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An m-endomorphism on a free semigroup is an endomorphism that sends every
generator to a word of length ≤ m. Two m-endomorphisms are combinatorially
equivalent if they are conjugate under an automorphism of the semigroup. In this
paper, we specialize an argument of N. G. de Bruijn to produce a formula for the
number of combinatorial equivalence classes of m-endomorphisms on a rank-n
semigroup. From this formula, we derive several little-known integer sequences.

1. Introduction

Let D be a nonempty set of symbols, and let D+ be the set of all finite strings
of one or more elements of D. That is, D+ = {d1 · · · dk : k ∈ N, di ∈ D}. Paired
with the operation of string concatenation, D+ forms the free semigroup on D. If
d1, . . . , dk ∈ D, then we refer to the natural number k as the length of the string
d1 · · · dk . Denote the length of W ∈ D+ by |W |.

By a semigroup endomorphism (or, simply, an endomorphism) on D+, we mean
a mapping φ : D+→ D+ satisfying φ(W1W2)=φ(W1)φ(W2) for all W1,W2 ∈ D+.
Note that if φ is an endomorphism on D+ and d1, . . . , dk ∈ D, then φ(d1 · · · dk)=

φ(d1) · · ·φ(dk); this shows that an endomorphism on D+ is determined by its action
on the elements of D. On the other hand, any mapping f :D→D+ extends uniquely
to the endomorphism φ f : D+→ D+ defined by φ f (d1 · · · dk)= f (d1) · · · f (dk),
and it is straightforward to verify that φ f is an automorphism (that is, a bijective
endomorphism) precisely when f is a bijection on D.

Example 1. Let D = {a, b}, and let f : D→ D+ be defined by f (a) = ab and
f (b)= a. Then, for example,

φ f (ababa)= f (a) f (b) f (a) f (b) f (a)= abaabaab.

Let End(D+) be the collection of all endomorphisms on D+, and let m ∈ N.
Then φ ∈ End(D+) is called an m-endomorphism if and only if |φ(d)| ≤ m for
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all d ∈ D. Note that the mapping φ f from Example 1 is an m-endomorphism for
all m ≥ 2. Now let 0 be the set of all m-endomorphisms on D+. That is,

0 = {φ ∈ End(D+) : φ(D)⊆ R},

where R = {W ∈ D+ : |W | ≤ m}. Consider the set � consisting of all mappings
f : D→ R. Then we may write

0 = {φ f : f ∈�}.

We can put the set 0 into one-to-one correspondence with � by sending each
m-endomorphism to its restriction to D. Moreover, if |D| = n ∈N, then the size of
these sets is easily evaluated in view of the fact that |R| =

∑m
i=1 ni . In particular,

if n > 1, then |R| = (nm+1
− n)/(n− 1), and

|0| = |�| =
(nm+1

−n
n−1

)n
.

However, in this paper we are interested in counting the number of classes
of m-endomorphisms under a particular equivalence relation. To motivate our
definition of equivalence on 0, we define a relation ∼ on � as follows:

f1 ∼ f2 ⇐⇒ there exists a bijection g : D→ D such that f2 ◦ g = φg ◦ f1.

As an exercise, the reader may wish to verify that∼ satisfies the reflexive, symmetric,
and transitive properties required of any equivalence relation. In Section 1.1,
however, it will be shown that ∼ is a specific instance of a well-known equivalence
relation induced by a group acting on a nonempty set.

Example 2. Let f be as in Example 1 (with D = {a, b}). Consider the bijection
g : D→ D defined by g(a)= b and g(b)= a. Now let f1 : D→ D+ be given by
f1(a)= b and f1(b)= ba. Then

( f1◦g)(a)= f1(g(a))= f1(b)=ba= g(a)g(b)=φg(ab)=φg( f (a))= (φg◦ f )(a),

( f1◦g)(b)= f1(g(b))= f1(a)=b= g(a)=φg(a)=φg( f (b))= (φg◦ f )(b),

which shows that f ∼ f1.

Remark 3. Perhaps a more intuitive illustration of∼ is as follows. If we let f and f1

be as in Example 2, then the respective graphs of f and f1 are {(a, ab), (b, a)} and
{(a, b), (b, ba)}. But the graph of f1 can be obtained by applying the bijection g
to each element of D that appears in the graph of f . In other words,{(

g(a), g(a)g(b)
)
,
(
g(b), g(a)

)}
= {(a, b), (b, ba)}.

