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A bicycle (n, k)-gon is an equilateral n-gon whose k diagonals are of equal
length. In this paper we introduce periodic bicycle (n, k)-paths, which are a
natural variation in which the polygon is replaced with a periodic polygonal path,
and study their rigidity and integrals of motion.

1. Background

Our motivation comes from three seemingly unrelated problems. The first is the
problem of floating bodies of equilibrium in two dimensions. From 1935 to 1941,
mathematicians at the University of Lviv, among them Stefan Banach and Mark
Kac, collected mathematical problems in a book, which became known as “the
Scottish book”, since they often met in the Scottish Coffee House. Stanislaw Ulam
posed problem 19 of this book: “Is a sphere the only solid of uniform density which
will float in water in any position?” The answer in the two-dimensional case, as it
turns out, depends on the density of the solid.

The second problem, known as the tire track problem, originated in the story,
“The adventure of the priory school” by Arthur Conan Doyle, where Sherlock
Holmes and Dr. Watson discuss in view of the two tire tracks of a bicycle which
way the bicycle went. The problem is: “Is it possible that tire tracks other than
circles or straight lines are created by bicyclists going in both directions?” As
shown in Figure 1, the answer to this subtle question is affirmative.

The third problem is that of describing the trajectories of electrons in a parabolic
magnetic field. All three problems turn out to be equivalent [Wegner 2007].

Often in mathematics it is fruitful to discretize a problem. As such, S. Tabach-
nikov [2006] proposed a “discrete bicycle curve” (also known as a “bicycle poly-
gon”), which is a polygon satisfying discrete analogs of the properties of a bicycle
track. The main requirement turns out to be that, in the language of discrete differ-
ential geometry, the polygon is “self-Darboux”. That is, the discrete differential
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Two dimensional bodies which can float in all directions are given by ψper =
2π/n, thus for m = 1 and sufficiently small ϵ. In this limit the δu can be
determined from eq. (141) with

ζ(ω′ + δz) =
n2

12
(ω′ + δz) − ni − n

2
tan(

nδz

2
) + O(q), (199)

σ(ω′ + δz) =
2i

nq̂
e−inδz cos(

nδz

2
)en2(ω′+δz)2/24 + O(q̂), (200)

where eqs. (349) and (355) and π
ω3

= n, η3
ω3

= n2

12 have been used. Then eq.
(141) yields

tan(n δu ) = n tan( δu ), (201)

in agreement with the results obtained in refs. [7, 12, 8], where δu corresponds
to π

2 − δ0 and in ref. [6], where δu corresponds to πρ.
A few cross-sections of the bodies are shown in figs. 10 to 23. For odd n the

innermost envelope corresponds to density ρ = 1/2.

Fig. 10 m/n = 1/3,
ϵ = 0.1

Fig. 11 m/n = 1/3,
ϵ = 0.2

Fig. 12 m/n = 1/3,
ϵ = 0.5

Fig. 13 m/n = 1/4,
ϵ = 0.1

Fig.∗ 14
m/n = 1/4, ϵ = 0.1

Fig. 15 m/n = 1/4,
ϵ = 0.2
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Fig. 16 m/n = 1/5,
ϵ = 0.1

Fig.∗ 17
m/n = 1/5, ϵ = 0.1

Fig.∗ 18
m/n = 1/5, ϵ = 0.1

Fig.∗ 19
m/n = 1/5, ϵ = 0.2

Fig. 20 m/n = 1/6,
ϵ = 0.05

Fig.∗ 21
m/n = 1/6, ϵ = 0.05

Fig.∗ 22
m/n = 1/6, ϵ = 0.05

Fig. 23 m/n = 1/7,
ϵ = 0.1

7.2 Periodicity

In eq. (115) an angle of periodicity ψc has been defined. Here the periodicity is
discussed for several regions in fig. 4. The angle of periodicity ψper is defined
as the change of the angle ψ, as one moves from a point of extremal radius ri

along the curve until a point of this extremal radius is reached again. Its sign
is defined by the requirement that watching from the origin one starts moving
counterclockwise. This yields

