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Given a set P of permutations, a P-superpattern is a permutation that contains
every permutation in P as a pattern. The study of the minimum length of a
superpattern has been of interest. For P being the set of all permutations of a
given length, bounds on the minimum length have been improved over the years,
and the minimum length is conjectured to be asymptotic with k2/e2. Similar
questions have been considered for the set of layered permutations. We consider
superpatterns with respect to packing colored permutations or multiple copies of
permutations. Some simple but interesting observations will be presented. We
also propose a few questions.

1. Introduction

Given a permutation π of length n, a pattern σ is said to be contained in π , or
σ occurs in π , if a subsequence of π is order isomorphic to σ . For instance, the
permutation π = 51342 contains two occurrences of the pattern σ = 321 as the
subsequences 532 and 542. Much effort has been devoted to the study of occurrences
of patterns in a permutation, most of which involves studying permutations which
avoid a particular pattern, i.e., pattern avoidance.

As a symmetric problem to pattern avoidance, the concept of a superpattern
concerns packing all patterns from a given set into a single permutation.

Definition. Let P be a set of permutations. A P-superpattern is a permutation that
contains π for every π ∈ P .

Superpatterns were first introduced in [Arratia 1999]. The natural question imme-
diately following this definition is to find the minimum length of a P-superpattern.
When P is the set of all permutations of length k, this minimum length is denoted
by sp(k) and has been vigorously studied. The trivial upper bound of k2 was
improved to 2

3 k2 in [Eriksson et al. 2002], and was conjectured to be asymptotic
with 1

2 k2. Later, it was shown in [Miller 2009] that sp(k) ≤ 1
2 k(k + 1) through
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the construction of a zigzag k-superword. More recently, bounds on the minimum
lengths of superpatterns containing all layered permutations were considered in
[Gray 2015]. Constructions similar to that in [Miller 2009] were also used to study
superpatterns containing simple patterns of length k in [Gray ≥ 2016].

Definition. An m-colored permutation χ of length n is a permutation of length n
in which each element is assigned one of m distinct colors.

For example, let χ = 3121511142 be a 2-colored permutation, where 3, 2, 5, and 1
have color 1, while 4 has color 2. Analogous to the case of noncolored patterns, the
colored pattern φ = 211132 occurs in χ as the subsequences 311142, 211142, and
312142, but not 312151.

Colored permutations are of interest in the study of patterns and pattern avoidance
[Savage and Wilf 2006]. Packing densities of colored permutations were also
recently considered [Just and Wang 2016].

In this note we consider superpatterns of different sets of colored permutations.
Some elementary, but interesting, observations will be presented. We also propose
some questions from these studies.

2. Superpatterns containing all colored permutations

Let S(k,m) denote the set of m-colored permutations of length k and

sp(k,m)=min
{
|p| : p is an S(k,m)-superpattern

}
.

The following presents a simple connection between sp(k,m) and sp(k).

Theorem 2.1. For any positive integers k and m, we have

sp(k,m)= m · sp(k).

Proof. Let p′ be an S(k,m)-superpattern, and denote by p′i the subsequence of p′ of
color i (for any 1≤ i ≤m). Then p′i , without the color, is a superpattern containing
all noncolored patterns of length k. Consequently |p′i | ≥ sp(k) for any i and

|p′| =
m∑

i=1
|p′i | ≥ m · sp(k).

On the other hand, let p be a permutation of length sp(k) that contains all
noncolored patterns of length k. Construct an m-colored permutation p′′ from p by
replacing each 1≤ j ≤ sp(k) in p by the sequence

s j := [m( j − 1)+ 1]1[m( j − 1)+ 2]2 · · · [m( j − 1)+m]m .

Note that |p′′| = m · |p| = m · sp(k). For any pattern π ∈ S(k,m), the noncolored
version is contained in p and the corresponding colored pattern can be found in p′′

by choosing corresponding digits in s j with the required color. Thus,

sp(k,m)≤ |p′′| = m · sp(k). �
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For example, p = 132 is a superpattern containing all patterns of length 2, and p
is of length sp(2)= 3. An S(2, 3)-superpattern p′′ can be constructed as

112233718293415263.