Since the graphs of f and f1 are “the same” up to a permutation of a and b, we
wish to consider these mappings equivalent, and ∼ provides the desired equivalence
relation.
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Extending ∼ to an equivalence relation on 0 leads to the following definition. If
f, h ∈�, then φ f is combinatorially equivalent to φh if and only if there exists a
bijection g : D→ D such that φh ◦φg = φg ◦φ f . To state precisely the aim of this
paper: given a set of symbols D with |D| = n, we wish to produce a formula for the
number of equivalence classes in 0 under the relation of combinatorial equivalence.
To this end, we shall specialize an argument of N. G. de Bruijn [1972] (namely,
that used for his Theorem 1) to produce a formula for the number of classes in �
under the relation ∼. But it is easy to check that for all f, h ∈�, we have f ∼ h if
and only if φ f is combinatorially equivalent to φh . Hence, there is a well-defined
correspondence given by

[ f ] ↔ [φ f ]

between the equivalence classes in � and those in 0, and it follows that our formula
will also provide the number of m-endomorphisms on D+ up to combinatorial
equivalence. Moreover, once this formula is obtained, we can fix one of the
variables n,m and let the other run through the natural numbers in order to derive
integer sequences, many of which appear to be little-known.

1.1. Group actions. For the reader’s convenience, we review group actions. The
following material (through Proposition 4) is paraphrased from [Malik et al. 1997].
Let G be a group and S a nonempty set. A left action of G on S is a function

· : G× S→ S, (g, s) 7→ g · s,

such that, for all g1, g2 ∈ G and for all s ∈ S,

(1) (g1g2) · s = g1 · (g2 · s), where g1g2 denotes the product of g1, g2 in G, and

(2) e · s = s, where e is the identity element of G.

A left action induces the well-known equivalence relation E on the set S given by

(a, b) ∈ E ⇐⇒ g · a = b for some g ∈ G

for all a, b ∈ S. We refer to the equivalence classes under this relation as the orbits
of G on S. The following result (known as Burnside’s lemma) gives an expression
for the number of these, provided that G and S are finite.

Proposition 4 [Malik et al. 1997]. Let S be a finite, nonempty set, and suppose
there is a left action of a finite group G on S. Then the number of orbits of G on S is

1
|G|

∑
g∈G

∣∣{s ∈ S : g · s = s}
∣∣.

Thus, the number of orbits of G on S equals the average number of elements
of S that are “fixed” by an element of G. We now show that the relation ∼ from
Section 1 is a specific instance of the relation E described above. To see this, let D
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be a finite nonempty set, and let Sym(D) denote the symmetric group on D (i.e., the
group of all bijections on D). Then Sym(D) acts on the set � according to the rule

g · f = φg ◦ f ◦ g−1

for all g ∈ Sym(D), f ∈ �. (One can easily verify that · defined in this way is
indeed a left action.) Now, for any f1, f2 ∈�, we have

f1 ∼ f2 ⇐⇒ f2 ◦ g = φg ◦ f1 for some g ∈ Sym(D)

⇐⇒ f2 = φg ◦ f1 ◦ g−1 for some g ∈ Sym(D)

⇐⇒ g · f1 = f2 for some g ∈ Sym(D)

⇐⇒ ( f1, f2) ∈ E .

It follows that the equivalence classes in � under the relation ∼ are just the
orbits of Sym(D) on �. Enumerating the elements of Sym(D) by g1, . . . , gn!, we
find the number of orbits to be

1
n!

n!∑
r=1

|{ f ∈� : f ◦ gr = φgr ◦ f }|. (1)

For any permutation g of a finite set, and for each natural number j , let c(g, j)
denote the number of cycles of length1 j occurring in the cycle decomposition of g.
(This notation comes from [de Bruijn 1972].) The quantities c(g, j) will play a role
in the evaluation of |{ f ∈� : f ◦ gr = φgr ◦ f }|, which occurs in the next section.
Our evaluation is a modification of de Bruijn’s counting argument [1964, § 5.12].

2. Main results

We now produce a formula for the number of equivalence classes in � under the
relation ∼. Let D be a finite set, and suppose that g ∈ Sym(D) is the product of
disjoint cycles of lengths k1, k2, . . . , k`, where k1≤k2≤· · ·≤k`. Then the sequence
k1, k2, . . . , k` is called the cycle type of g. For example, if D = {a, b, c, d, e}, then
the permutation g = (a)(b, c)(d, e) has cycle type 1, 2, 2. The following lemma
will be useful.

