactory representation theory?

 A complete answer to the first two questions is given

 in [Ha]^. First, note that A is a subfamily of C(X,Z).
 It can be shown that C(X,Z) is the smallest uniformly

 closed vector lattice and ring which is inversion-closed

 and contains A. Hence A = C(X,Z) if and only if A is

 inversion-closed. The latter fact is also essentially

 found in Hausdorff's discussion of complete ordinary

 function systems, which are precisely the objects

 C(X,Z) (see [Hs]- 41. III and 41. VIII and [MU ) and in-
 2

 dicates that very early in the century these families

 were already being considered. The connection with

 uniform spaces is the following. Given a uniformly

 closed vector lattice A : X+TR, let u¿ denote the small-
 est uniformity on X such that every member of A is

 uniformly continuous. It is shown in [Ha] that for
 s

 each separable uniformity u there exists a special uni-

 formity mu containing u which has the basis consisting
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 of all countable colero covers (with respect to u) and

 satisfies Coz(muX) = Coz(uX). Furthermore, U(muX) is

 the smallest uniformly closed inversion-closed vector

 lattice of functions which contains U(uX) . In terms of

 the preceding work, we obtain C(X,Z) = U(mu X) and
 A

 A= C(X,Z) if and only if U(u^X) =4= UCmu^X) . Hence in
 this setting, we see not only that the Alexandrov formu-

 lation is somewhat clarified, but also that the operation

 u*-~>mu induces a categorical isomorphism between a cer-

 tain class of uniform spaces and the class of uniformly

 closed inversion-closed vector lattices or real-valued

 functions (EHa^, section 6). The separable uniformities
 u such that u = mu are called metric-fine ; the reason

 for the name comes from the fact that uX is metric -fine

 if and only if each uniformly continuous mapping f: uX-»-M

 to a metric space M is also uniformly continuous with

 respect to the fine uniformity on M (which has the basis

 consisting of all open covers of M) . The basic theory

 of separable metric-fine uniform spaces is developed in

 [Ha]s; the work of Gordon [Go] also contains results of
 a related nature.

 The preceding discussion shows that the Alexandrov

 setting is essentially uniform space setting, but why

 does there exist a satisfactory representation theory?

 For example, if Z is the family of zero sets of a

 Tychonov space X, why can every positive linear function-

 al on C(X,Z) (the family of all continuous real -valued

 functions) be represented by a countably additive
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 measure on the Baire sets (the sigma-field generated by

 Z)? (This is a result of Hewitt [He].) One possible

 answer lies in the fact that the vector lattice C(X,Z)

 is inversion-closed. A recent result tends to support

 this assertion. M. Zahradnik has shown ([SUS], 1973 -

 1974) that U(uX) is inversion-closed if and only if u

 has the Danieli property: whenever (fn) c U(X) and

 fn+O» then equi -uni formi y continuous. This re-
 sult is related to our earlier discussion of the con-

 vergence of integrals - for a Monotone Convergence

 "theorem to hold, monotone increasing families must ex-

 hibit some "collective" behavior and this behavior is

 provided by the inversion property.

 Our discussion has indicated how the uniform con-

 cept of a metric-fine space has naturally arisen from
 fundamental analytic questions. Of course, our restric-

 tion tc> real -valued mappings means that we need only

 consider separable uniformities; for the discussion of

 mappings with infinite dimensional range the preceding

 work is not sufficient. During the period 1972-1978, a

 general theory of metric-fine spaces was developed by
 *

 Z. Frolik, A.W. Hager, and M.D. Rice (see [FrJ
 3, 7>

 and [Ha] and ERi] ) . Briefly, to each uni-
 5, 7, a, i, 2, s

 form space uX one may associate a smallest metric-fine

 uniformity mu containing u; that is, each uniformly

 continuous mapping f:muX->-M to a metric space is also

 uniformly continuous with respect to the fine uniform-
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 ity on M, and this assignment is functorial: if

 g: uX-»-vY is uniformly continuous, then g: muX-»-mvY is

 also uniformly continuous. The uniformity mu has the

 basis of covers of the form {Cn^Ug}, where {Cn> is a

 countable cozero cover and each cover Z/n={Ug}, n=l,2,...
 is a member of u. It follows that each countable

 member of mu may be refined by a countable u-cozero

 cover; hence mu and u have the same cozero sets and in

 a certain sense m is the largest operator on uniform

 spaces which does not alter cozero structure. There

 are many other characterizations of mu - see for ex-

 ample [FrJ . Here we will only note that the idea of
 .13

 "piecing" together covers like the one given above seems

 to be central to a number of ideas connecting uniform

 spaces and the descriptive theory of sets . We will

 also see this idea used in our discussion of measurable

 spaces' in section three.