ψper =
∆ψ

sign (dψ
du )
∣∣∣
r=ri

, (202)

∆ψ = ψ(u + 2ω3) − ψ(u) (203)
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Figure 1. Ambiguous bicycle tracks. The rear-wheel track is the
inner curve and the front-wheel track is the outer curve. One
cannot tell which way the bicycle went because a bicycle could
have followed either one of two trajectories [Wegner 2007].

geometric notion of a discrete Darboux transformation [Bobenko and Suris 2008;
Tsuruga 2010], which relates one polygon to another, relates a discrete bicycle
curve to itself.

The topic of bicycle curves and polygons belongs to a number of active areas of
research. On the one hand, it is part of rigidity theory. As an illustration, R. Connelly
and B. Csikós [2009] consider the problem of classifying first-order flexible regular
bicycle polygons. Other work on the rigidity theory of bicycle curves and polygons
can be found in [Csikós 2007; Cyr 2012; Tabachnikov 2006].

The topic is also part of the subject of discrete integrable systems. This point of
view is taken in [Tabachnikov and Tsukerman 2013], where the authors find integrals
of motion (i.e., quantities which are conserved) of bicycle curves and polygons
under the Darboux transformation and recutting of polygons [Adler 1993; 1995].

In this paper, in analogy with bicycle polygons, we introduce a new concept
called a periodic discrete bicycle path and study both its rigidity and integrals.

2. Bicycle (n, k)-paths

A bicycle (n, k)-gon is an equilateral n-gon whose k diagonals are of equal length
[Tabachnikov 2006]. We consider the following analog.

Definition 1. Define P={Vi ∈R2
: i ∈Z} (for brevity, V0V1 ···Vn−1) to be a discrete

periodic bicycle (n, k)-path (or discrete (n, k)-path) if the following conditions hold:

(i) Vn+i =Vi+e1 for all i , where e1= (1, 0) and V0= (0, 0) (periodicity condition).

(ii) |Vi Vi+1| = |V j V j+1| for all i, j (equilateralness).

(iii) |Vi Vi+k | = |V j V j+k | for all i, j (equality of k-diagonals).

Definition 1 is meant to model the motion of a bicycle whose trajectory is spatially
periodic. The condition that |V j V j+1| is independent of j prescribes a constant
speed for the motion of the bike. The condition that |V j V j+k | is independent of j
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represents the ambiguity of the direction in which the bicycle went (see [Tabachnikov
2006] for details).

Some natural questions regarding periodic (n, k)-paths are for which pairs (n, k)
they exist, how many there are and whether they are rigid or flexible. We consider
these questions in Section 3. A simple example of a bicycle (n, k)-path, analogous
to the regular (n, k)-polygon, is Vi = (i/n, 0), i.e., when all vertices lie at equal
intervals on the line. We call this the regular path. Since bicycle (n, k)-paths are
discretized bicycle paths, it is also interesting to see if there are any integrals of
motion. We show that this is indeed the case in Section 4, by showing that area is
an integral of motion.

3. Rigidity

The following two lemmas will be helpful when analyzing the rigidity of discrete
bicycle paths.

Lemma 2. Let n ∈ N, χi ∈ {−1, 1} for every i ∈ Z/nZ and let

S = {(x0, x1, . . . , xn−1) ∈ Rn
: (xi+1− xi )

2
= (x j+1− x j )

2 for all i, j ∈ Z/nZ}.

Then

S =
{
(x0, x1, . . . , xn−1) : xi+1 = xi +χir for i ∈ Z/nZ,

n−1∑
i=0

rχi = 0 and r ≥ 0
}
.

In particular, if n is odd, then S={(x0, x1, . . . , xn−1) : xi = x j for all i, j ∈Z/nZ}.

Proof. First note that the candidate set is well-defined since

x j+n = x j +

j+n−1∑
i= j

rχi = x j +

n−1∑
i=0

rχi = x j .