As an immediate consequence of Theorem 2.1, the established asymptotic bounds
for sp(k) apply directly to sp(k,m). The trivial asymptotic lower bound k2/e2 for
sp(k) follows from (sp(k)

k

)
≥ k!

and a standard application of Stirling’s approximation for factorials [Arratia 1999].

Corollary 2.2. For any positive integers k and m,

mk2/e2
≤ sp(k,m)≤ 1

2 mk(k+ 1).

Remark. The arguments in Theorem 2.1 establish the same relationship between
the colored and noncolored versions of superpatterns containing any particular
subset of the length-k permutations, such as the layered permutations [Gray 2015]
and simple and alternating permutations [Gray ≥ 2016], and consequently provide
bounds on the minimum lengths of these colored superpatterns.

3. Monochromatic and nonmonochromatic patterns

Let NMS(k,m) be the set of nonmonochromatic m-colored patterns of length k and
MS(k,m) be the set of all monochromatic m-colored patterns of length k. Then,
S(k,m) is the disjoint union of NMS(k,m) and MS(k,m). It is easy to see that

|MS(k,m)| = mk!,
and consequently,

|NMS(k,m)| =|S(k,m)| − |MS(k,m)| = mkk! −mk! = (mk
−m)k!

=(mk−1
− 1)|MS(k,m)|.

Given any NMS(k,m)-superpattern of length n, we must have(n
k

)
≥ (mk

−m)k!,

implying (by way of a standard application of Stirling’s approximation for factorials)

n ≥ mk2/e2,

the same asymptotic lower bound for sp(k,m) for general S(k,m)-superpatterns.
Letting

nmsp(k,m)=min
{
|p| : p is an NMS(k,m)-superpattern

}
,

we have the simple consequence that

mk2/e2
≤ nmsp(k,m)≤ sp(k,m)≤ 1

2 mk(k+ 1). (1)
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On the other hand, exactly the same argument as that of Theorem 2.1 implies

msp(k,m)= m · sp(k), (2)
where

msp(k,m)=min
{
|p| : p is an MS(k,m)-superpattern

}
.

Remark. Equations (1) and (2) imply, in addition to the semitrivial bounds of
msp(k,m) and nmsp(k,m), that

msp(k,m)= m · sp(k)= sp(k,m)≥ nmsp(k,m), (3)

a rather surprising fact given that |NMS(k,m)| = (mk−1
− 1)|MS(k,m)|.

While it may be a bit unexpected to see that msp(k,m) = sp(k,m), a natural
question follows.

Question 3.1. Does strict inequality hold in (3)?

In the special case for k = 2, the proposition below answers Question 3.1 in the
affirmative.

Proposition 3.2. For any positive integer m, we have

3m =msp(2,m) > 3m− 2≥ nmsp(2,m).

Proof. Clearly, sp(2) = 3, and hence msp(2,m) = m · sp(2) = 3m. Let p be a
permutation of length 3m− 2 defined as

[2m− 1]112[2m]223 · · · [3m− 3]m−1[m− 1]m[3m− 2]mm1[m+ 1]2[m+ 2]3
· · · [2m− 2]m−1.

For instance, if m = 3, then

p = 51126223733142,

and the graph of p is depicted below:
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In general, the graph of p will be the disjoint union of two increasing subse-
quences. The top row is of length m and the bottom row is of length 2m− 2, and
every entry of the top row is larger than every entry of the bottom row. The entries
of p alternate from the top row to the bottom row until there are m entries in the
top row. Then, m− 2 more entries are added to the bottom row. The i-th entry of
the top row will have color i for 1≤ i ≤ m, while the i-th entry of the bottom row
will have color i + 1 (mod m).