 There are several additional connections between

 uniform theory and representation theory which should

 be noted. Recall that when the compactness condition

 (#) of Alexandrov is satisfied, the measure represent-

 ing a bounded functional can be assumed countably

 additive (this is essentially found in [DS] , III. 5. 13).

 The family of zero sets of uX satisfies (#) (is a semi-

 compact paving in the sense of [Me]) if and only if uX

 is precompact and metric - fine (equivalently , precompact

 and U(X) is inversion-closed) . Following Glicksberg
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 [G13 (see (De), 4.5.15), one can also show that this

 condition is equivalent to each of the following con-

 ditions: (i) every positive linear functional on Ub(X)

 satisfies the Monotone Convergence theorem, (ii) every

 finitely additive Baire measure (regular with -respect

 to zero sets) is countably additive, (iii) U(X) satis-

 fies Dini's theorem: if (fn) c (X) and then

 fn converges uniformly to zero. Notice that condition
 *

 (iii) follows naturally from the Zahradník characteri-

 zation - if fn+0, (fn) is an equi-uniform family on a

 precompact space and hence by the Arzela-Ascoli

 theorem precompact in the uniformity of uniform con-

 vergence, so f must converge uniformly to zero. Hence

 the notion of a precompact metric -fine space represents

 the amalgamation of several important analytical con-

 cepts .

 I remarked earlier that the representation

 >1 = U(u^X) is valid for every inversion-closed vector
 lattice a of real-valued funcitons. Representations of

 this type have been studied by a number of authors in-

 cluding Isbell, Hager, Fenstad, Csaszar, and Nöbeling-

 Bauer in the context of generalized approximation

 theorems. Here I will cite some examples which are

 relevant to the present subject matter. The reader is

 referred to [Ha] for further details and refer-
 S 8, 10

 enees .

 If a is a vector lattice of bounded real-valued
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 functions on X, Nöbeling and Bauer showed that A is

 always uniformly dense in U(u X) , a result which is
 A

 essentially equivalent to the usual Stone-Weierstrass

 theorem (for real-valued functions). It follows from

 this result that when A is a subalgebra of (uX) and

 u^ = pu, then A is uniformly dense in (uX) (for X
 compact this condition is equivalent to the assumption

 that A separates the points of X). In another direction,

 Isbell [I] established that each composition-closed
 i

 vector lattice A of real -valued functions has the form

 A - U(u.X) . It follows from either of the preceding

 results that the family R of (proper) Riemann inte-

 grable functions on a closed interval X can be re-

 presented as UCujjX) . It should be noted that in gener-
 al such a representation is not possible - the family

 A of Lebesgue integrable functions on (0,°°) provides

 a nice example (for f(x) = (x+1)"2 is a member of A

 and the mapping g(t) = 1 1 ļ ^ is a member of U(R) , but

 g«f is not a member of jt) . Finally, we note that the

 following approximation results are- valid for any

 vector lattice A of real-valued functions (see [Ha] ):

 (i) every non-negative member of U(mu^X) is the point-

 wise limit of an increasing sequence from A and (ii) &

 is sequentially dense in Uimu^X) equipped with the com-

 pact-open topology. The first result is clearly re-

 lated to questions involving the extension of a posi-

 tive functional L on A to a Danieli integral on C(X,Z)
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 (or U(mu^X) in the present notation) ; for the extended
 V

 functional L to satisfy the Monotone Convergence theorem,
 V

 L must be defined from L in the natural way - if
 V V

 (fn) c A and fn + f, we must have L(fn) ->■ L(f), so L is
 a unique extension of L. It is also interesting to note

 the following consequence of (i) . If the weak topology

 generated by a vector lattice A of real -valued functions

 is Lindelöf, every non-negative continuous real -valued

 function on X is the pointwise limit of an increasing

 sequence from A. (This follows from the fact that the

 only compatible metric-fine uniformity on a Lindelöf

 space is the fine uniformity.)

 IIIA. Measurable funcitons and sigma-fields

 The second half of the preceding section demon-

 strated how analytic concepts have suggested ideas in

 uniform spaces , which in turn have acted as unifying

 themes. The present section will present further

 modern uniform ideas that are connected with some

 central ideas in abstract analysis.