Let (x0, x1, . . . , xn−1) ∈ S. Recall that

sgn(x)=


1 if x > 0,
0 if x = 0,
−1 if x < 0,

and that sgn(x)|x | = x . Set r := |xi+1− xi | and χi = sgn(xi+1− xi )+ (1− sgn(r)).
Then

xi+1 = xi +χir,
and

n−1∑
i=0

r sgn(xi+1− xi )= 0.

It follows that any n-tuple in S satisfies the conditions xi+1= xi+χir ,
∑n−1

i=0 rχi =0
and r ≥ 0. The opposite inclusion is clear. �



60 IAN ALEVY AND EMMANUEL TSUKERMAN

Lemma 3. Let xi ∈ R for every i ∈ Z with x0 = 0 and let k and n be coprime
integers. Assume that xi+k − xi = xi − xi−k for each i and that xi+n = 1+ xi . Then
xi = i/n for each i .

Proof. Define zi via xi = zi + i/n. The hypothesis xi+n = 1+ xi implies that

zi+n = zi .

The difference
1z := zi+k − zi

is independent of i due to the assumption that xi+k − xi = xi − xi−k and because k
and n are coprime. This implies that

0= zi+n − zi = zi+nk − zi = n1z.

It follows that zi = 0 for every i . �

The following theorem gives a classification of a family of periodic (n, k)-paths.

Theorem 4. The discrete (n, dn − 1)-paths Vi = (xi , yi ), i ∈ N with d 6= 0 are
exactly those paths which satisfy

x j =
j
n

and

y j+1 = y j +χ jr for j ∈ Z/nZ with
n−1∑
i=0

rχi = 0 and r ≥ 0

for each j . In particular, if n is odd then a discrete (n, dn−1)-path must be regular.

Proof. For every i ,

|Vi Vi+1| = |Vi+dn−1Vi+dn|,

|Vi Vi+dn−1| = |Vi+1Vi+dn|.

Therefore

(xi+1− xi )
2
+ (yi+1− yi )

2
= (xi − xi−1)

2
+ (yi − yi−1)

2,

(d + xi−1− xi )
2
+ (yi−1− yi )

2
= (d + xi − xi+1)

2
+ (yi − yi+1)

2.

It follows that
d(xi+1− xi )= d(xi − xi−1).

Since d 6= 0,
xi+1− xi = xi − xi−1.

By Lemma 3, x j = j/n for each j . Now equation |Vi Vi+1| = |V j V j+1| for all i, j
implies that

(xi+1− xi )
2
+ (yi+1− yi )

2
= (x j+1− x j )

2
+ (y j+1− y j )

2 for all i, j,
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Figure 2. An example of a discrete (6, 5)-path.

so that
(yi+1− yi )

2
= (y j+1− y j )

2.

By Lemma 2, we are done. �

Theorem 5. The discrete (n, dn + 1)-paths Vi = (xi , yi ), i ∈ N with d 6= 0 are
exactly those paths which satisfy

x j =
j
n

and

y j+1 = y j +χ jr for j ∈ Z/nZ with
n−1∑
i=0

rχi = 0 and r ≥ 0

for each j . In particular, if n is odd then a discrete (n, dn+1)-path must be regular.

Proof. Set C1 = |Vi Vi+dn+1|
2 and C2 = |Vi Vi+1|

2. Then

(d + xi+1− xi )
2
+ (yi+1− yi )

2
= C1,

(xi+1− xi )
2
+ (yi+1− yi )

2
= C2.

Substituting, we get
d2
+ 2d(xi+1− xi )+C2 = C1,

so that xi+1− xi is constant. By Lemma 3, xi = i/n. It follows that (yi+1− yi )
2 is

constant, so by Lemma 3 we are done. �

Corollary 6. Any (n, dn+ 1)-path is an (n, dn− 1)-path and vice versa.

For an example, see Figure 2.