Lemma 5. Let D be a finite set, and let g ∈ Sym(D) have cycle type k1, k2, . . . , k`.
For each 1≤ i ≤ `, select a single di ∈ D from the cycle corresponding to ki . (Thus,
ki is the smallest natural number such that gki (di )= di .) Now suppose that f ∈�.
Then f ◦ g = φg ◦ f if and only if for each 1≤ i ≤ `,

(1) ( f ◦ g j )(di )= (φ
j
g ◦ f )(di ) for all j ∈ N,

(2) f (di ) is of the form d ′1 · · · d
′

k≤m , where d ′1, . . . , d ′k ∈ D each belong to a cycle
in g whose length divides ki .

1There should be no confusion between the notions of “string length” and “cycle length”.
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Proof. First assume that f ◦g=φg◦ f . Then condition (1) follows from an inductive
argument. But f (di ) = f (gki (di )) = φ

ki
g ( f (di )). Write f (di ) = d ′1 · · · d

′

k , where
d ′1, . . . , d ′k ∈ D and k ≤ m. Then

d ′1 · · · d
′

k = φ
ki
g (d

′

1 · · · d
′

k)= gki (d ′1) · · · g
ki (d ′k).

In particular, for each 1≤ t ≤ k, we have d ′t = gki (d ′t ). This implies that(
d ′t , g(d ′t ), g2(d ′t ), . . . , gki−1(d ′t )

)
is a cycle whose length divides ki . The conclusion follows.

Conversely, suppose that condition (1) holds. (Condition (2) is superfluous here.)
Let d ∈ D. Then there exist i, j ∈ N such that d = g j (di ). Now,

f (g(d))= f (g(g j(di )))= f (g1+ j(di ))

=φ1+ j
g ( f (di ))=φg(φ

j
g( f (di )))=φg( f (g j(di )))=φg( f (d)).

Therefore, f ◦ g = φg ◦ f , so the proof is complete. �

Once again, suppose that |D| = n, and label the elements of Sym(D) by
g1, . . . , gn!. For each 1≤ r ≤ n!, we can find the number of f ∈� satisfying

f ◦ gr = φgr ◦ f. (2)

Suppose that gr has cycle type kr1, kr2, . . . , kr`r . For each 1 ≤ i ≤ `r , select a
single element dri ∈ D from the cycle corresponding to kri . Then Lemma 5 implies
that any f ∈ � satisfying (2) is determined by its values on each dri . Hence, to
find the number of f satisfying (2), we need only count the number of possible
images of dri under such an f , and then take the product over all i . But the m or
fewer elements of D comprising the string f (dri ) must each belong to a cycle in
the decomposition of gr whose length divides kri . For each 1≤ k ≤ m, there are(∑

j | kri

jc(gr , j)
)k

choices of f (dri ) such that | f (dri )| = k. Hence, there are

m∑
k=1

(∑
j | kri

jc(gr , j)
)k

total choices of f (dri ). Taking the product over all i , it follows that the number
of f satisfying (2) is

`r∏
i=1

( m∑
k=1

(∑
j | kri

jc(gr , j)
)k)

. (3)
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Thus, we’ve evaluated |{ f ∈� : f ◦gr =φgr ◦ f }|, and putting together (1) and (3)
gives an expression for the number of equivalence classes in � under the relation ∼.
Recalling that these classes are in one-to-one correspondence with the classes in 0
under the relation of combinatorial equivalence, we obtain our main result:

Theorem 6. If |D| = n, then the number of m-endomorphisms on D+, up to
combinatorial equivalence, is the value of

1
n!

n!∑
r=1

( `r∏
i=1

( m∑
k=1

(∑
j | kri

jc(gr , j)
)k))

, (4)

where g1, . . . , gn! are the elements of Sym(D), and kr1, . . . , kr`r is the cycle type
of gr .

Example 7. Let D = {a, b}. We find the number of classes of 1-endomorphisms
on D+. The elements of Sym(D) (in cycle notation) are g1= (a)(b) and g2= (a, b).
Evidently, c(g1, 1)= 2, c(g2, 1)= 0, and c(g2, 2)= 1. Using Theorem 6, there are

1
2

(
c(g1, 1)2+ 2c(g2, 2)

)
=

1
2(2

2
+ 2)= 3

classes of 1-endomorphisms on D+. These are given by{
a→ a

b→ b

}
,

{
a→ b

b→ a

}
and

{
a→ a

b→ a
≡

a→ b

b→ b

}
.

We can extend the result of Example 7 by fixing n = 2 and letting m be arbitrary.
From (4), we find that the number of classes of m-endomorphisms on D+, where
|D| = 2, is

1
2

(
(2m+1

− 2)2+ (2m+1
− 2)

)
.

Running m through the natural numbers, we obtain values 3, 21, 105, 465, 1953, . . . .
This is the sequence A134057 in the On-line Encyclopedia of Integers [OEIS 1996].
However, for n = 3, the number of classes of m-endomorphisms becomes

1
6

((
3m+1
−3

2

)3
+ 3m 3m+1

−3
2

+ 2 3m+1
−3

2

)
.