 Everyone intuitively knows that measurability of

 a mapping is really a global concept. This idea may be

 expressed in a number of ways: (i) the topology gener^

 ated by the measurable mappings is usually discrete,

 (ii) measurability (in the absence of a measure, den-

 sity topology, etc.) can not be expressed locally, or
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 (iii) in the following manner. Let (X,Z ) and (Y,Z ) be
 1 2

 measurable spaces. Given a sigma-field Z, let u(Z) de-

 note the uniformity with the basis of countable Z -parti-

 tions of the underlying set. Then one can easliy esta-

 blish that f: X-»-Y is measurable (Vith respect to Z^ and

 2^) if and only if f: u(Z^) X-»-u(Z2)Y is uniformly con-
 tinuous. Moreover, if S is a separable metric space

 with the usual Borei structure, one obtains the equality

 M(X,S) = U(u(Z)X,S) . Hence one can say that measura-

 bility is a global concept because the real-valued

 measurable mappings are precisely the uniformly con-

 tinuous mappings with respect to an appropriate uni-

 formity.' This idea was introduced in the early 1.970's
 *

 by A.W. Hager and Z. Frolik. One may also take into

 account the almost everywhere setting. If (X,Z,ji) is a

 measure space, the family of separable metric valued

 mappings on X which are measurable a.e. is the set of

 members of U(u(E)X,M) , where u(Z) has the basis of

 partitions of the form {An: n=l , 2 , . . . }[]{ {p } : P«Aq} ,

 where each Ah is a member of Z and y(Ag) = 0.

 It is natural to inquire about the structure of

 u(Z) . Using familiar facts about measurable mappings,

 one can easily show that U(u(Z)X) is a Von Neumann re-

 gular ring closed under the formation of sequential

 point -wise limits. In particular, the ring is inversion-

 closed, so one suspects some connection with the metric-

 fine spaces and representation theory discussed in
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 section two. This is indeed the case. Following lHa3 ,
 6

 define a separable uniform space uX to be méasurabl e

 if u » u(I) for some sigma-field E on the set X (which

 must therefore be Baire(uX)). One may then establish

 the following representation theory and characteriza-

 tions of measurable uniform spaces (see CHa]^). There
 is a categorical isomorphism between the Von Neumann

 regular rings of real -valued functions and the separable

 measurable uniform spaces - in particular, if A is such

 a ring, the uniformity u^ is measurable. Furthermore,
 the following statements are equivalent for a separable

 uniform space uX: (i) uX is measurable, (ii) uX is

 metric-fine and Coz(uX) is a sigma-field, (iii) U(uX)

 is closed under the formation of sequential pointwise

 limits, (iv) every uniform subspace of uX is metric-

 fine, and (v) U(uA) is inversion-closed for each sub-

 space A of X. The last two conditions are particularly

 enlightening; in some sense the present discussion is

 just a hereditary (on every subspace) version of the

 discussion given in section two. There is also a

 measurable operator m , which assigns to each separable
 *

 uniformity u the uniformity m u = u(E) , where E is the
 *

 sigma-field Baire(uX) . m u is the smallest measurable
 *

 uniformity containing u and the assignment u m u is
 *

 functorial in nature.

 In the discussion above we restricted our attention

 to separable uniform spaces. In view of the equivalent

 l6l



 conditions (i) -(v), there are several possible ways to

 extend the preceding theory to arbitrary uniform spaces.
 *

 Z. Frolik defined uX to be measurable if U(uX,M)

 is closed under the formation of pointwise sequential

 limits for every metric space; Rice [Ri]^ essentially
 defined the same concept by requiring that every uni-

 form subspace is metric-fine; in particular the defini-

 tions are equivalent ([Fr]s) and each is equivalent to
 the condition that uX is metric-fine and Goz(uX) is a

 sigma-field. There is an associated functorial opera-

 tion m which assigns to u the smallest measurable
 *

 uniformity m u containing u, with m u having a basis of
 * *

 covers of the form {B^ n U?> » , where {B } is a countable n » , n

 Baire partition of X and each Un = n=l,2,... is a

 member of u (hence once again a certain uniformly local

 operation on covers seems to have a special significance

 for analytic concepts). Furthermore, the uniformity

 generated by the countable members of m u is precisely
 *

 u(Baire(X)), so u and m u have the same Baire sets.
 *

 Many other results about the theory of measurable uni-

 form spaces r can be found in CFrJ and [Ri] ; we will
 r i» -6 a j 2

 have occasion to mention some of these in a moment.

 First, however, I would like to mention one problem with

 the non-separable theory described above.