4. Darboux transformation and integrals

It is important to make a distinction between infinitesimal “trapezoidal” movement
and infinitesimal “parallelogram” movement of the bicycle. Consider a pair of
conjoined bikes, sharing a back wheel and facing in opposite directions. Since
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this bicycle moves in such a way that the distance between the turnable wheels is
constant, at each moment of time the turnable wheels must enclose equal angles
with the line of the frame. When the two turnable wheels are parallel, the trike
is gliding, but then the common back wheel of the bikes is slipping, which is not
allowed. That is why we exclude parallelogram movements from consideration for
the remainder of this paper.

Definition 7 (trapezoidal condition). We will say that a discrete (n, k)-path satisfies
the trapezoidal condition if Vi Vi+k+1 and Vi+1Vi+k are parallel for each i ∈ Z.

As an illustration of these concepts, consider Figure 2: V0V1V5V6 is a trapezoidal
motion, while V1V2V6V7 is a parallelogram motion. Consequently, the bicycle path
in the figure does not satisfy the trapezoidal condition.

Assuming the trapezoidal condition, we may view bicycle paths in terms of
an important construction in discrete differential geometry called the Darboux
transformation [Bobenko and Suris 2008; Tsuruga 2010].

Definition 8 (Darboux transform). We say that two polygons P = P1 P2 · · · and
Q= Q1 Q2 · · · are in Darboux correspondence if for each i = 1, 2, . . ., we have that
Qi+1 is the reflection of Pi in the perpendicular bisector of the segment Pi+1 Qi .

If segment P1 Q1 is of length ` then for each i , Pi Qi is of length `. We then say
that P and Q are in Darboux correspondence with parameter `. We also note that
each quadrilateral Pi Qi Pi+1 Qi+1 is an isosceles trapezoid.

We denote the map taking vertex Pi to Qi by D. We will also refer to the map
of polygons D(P)= Q by the same letter, since no confusion ought to occur.

Consider a polygonal line P with vertices V0, V1, . . . , Vn−1. Let v0 be a vector
with its origin at V0. Having a vector vi at vertex Vi , we obtain a vertex vi+1 of
the same length at Vi+1 via the trapezoidal condition. For example, in Figure 3,
v1 = P1 Q1 and v2 = P2 Q2. For a fixed length of v0, we may view the map taking
v0 to v j as a self-map of the circle of radius |v0| = |v j | by identifying the circle
at V0 with circle at V j via parallel translation.

Definition 9 (monodromy map of the Darboux transformation). The monodromy
map is the map acting on the identified circles at V0 and Vn which takes v0 to vn .

It is known that the monodromy map is a cross-ratio preserving transformation
(in terms of affine coordinates, a fractional linear transformation) on a circle of fixed
radius after we identify the circle with the real projective line via stereographic
projection [Tabachnikov and Tsukerman 2013]. We will assume throughout, unless
otherwise stated, that the monodromy map is acting on a fixed point; in other words,
we will assume that the Darboux transform has been chosen so that the initial vector
v0 is equal to the vector vn , where n is the period. This is analogous to applying the
Darboux transform to a closed polygon and requiring that its image is closed also.
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P1

P2

P3

P4

Q1 Q2

Q3

Q4

Figure 3. Two polygons in Darboux correspondence.

We mention in passing that in the case of closed polygons, Darboux correspon-
dence implies that the monodromies of the two polygons are conjugated to each
other. The invariants of the conjugacy class of the monodromy, viewed as functions
of the length parameter, are consequently integrals of the Darboux correspondence
[Tabachnikov and Tsukerman 2013].

Connection between Darboux transformation and discrete (n, k)-paths. A dis-
crete (n, k)-path satisfying the trapezoidal condition may be interpreted in terms
of the Darboux transform. Indeed, given such a path, we consider the periodic
equilateral linkages L i = · · · V0+i Vk+i V2k+i · · · for i = 0, 1, . . . , k− 1. The trape-
zoidal condition implies that there is a Darboux correspondence D(L i )= L i+1 of
the same parameter (since the (n, k)-path is equilateral) for consecutive linkages
(see Figure 4).