For i, j ∈ [1,m] with i 6= j , the pattern 1i 2 j is contained in the bottom row,
the only exception being the pattern 112 j , which is contained in the top row. The
pattern 2i 1 j can be found by selecting the unique entry colored i from the top row,
and taking an entry in the bottom row colored j which lies to the right of the entry
just selected. Then, p is an NMS(2,m)-superpattern. �

To answer Question 3.1 in general appears to be very difficult. In an effort to
further understand the relationship between monochromatic and nonmonochromatic
superpatterns, we also point out the following.

Proposition 3.3. For any positive integers k ≥ 2 and m, we have

msp(k− 1,m)≤ nmsp(k,m)≤msp(k,m).

Proof. The second inequality is implied by the remark on page 800. To see the first
inequality, let q be an m-colored pattern of length k whose first k− 1 entries are
colored by color i and whose k-th entry is colored by j 6= i . Then, the first k− 1
entries of q form a monochromatic pattern of length k− 1.

Since q is a nonmonochromatic m-colored pattern of length k, it must be
contained in any NMS(k,m)-superpattern. Noting that we could have colored
the first k − 1 entries of q monochromatically using any of the m colors, any
NMS(k,m)-superpattern must contain all monochromatic m-colored patterns of
length k− 1. Thus, nmsp(k,m)≥msp(k− 1,m). �

4. Packing multiple copies of all patterns

The idea of superpatterns lies in the fact that they contain each permutation (from
a given set of permutations) at least once. A natural generalization seems to be
superpatterns that contain each permutation at least a given number of times.

Definition. For a given set P of permutations, a P`-superpattern is a permutation
containing each pattern π ∈ P at least ` times.

Define sp`(k), sp`(k,m), msp`(k,m), and nmsp`(k,m) accordingly. Some trivial
facts follow immediately:

• sp`(k,m)=m·sp`(k). This can be seen by following exactly the same argument
as that of Theorem 2.1.
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• sp`(k)≤ ` · sp(k) and sp`(k,m)≤ ` · sp(k,m). For permutations p of length n
and q of length m, the direct sum p⊕ q is the permutation that has the first
n entries from p and the next m entries from entries of q shifted by n. That is,

p⊕ q = p1 p2 · · · pn(q1+ n)(q2+ n) · · · (qm + n).

Given a permutation p of length sp(k) that contains all patterns of length k,
the permutation

⊕`
i=1 p clearly contains each length-k pattern in each of

the ` summands. Hence, sp`(k) ≤ ` · sp(k). A similar argument holds for
sp`(k,m)≤ ` · sp(k,m).

• spm(k) ≤ msp(k,m). This can be seen from removing the colors of an
MS(k,m)-superpattern.

The asymptotic lower bounds, for k large and ` constant, of sp`(k) or sp`(k,m)
stay the same as sp(k) or sp(k,m). Given that the multiple copies of patterns need
not be disjoint, it is natural to ask for improvement of the upper bounds above. The
existing constructions (that provided upper bounds for the minimum lengths of
various superpatterns) such as those in [Arratia 1999; Gray 2015; ≥ 2016] do not
directly generalize to the case of packing multiple copies of every permutation. We
conclude this note by showing a nontrivial upper bound for the sp` function.

Definition. For k, n ∈ N, let q = q1q2q3 · · · qk be a pattern of length k and let
w = w1w2w3 · · ·wn be a word of length n. We say that q is “contained exactly
in w” if there is a subsequence of length k, say

(wi1, wi2, . . . , wik ),

such that wi j = q j for all 1≤ j ≤ k.

Theorem 4.1. For k, ` ∈ N, we have

sp`(k)≤


1
2(k+ 1)(k+ `− 1) if k is odd,
1
2(k+ 1)(k+ `− 1) if k is even and ` is odd,
1
2(k+ 1)(k+ `− 1)+ 1 if k is even and ` is even.

Proof. We begin with Allison Miller’s construction [2009] of the zigzag k-superword.
Let ko (resp. ke) be the smallest odd (resp. even) integer at least as large as k. We
make the following definitions:

k̄o = 1357 · · · ko and k̄e = ke · · · 8642.
Define

w = k̄ok̄ek̄ok̄e · · · k̄ok̄e

if k is even or
w = k̄ok̄ek̄ok̄e · · · k̄ok̄ek̄o
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if k is odd, where the combined number of copies of k̄o and k̄e is exactly k. The
word w is what Miller calls the zigzag k-superword.