 The problem is simply that the metric -valued

 measurable mappings (with respect to Baire (uX) ) need

 not coincide with the mappings which are uniformly con-
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 tinuous with respect to m u (and the metric uniformity
 *

 on the range space). In fact, a similar problem was

 present in the metric -fine theory: the cozero mappings

 from uX to an arbitrary metric space M (those for which

 the inverse of an open set is a cozero set) are not

 precisely the members of U(muX,M) in all cases; the

 latter family is usually smaller! In the present

 setting we have the same problem - UOn^uXjM) is gener-

 ally a proper subset of the Baire measurable mappings

 from uX to M. To illustrate the problem, I will use a

 set-theoretic example which can be constructed using

 Martin's axiom and the negation of the Continuum Hypo-

 thesis. (There are other examples which do not require

 special set-theoretic assumptions.) Let X be an "un-

 countable subset of the real line such that every sub-

 set of X is a relative G. set. Let u denote the sub-
 Ò

 space uniformity on X and let M denote the metric space

 based on X with the discrete 0-1 metric. Then every

 subset of X is a member of Baire (uX), so the identity

 mapping i: X-»-M is Baire measurable, but i is not uni-

 formly continuous with respect to m^u since this uni-

 formity has a basis consisting of countable covers.

 Perhaps the problem stems from a wrong choice for

 the uniformity. Here is another possibility. Given a

 measurable space (X,Z), let Uj. denote the smallest uni-
 formity on X such that every Z -measurable mapping to a

 metric space is uniformly continuous (in the above ex-
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 ample this uniformity consists of all covers of X) . By

 definition, for every metric space M, Baire (uX,M) is

 contained in U(uj-X,M) (E= Baire (uX)). Hence when

 m^u = Uj , the three classes Baire (uX,M), U(mAuX,M(") , and

 U(UjX,M) coincide. Conversely, one may prove (i) that
 if Baire (uX,M) = U(m^uX,M) for every metric space M, then

 m*u = Uj. and (ii) that this property holds exactly when
 the uniform space m*uX is finest in its proximity class

 (see (Ri) ), that is to say, when m*u is the largest
 3 > ■»

 uniformity which induces the nearness relation 6, where

 A5B if they cannot be separated by disjoint cozero sets.

 The measurable proximally fine spaces are called Baire-

 fine and have been studied in [Fr] , [Ha3 , and

 LRU
 2,^5
 There is a secondary question implicit in the above

 discussion. Even though the families of mappings need

 not coincide, perhaps the sigma-fields do coincide,

 i.e. Baire (u X) = £ for every measurable space (X,£) .

 Por example, this, equality is implied by the equality

 m*u = Uj. . Unfortunately, E is generally only a proper

 subfamily of Baire (uTX) , as the following example illu-
 u

 strates. Let Y be a set with power greater than c and

 let Z be the sigma-field on X = YxY generated by all

 rectangles A x B. Each of the covers

 U = {{y}x Y:y£Y} and U ={Y {y} : y£Y} is a member of
 1 2

 Uj ; since the meet of the two covers consists of all
 singleton subsets of X, it follows that u^ contains all
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 covers of X, so Baire (u^X) contains all subsets of X.
 On the other hand, it is well known that for |Y|>c,

 the diagonal {(y,y): y€Y} is not a member of Z.

 The further analysis of sigma- fields requires a

 notion which lies at the heart of modern work in des-

 criptive set theory - complete additivity.

 Let (X,Z) be a measurable space. A disjoint sub-

 family A of Z is called completely additive if the

 union of every subfamily of A is a member of A. The

 following two examples will serve as orientation. First,

 every completely additive Baire family in a compact

 space or a complete separable metric space is countable.

 Second , there are clearly uncountable completely addi-

 tive Lebesgue measurable families; consider the family

 of singleton sets in any uncountable set which has

 measure zero. One may prove that the family of com-

 pletely additive Z -partitions of X is a sub bas is for

 the uniformity U£ ; this means that every member of u

 can be refined by a finite meet of completely additive

 Z -partitions . (Note that in the above example the

 family of such partitions is_ not a basis for u^ .) If
 the family of completely additive Z -partitions is a

 basis for uz , we say that Z is proximally fine (see
 [Fr] and [RiJ ) .

 i 3 , *

 Each of the following statements is equivalent to

 the assertion that Z is proximally fine. (i) Z =

 Baire (u^X) , (ii) u^, is the largest uniformity on X such
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 that I - Baire(Uj.X) , and if one of these conditions

 holds, the uniformity u^. must be measurable and proxi-
 mally fine (but this latter statement is not equivalent

 to the above conditions as the preceding example shows) .