Letting m = 1, 2, 3, 4, . . . gives values 7, 304, 9958, 288280, . . . . This sequence
appears to be little-known, and has been submitted by the authors to the OEIS.

2.1. An alternative formulation of Theorem 6. We now present a slight reword-
ing of Theorem 6. In order to compute the number of equivalence classes of
m-endomorphisms (where |D|= n), we need not, in practice, consider each element
of Sym(D) individually. Rather, we need only consider the cycle types of these
permutations. The following well-known result gives the number of permutations
in Sym(D) of a given cycle type.



ENUMERATION OF m-ENDOMORPHISMS 429

Proposition 8 [Dummit and Foote 2004]. Let |D| = n, and let g ∈ Sym(D). Sup-
pose that m1,m2, . . . ,ms are the distinct integers appearing in the cycle type of g.
For each j ∈ {1, 2, . . . , s}, abbreviate c j = c(g,m j ). Let Cg be the set of all
permutations in Sym(D) whose cycle type is that of g. Then

|Cg| =
n!∏s

j=1 c j !m
c j
j

. (5)

For convenience, we shall say that g ∈ Sym(D) fixes the mapping f ∈� if and
only if f ◦g=φg◦ f . Now, two bijections in Sym(D) with the same cycle type must
fix the same number of f ∈�. Therefore, in order to derive an expression for the
number of classes of m-endomorphisms on D+, we can select a single representative
in Sym(D) of each possible cycle type, then determine the number of f ∈� fixed by
each representative using expression (3), multiply this number by the corresponding
value of (5), and then sum up over all of our representatives and divide by n!. But
the cycle types in Sym(D) are precisely the integer partitions of n, namely, the
nondecreasing sequences of natural numbers whose sum is n. If p(n) denotes the
number of integer partitions of n, then we may restate Theorem 6 as follows.

Corollary 9. Let |D| = n, and suppose that g1, . . . , gp(n) ∈ Sym(D) have distinct
cycle types. Then the number of m-endomorphisms on D+, up to combinatorial
equivalence, is the value of

1
n!

p(n)∑
r=1

(
|Cgr |

`r∏
i=1

( m∑
k=1

(∑
j | kri

jc(gr , j)
)k))

, (6)

where kr1, . . . , kr`r is the cycle type of gr , and Cgr is as in Proposition 8.

Example 10. To illustrate Corollary 9, we compute the number of classes of
m-endomorphisms when |D| = 4. Let D = {a, b, c, d}. As previously mentioned,
the cycle types in Sym(D) are the integer partitions of 4:

1+ 1+ 1+ 1, 1+ 1+ 2, 2+ 2, 1+ 3, 4.

Hence, the bijections

g1 = (a)(b)(c)(d), g2 = (a)(b)(c, d), g3 = (a, b)(c, d),

g4 = (a)(b, c, d), g5 = (a, b, c, d)

encompass all possible cycle types in Sym(D). Direct calculation using (5) yields

|Cg1 | = 1, |Cg2 | = 6, |Cg3 | = 3, |Cg4 | = 8, |Cg5 | = 6.

Thus, by Corollary 9, the number of classes of m-endomorphisms when n = 4 is
1
24

(
34

4
+ 632

234 + 334
2
+ 8m34 + 634

)
,

where 3k = (km+1
− k)/(k− 1).
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n=1 n=2 n=3 n=4

m=1 1 3 7 19
m=2 2 21 304 6,915
m=3 3 105 9,958 2,079,567
m=4 4 465 288,280 556,898,155
m=5 5 1,953 7,973,053 144,228,436,231
m=6 6 8,001 217,032,088 37,030,504,349,475

n=5 n=6
m=1 47 130
m=2 207,258 7,773,622
m=3 746,331,322 409,893,967,167
m=4 2,406,091,382,736 19,560,646,482,079,624
m=5 7,567,019,254,708,782 916,131,223,607,107,471,135
m=6 23,677,181,825,841,420,408 42,770,482,829,102,570,213,645,988

Table 1. Values of (6) for n,m≤6.

Proceeding along the lines of Example 10, we find that there are
1

120

(
35

5
+ 1033

335 + 15m35
2
+ 2032

235 + 203233 + 30m35 + 2435
)

classes of m-endomorphisms when n = 5, and
1

720

(
36

6
+ 1534

436 + 4532
236

2
+ 1536

3
+ 4033

336

+ 120m3334 + 4036
2
+ 9032

236 + 903236 + 144m36+ 12036
)

classes of m-endomorphisms when n = 6. Letting m run through N in these cases,
we again obtain sequences that are not well-known. Table 1 displays the values
of (6) for n,m ≤ 6.