The Darboux transformation also preserves the area of periodic paths. More
precisely, let y =−c for c > 0 sufficiently large so that the periodic path P and its
Darboux transformation P ′ lie completely above y=−c. We define an area function
as follows. Let V̌i = (x(Vi ),−c). We define the area of P to be the signed area of the
polygon V̌0V0V1 · · · Vn V̌n and denote it by |P|. We show that this area is preserved
under Darboux transformation (see Figure 5). In particular, it will follow that the
area of V0Vk · · · Vnk is equal to the area of Vm Vk+m · · · Vnk+m for every m ∈ Z.

Theorem 10. The Darboux transformation is area-preserving on periodic polygo-
nal paths.

Proof. Let P and P ′ be two periodic polygonal paths in Darboux correspondence.
We show that the difference of the areas of P and P ′ is zero. We denote the vertex
of P ′ which corresponds via the Darboux transformation to the vertex Vi in P by
V ′i for each i . We have

|P| =
n−1∑
i=0

|V̌i Vi Vi+1V̌i+1|,
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Figure 4. Viewing a discrete (n, k)-path satisfying the trapezoidal
condition (top) in terms of the Darboux transformation. The path
is decomposed into equilateral linkages (middle). Any two consec-
utive linkages are in Darboux correspondence (bottom).

and similarly for P ′. Therefore

|P| − |P ′| =
n−1∑
i=0

|V̌i Vi Vi+1V̌i+1| − |V̌ ′i V ′i V ′i+1V̌ ′i+1|.

From the isosceles trapezoids,

|Vi Vi+1V ′i+1| = |V
′

i V ′i+1Vi |. (4-1)

Also,

|V̌i Vi Vi+1V̌i+1| = |V̌i Vi V
′

i+1V̌ ′i+1| + |V̌
′

i+1V ′i+1Vi+1V̌i+1| + |Vi Vi+1V ′i+1|.

Similarly,

|V̌ ′i V ′i V ′i+1V̌ ′i+1| = |V̌
′

i V ′i Vi V̌i | + |V̌i Vi V
′

i+1V̌ ′i+1| + |V
′

i V ′i+1Vi |.

Using (4-1),

|V̌i Vi Vi+1V̌i+1| − |V̌ ′i V ′i V ′i+1V̌ ′i+1| = |V̌
′

i+1V ′i+1Vi+1V̌i+1| − |V̌
′

i V ′i Vi V̌i |.

It follows that

|P| − |P ′| =
n−1∑
i=0

|V̌ ′i+1V ′i+1Vi+1V̌i+1| − |V̌
′

i V ′i Vi V̌i |,
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V3

V ′3
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V ′4P
P ′

P
P ′

Figure 5. Two periodic paths P and P ′ in Darboux correspon-
dence. By Theorem 10, the two paths have equal areas under the
curve.

which telescopes to

|P| − |P ′| = |V̌ ′nV ′nVn V̌n| − |V̌
′

0V ′0V0V̌0|.

Since V ′n=V ′0+e1 and Vn=V0+e1, it follows that
−−→
VnV ′n=

−−→
V0V ′0 and |V̌ ′nV ′nVn V̌n|=

|V̌ ′0V ′0V0V̌0|, so that |P| = |P ′|. �

5. Questions

We end our discussion with some research topics and questions of interest concerning
bicycle (n, k)-paths.

(1) Construct interesting families of bicycle (n, k)-paths. For example, ones for
which the condition x j = j/n does not hold.

(2) What is the m-th order (m ∈N) infinitesimal rigidity theory of bicycle (n, k)-
paths like?

(3) For closed bicycle polygons, there are many integrals of motion [Tabachnikov
and Tsukerman 2013]. For example, a geometric center called the circumcen-
ter of mass [Tabachnikov and Tsukerman 2014] is invariant under Darboux
transformation for closed polygons. Are there other integrals of motion for
bicycle (n, k)-paths?
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