 One may also establish that E is proximally fine if and

 only if for each countable family {f : X-*-M } of metric-
 n n

 valued S -measurable mappings, the mapping
 QO

 (fn) : X* II Mjļ is Z -measurable with respect to the
 n=l

 Borei field on the product space (see [RiJ^). Examples
 of proximally fine sigma-fields include (i) all count -

 ably generated sigma-fields (assuming the Continuum

 Hypothesis) , (ii) all sigma-fields on sets of power at

 most c (assuming Martin's axiom), (iii) the Lebesgue.

 measurable sēts (essentially communicated to me by W.

 Fleissner, but also a consequence of work in [Fr3 ) ,
 1 If

 and (iv) the Borei field on every complete metric

 space. We will have more to say about (iv) below.

 The following material will hopefully provide some

 justification for the introduction of the preceding

 concepts. Let uX be an arbitrary uniform space. I

 previously described a special basis for m*u which,

 unfortunately, is not the most useful one for comparing

 m4u and u2(Z= Baire(uX)). One may show, however, that

 m*u also has the basis consisting of all a-uniformly

 discrete (with respect to u) Baire partitions of

 bounded class [Fr]^, that is, there exists a countable
 ordinal a such that each member of the cover belongs
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 to Baire (X) and the cover has the form u Cn , where
 a n=l

 each family C*1 is uniformly discrete with respect to "u.

 Since m^u is always contained in u^, , the question of
 equality hinges on whether every completely additive

 Baire partition has bounded Baire class and can be

 decomposed into a countable number of uniformly discrete

 subfamilies. In the early 1970's, the work by Hansell

 iHnJ^ 2 on a-discrete decomposability almost achieved
 thè required decomposition for a complete metric uni-

 formity u, without proving that completely additive

 Baire families must be of bounded Baire class. This

 fact was established by Preiss in iPrJ^ . The following
 theorem could then be established! £RiJ - for everv

 *,s

 complete metric space uX, m^uX is proximally fine

 (m*u = uBorel) and Borei (.X) is proximally fine. Other
 authors (see CP1J and iPoJ ) have also considered

 ^ J 2

 analogous decompositions for point-finite completely

 additive families in general metric spaces using addi-

 tional set-theoretic assumptions. For example, it

 follows from work in [Fl] that (i) assuming a set-theo-

 retic axiom stronger than the Continuum Hypothesis

 CO for stationary subsets of , m^M is pro-ximally

 fine for every metric space of power at most c, and (ii)

 in a model of set theory obtained by collapsing a

 supercompact cardinal to , mAM is proximally fine for
 every metric space M.

 One of the primary consequences of the preceding
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 theorem is that for a complete metric domain (or a metric

 domain, depending on your set-theoretic inclinations)

 classical statements about measurable mappings can be

 exactly formulated as statements about uniformly con-

 tinuous mappings. The following results illustrate

 this idea. Let M be a complete metric space. First,

 if {f : M+-M } is a countable family of metric-valued
 n n

 00

 Borei measurable mappings, then (f_) : M -»-II M is also a
 n n-1

 Borei mapping. Second, if (M ) is a countable family
 00

 of complete metric spaces, then Borei ( II is the
 n=l

 smallest proximally fine sigma-field which contains the

 product sigma-field © BorelCM^. Finally, if f:M -»■ N
 n=l

 is a Borei measurable mapping to the metric space N,

 the graph of f (» { (x , f (x) ) : x M}) is a Borei set in

 M X N. There are further consequences related to the

 descriptive theory of sets which will be explored in

 the next section. Before discussing these results, I

 would like to suggest another question related to

 proximally fine sigma-fields . First, to the best of my

 knowledge, there are no examples of metric spaces M
 «

 such that Borei (M) is not proximally fine. Now con-

 sider the following difinition: a countable collection

 A= Il A of disjoint completely additive subfamilies of a
 n=l 11

 sigma-field I weakly generates £ if the collection B

 of all unions of subfamilies of A generates I in the

 usual sense - E is the smallest sigma-field containing
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 B. CThe definition is motivated by the existence of a

 a-discrete basis for any metric topology.) Then one

 may establish the following (unpublished) representation

 theorem. If 2 is a proximally fine sigma-field and

 contains a weakly generating subfamily, then Z ■ Borei CM)

 for some zero -dimensional metric space M. This result

 can be viewed as a sigma-algebraic metrization theorem,

 which may possibly characterize the Borei families of

 metric spaces (in a manner analogous to the familiar

 characterization on the Borei families on separable

 metric spaces as precisely the countably generated

 sigma-fields) .