Let q be a pattern of length k, and let q + 1 be the permutation of the set
{2, 3, 4, . . . , k+ 1} obtained by adding 1 to each entry of q . Number the runs of w
from left to right in increasing order and let m(q) be the number of runs needed (in
k̄ok̄ek̄ok̄e · · · ) to contain q . Miller shows that

m(q)+m(q + 1)≤ 2k+ 1, (4)

but in fact, the same steps can be used to show equality in (4). Hence, either m(q)
or m(q + 1) is at most k, which implies either q or q + 1 is contained exactly in w.

Now, consider the finite word

w(`)=

{
k̄ok̄ek̄ok̄e · · · k̄ok̄e if k is even,
k̄ok̄ek̄ok̄e · · · k̄ok̄ek̄o if k is odd,

where the combined number of copies of k̄o and k̄e is exactly k+ `− 1. Suppose
without loss of generality that m(q) ≤ k, and recall, m(q + 1) = 2k + 1−m(q).
Since q is contained in the first m(q) copies of w(`), and each run of w(`) is
repeated every two times, there is another copy of q contained between the third
run and the (m(q)+2)-th run, yet another copy of q contained between the fifth
and (m(q)+4)-th runs, and so on for as long as we do not exceed k+ `− 1 runs.
Thus, there are at least

1+
⌊ 1

2

(
(k+ `− 1)−m(q)

)⌋
=
⌊ 1

2

(
`+ (k−m(q))+ 1

)⌋
copies of q contained exactly in w(`). Hence, if k−m(q)≥ `− 1, we successfully
have at least ` copies of q. Then, let us suppose that k −m(q) < `− 1. For the
same reason as above, there are at least

1+
⌊ 1

2

(
(k+ `− 1)− (2k+ 1−m(q))

)⌋
=
⌊ 1

2

(
`− (k−m(q))

)⌋
≥ 1

copies of q + 1 contained exactly in w(`). Hence, the combined number of copies
of m(q) and m(q + 1) is at least⌊ 1

2

(
`+ (k−m(q))+ 1

)⌋
+
⌊ 1

2

(
`− (k−m(q))

)⌋
= `.

Finding a permutation p representing w(`) is routine. Note that p will contain
at least ` copies of q. Let us consider the length of w(`). First suppose k is odd.
Then, there are 1

2(k + 1) entries each in k̄o and k̄e. Miller shows that w is of
length 1

2 k(k+ 1), to which we add `− 1 more runs. Hence, the length of w(`) is

1
2 k(k+ 1)+ (`− 1) 1

2(k+ 1)= 1
2(k+ 1)(k+ `− 1).

Now suppose that k is even. Then, there are 1
2 k entries in k̄e and 1+ 1

2 k= 1
2(k+2)

entries in k̄o. If ` is odd, then we have added 1
2(`− 1) copies each of k̄e and k̄o.
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Thus, the length of w(`) is
1
2 k(k+ 1)+ 1

2(`− 1) 1
2 k+ 1

2(`− 1)1
2(k+ 2)= 1

2(k+ 1)(k+ `− 1).

If ` is even, then we have added 1
2(`−2) copies of k̄e and 1

2` copies of k̄o. Therefore,
the length of w(`) is

1
2 k(k+ 1)+ 1

2(`− 2)1
2 k+ 1

2`
1
2(k+ 2)= 1

2(k+ 1)(k+ `− 1)+ 1. �

Remark. The above argument can be easily modified, by using the construction in
Theorem 2.1, to provide less trivial upper bounds for sp`(k,m).

Remark. It is also interesting to note that, if one takes a superpattern from S(k,m)
achieving sp(k,m) and removes colors, the resulting noncolored permutation is
a superpattern that contains each k-pattern mk times (since there are mk different
ways to color a k-pattern with m colors).
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