 HIB. Descriptive set theory

 The present section will consider a selection of

 topics in the non-separable theory of descriptive sets

 which are closely connected with uniform concepts (such

 as uniform discreteness and measurable uniformities) .

 Let uX be an arbitrary uniform space. Using the

 descriptions of m*u previously given, one can show that

 every uniformly continuous metric-valued mapping

 f: m*uX-*-M is a Baire mapping of class a, for some

 a < w . Now assume that g: 6 X->-M is a metric -valued i . 6

 Borei measurable mapping on the complete metric space

 uX. By the preceding work, g is a member of

 U(UBo = U(m*uX,M) ; hence g is a Baire mapping of
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 class a, for some a <w (see [Ri] and £Fr3 - the proof
 1 2

 in the second paper is incomplete, but it is essentially

 completed by the result in CPrJ^). The fact that we
 just established answers an old question of Kuratowski

 in [K] .
 2

 The preceding result is valid for metric-valued

 measurable mappings defined on any uX such that m^uX

 is proximally fine. In particular, Tashjian CTaJ^ has
 shown that m*uX is proximally fine for any arbitrary

 product of complete metric spaces by proving the follow-

 ing factorization theorem, which is interesting in its

 own right. Let {X^: i€l) be an uncountable family of
 non-empty sets and let Z be the sigma-field on

 X = n Xi consisting of all sets which depend on count -
 iti

 ably many co-ordinates (where A^X depends on .the co-

 ordinates JC I if ae A and f°r j £ J implies yeA).

 Let f: X -»■ M be a metric -valued mapping on the product

 space. Then g may be factored in the form h«p, where

 p: X* IIX. (I J|<X 0 ,) is a projection onto a countable jeJJ 0
 subproduct , if and only if g is E -measurable . Now if

 uX is the product of the uniform spaces UļX^, one can

 show that every Baire(uX) set (in fact, every Souslin

 set) is a member of 2; hence we obtain the following

 corollary: every metric -valued Baire measurable mapping

 on a product of uniform spaces may be factored through

 a countable subproduct. Using this result, one can make

 the following comprehensive statement about measurable
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 mappings on special uniform spaces [Ri]^ . Assume that
 m^uX is proximally fine. If f: uX-»-M is a jne trie -valued

 Baire measurable mapping, there exists a metric space

 which isometrically contains M and a complete metric

 space such that f may be factored as

 f
 X

 ' / 2
 e g

 g°e, where e: uX-*M^ is uniformly continuous and
 g:M M is Borei measurable.

 1 2

 We will now turn to the discussion of separation

 theorems in the descriptive theory of sets. First, re-

 call the classical results of Lusin (First Separation

 theorem) and Souslin: in a complete separable metric

 space disjoint Souslin sets can be separated by a Borei

 set and the bi-Souslin sets are precisely the Borei

 sets. This theorem was extended to the non-separable
 setting by Hansell in CHnJ - disjoint Souslin sets in

 2

 a complete metric space can be separated by a hyperBaire

 set, where hyperBaire (uX) is the smallest sigma-field
 containing the zero sets that is closed under the forma-

 tion of uniformly discrete unions (with respect to u) .

 Hansell also established that every hyperBaire set in a

 metric space is a bi-Souslin set, so the equality hyper-

 Baire(X) = bi -Souslin (X) is valid for complete metric

 spaces .
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 In ERi] I considered some generalizations of these
 3

 results to uniform spaces and established the following

 two theorems. First, each Souslin (resp. bi-Souslin or

 Baire) set in a uniform space is the pre-image of a

 Souslin (resp. bi-Souslin or Baire) set in some separ-

 able metric space under a uniformly continuous mapping.

 Second, each pair of disjoint Souslin sets in a uniform

 space may be separated by a bi-Souslin set; moreover,

 essentially any result in the descriptive theory of

 sets which is valid for all separable metric spaces is

 valid for all uniform spaces. Unfortunately, the re-

 lationship between hyperBaire sets and bi-Souslin sets

 in a general setting is somewhat unclear. It follows

 from the first result mentioned above that every bi-

 Souslin set in a uniform space is a hyperBaire set, but

 the converse is generally false. Consider the follow-

 ing example. For each ordinal a<0)^ , let Xa be a copy of
 the countable ordinals with the uniformity consisting of

 all covers and let Z = For each define

 Sa = {zzi: za = a}. Then each Sa is a member of Col (Z)
 and S = ļjSa is a hyperBaire set which is not a bi-Souslin
 set, since it does not depend on countably many co-ordi-

 nates. In fact, the example provides the key to the

 following (unpublished) result of Tashj ian-Rice : Let

 X be an arbitrary product of complete metric spaces and

 let Z be the sigma-field consisting of all sets which

 depend on countably many co-ordinates. Then
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 bi-Souslin(X) = hyperBaire (X) E .

 We will conclude this section with some connections

 between the Lus in First Separation theorem and the uni-

 formly local operation on covers that I have mentioned

 before. We will need the following definition. A

 uniform space uX is locally fine (see [IJ , chapter 7

 and CGIJ) if each cover of the form {Vsnu|} is a
 member of u, where {V } and each Us - {Uf} is a member

 ^ U

 of u. This property forces nice behavior on the de-

 scriptive set-theoretic sets associated with uX; for

 example, if uX is locally fine, each of the classes

 Coz(X) and Souslin(X) is closed vinder the formation of

 uniformly discrete unions. In 19 77, Jan Pelant (un-

 published manuscript) characterized the locally fine

 spaces as precisely the uniform subspaces of fine

 spaces. One should also note that every separable

 metric-fine space is locally fine, but not every

 measurable space. The following theorem asserts the

 last statement in a forceful manner. Let uX be a com-

 plete metric space. Then the following statements are

 equivalent (i) bi-Souslin(X) = Borei (X), (ii)

 rn^uX is locally fine, and (iii) M is the union of a

 separable and a cr-discrete subspace. Hence the com-

 plete metric spaces which satisfy the Lusin theorem are

 essentially separable (the perfect kernel, which is the

 largest dense in itself subspace, is separable) and

 this condition can be expressed in uniform terms.
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 Further descriptive set-theoretic conditions on Baire-

 fine spaces which guarantee the locally fine property

 are found in EFr] and [Ri] .
 if 2

 II IC. Uniform measures

 The intuitive discussion of linear functionals on

 the space C(X,Z) given in section two can be formalized

 into a theory of uniform measures , which includes the

 theories of countably additive and cylindrical measures

 as special cases. This generalization has been consider-

 ed by a number of the authors mentioned in the introduc-

 tion. In particular, the reader is referred to Z.
 *

 Frolik's articles EFr] and the thesis of A. Deaibes
 10,15

 [De] for a further discussion of the present subject

 matter .

 The following notation will be needed for the dis-

 cussion. An equi -uniformly continuous uniformly bound-

 ed subfamily of (uX) will be called a UEB set; an

 equi -uniformly continuous pointwise bounded subfamily

 of U(uX) will be called a UE set. M(X) will denote the

 dual space of the Banach space Ub (X) . We say that y in
 M(X) is a uniform measure if y is continuous (in the

 pointwise topology) on every UEB set. Analogously, we

 say that a linear functional y on U(X) is a free uni -

 form measure if y is continuous in the pointwise topo-

 logy on every UE set. The family of uniform (resp.

 174



 free uniform) measures is denoted by My(X) (resp. Mp(X)).
 We will also need the following familiar concepts, y.

 in M(X) is a -additive if (fnOcU^CX) and implies

 y(fn)-K) and Radon if y is continuous on the unit ball

 of U^QQ equipped with the comp act -open topology. The

 family of a -additive and Radon measures is denoted by

 Mff(X) and Mt(X), respectively. One can establish that
 every Radon measure is a cr-additive uniform measure;

 further relationships between the classes will be dis-

 cussed below.

 Intuitively, the uniform measures represent the

 linear functionals on U^CX) which can be uniformly

 approximated on UEB sets by mol ecu! ar measures (the

 finite linear combinations of point -mass (Dirac) mea-

 sures) . Formally, one defines the complete vector

 space topology on MyOC) to be the topology of uniform
 convergence on the UEB sets; by general results in

 duality theory, it follows that the continuous linear

 functionals on M^(X) are represented exactly by the

 members of U^CX). Furthermore, the canonical injection

 <5: X ->• My(X) defined by sending x to the Dirac measure

 <5^ is a uniform embedding, with the molecular measures

 dense in M^(X) . It follows from this fact that every
 uniformly continuous mapping h: X -*■ E to a complete

 locally convex linear space with bounded range can be

 uniquely extended to a continuous linear mapping
 V V

 h: My(X) ->■ E such that h®6 = h. (The statements given
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 above also have analogues for free uniform measures

 using the topology of uniform convergence on UE sets.)

 The preceding ideas can be used to express basic

 ideas about linear functionals in terms of uniform

 measures on special uniform spaces. Recall from the

 earlier discussion of vector lattices A of real-valued

 functions on X that U(mu X) is the smallest inversion-
 A

 closed vector lattice containing A. In particular, if
 •

 A = U(uX), the theorem for extending Danieli integrals

 from A to U(mu^X) is formalized by the following result

 ([De], p. 105) : M0(X) = Ma(meuX), where eu is the uni-
 formity generated by all countable uniform covers in u.

 Furthermore, ('[De], 4. 1.10) one obtains M (uX) = Mn(meuX) ,
 a u

 so the cr-additive measures are exactly the uniform

 measures with respect to the special metric-fine uniformity

 meu (which has the basis consisting of all countable

 u-cozero covers) . Then the family ca(£) consisting of

 all bounded countably additive set functions on the

 measurable space (X,£) may be represented as ca(E) =

 (u(E) X) = Mu(u(I))X), where u(E) is the measurable
 uniformity generated by the countable E -partitions . This

 result expresses the following approximation theorem.

 Let F be a UEB set with respect to u(Z) (that is F is a

 uniformly bounded family and for each 6>0, there exists

 a countable Z -partition {A } such that every member of
 n

 F varies by at most 6 on each . Then for each

 e>0 and y in ca(Z), there exists a molecular measure
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 n n

 E c.ô such that sup I'f dy - Zc.f(x.)| < e .
 i-1 1 i i-11 x

 £ €F

 One may also show that the uniform measures associat-

 ed with metric spaces provide an alternate description

 of the Radon measures. By ([De] ,4 .4 .6) , if X is metric

 and u is a positive linear functional on (X) , then y

 is a uniform measure if and only if for each e>0, there

 exists a closed precompact subset P of X such that

 I ii C f D I < e lišila, for each f. in U^CX) which vanishes on

 P. Using this result, one can establish that for a

 (complete) metric space X, My(X) is precisely the set

 of linear functionals on U^(X) which are continuous on

 the unit ball of U^(X) in the topology of uniform con-
 vergence on (compact) precompact sets. Hence for a

 complete metric space X, one has (CDeJ ,4 .4 . 8 , [Fr] ):
 8 " 1 0

 Mt(X) = Mu(X)cMa(X). Pachi [Pa] ,1.4) has also estab-

 lished the inclusion My(X)<=M^(X) for any uniform space
 X such that U(X) is inversion-closed and used this re-

 sult to show that (under certain set -theorectic

 assumptions) on complete spaces of this type, the

 uniformity generated by U(X) must also be complete.

 Results of this form are called "generalized Katětov-

 Shirota" theorems . The preceding result and others

 have also been presented in [Ha] and [Ri] ; the reader
 5 6

 is referred to [RR] for a discussion of results of

 this type.
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 In view of the above results, it is natural to in-

 quire about the validity of the inclusion Ma(X)cMy(X) .

 We have already seen that M^(uX) = My(meuX) ; using the

 fact that eu emeu it follows that M¿(uX)cMy(euX) . Un-
 fortunately, the general answer depends on set-theoretic

 assumptions. Define uX to be a D-space if no uniformly

 discrete subspace of X has real -measurable cardinality.

 Then ([Pa], 2.1) establishes that X is a D-space if and

 only if (X) C My (X) . Since it is not known whether c
 is real -measurable and the statement that real -measurable

 cardinals exist is consistent with the usual axioms of

 set theory, the status of the inclusion M0 (X) <= My(X) re-
 mains somewhat unclear.

 For a final example, we will demonstrate (following

 [CSD) how the concept of a cylindrical measure can be

 expressed in terms of uniform measures. Let E and F be

 a pair of vector spaces in duality and let u be the

 smallest uniformity on E such that every member of F is

 uniformly continuous. Then the members of the corres-

 ponding space of uniform measures My(uE) are exactly

 the projective limits of Radon measures taken over

 finite dimensional quotients of E, so My(uE) is the
 space of cylindrical measures.

 There are a number of results in the preceding

 theory which have not been mentioned. For example,

 there are results involving functorial questions,

 vector-valued uniform measures, compactness in spaces
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 of uniform measures, and topics in free uniform measures

 which have also been investigated (see [CS], [Fr] ,
 1 0

 [Pa]^, [R] , [Fe], [Be^iToļj ancļ the bibliography in
 iDeJ) .
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