Remark 11. The sequence 1, 3, 7, 19, 47, 130, . . . is sequence A001372 in [OEIS
1996].

3. Two natural variations

In this section, we highlight two natural variations of Corollary 9. First, we restrict
our attention to endomorphisms on D+ that send each element of D to a string of
length exactly m. We then consider m-endomorphisms of the so-called free monoid,
which contains the empty string. Expressions analogous to those in Section 2 are
derived in each case.

3.1. m-uniform endomorphisms. Fix n,m ∈ N, and suppose that |D| = n. Then
φ ∈ End(D+) is called an m-uniform endomorphism if and only if |φ(d)| = m for
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each d ∈ D. In this section, we produce a formula for the number of m-uniform en-
domorphisms on D+ up to combinatorial equivalence. To begin, let g1, . . . , gp(n) ∈

Sym(D) have distinct cycle types. We now put R = {W ∈ D+ : |W | = m} and take
� to be the set of all mappings of D into R. For each 1≤ r ≤ p(n), we ask for the
number of f ∈� satisfying

f ◦ gr = φgr ◦ f.

Once again, if gr has cycle type kr1, . . . , kr`r , then for each 1≤ i ≤ `r we select an
element dri from the cycle corresponding to kri , and count the number of possible
values of f (dri ). In this case, we must have | f (dri )| = m, where the elements
of D comprising the string f (dri ) each belong to a cycle whose length divides kri .
Hence, there are (∑

j | kri

jc(gr , j)
)m

choices of f (dri ), and multiplying over all i yields

`r∏
i=1

(∑
j | kri

jc(gr , j)
)m

as the value of |{ f ∈� : f ◦ gr = φgr ◦ f }|. Noting that permutations in Sym(D)
of the same cycle type fix the same number of f ∈�, we multiply by |Cgr |, sum
with respect to r , and divide by n! to obtain the following.

Corollary 12. If |D| = n and g1, . . . , gp(n) ∈ Sym(D) have distinct cycle types,
then the number of m-uniform endomorphisms on D+, up to combinatorial equiva-
lence, is the value of

1
n!

p(n)∑
r=1

(
|Cgr |

`r∏
i=1

(∑
j | kri

jc(gr , j)
)m)

, (7)

where kr1, . . . , kr`r is the cycle type of gr , and Cgr is as in Proposition 8.

When n = 2, the number of m-uniform endomorphisms on D+, up to combina-
torial equivalence, is

1
2(2

2m
+ 2m).

Letting m = 1, 2, 3, 4, . . . gives values 3, 10, 36, 136, . . . . This is the sequence
A007582 from [OEIS 1996]. Moreover, when n = 3 there are

1
6(3

3m
+ 3 · 3m

+ 2 · 3m)

classes of m-uniform endomorphisms, and letting m run through N gives the
sequence 7, 129, 3303, 88641, . . . , which is not well known. Continuing, the
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n= 1 n= 2 n= 3 n= 4

m= 1 1 3 7 19
m= 2 1 10 129 2,836
m= 3 1 36 3,303 700,624
m= 4 1 136 88,641 178,981,696
m= 5 1 528 7,973,053 45,813,378,304
m= 6 1 2,080 64,570,689 11,728,130,323,456

n= 5 n= 6

m= 1 47 130
m= 2 83,061 3,076,386
m= 3 254,521,561 141,131,630,530
m= 4 794,756,352,216 6,581,201,266,858,896
m= 5 2,483,530,604,092,546 307,047,288,863,992,988,160
m= 6 7,761,021,959,623,948,401 14,325,590,271,500,876,382,987,456

Table 2. Values of (7) for n,m≤ 6.

expressions when n = 4, 5, 6 are

1
24

(
44m
+ 6 · 22m

· 4m
+ 3 · 42m

+ 8 · 4m
+ 6 · 4m),

1
120

(
55m
+ 10 · 33m

· 5m
+ 15 · 52m

+ 20 · 22m
· 5m
+ 20 · 2m

· 3m
+ 30 · 5m

+ 24 · 5m),
1

720

(
66m
+ 15 · 44m

· 6m
+ 45 · 22m

· 62m
+ 15 · 63m

+ 40 · 33m
· 6m

+ 120 · 3m
· 4m
+ 40 · 62m

+ 90 · 22m
· 6m
+ 90 · 2m

· 6m
+ 144 · 6m

+ 120 · 6m),
respectively. Table 2 displays the values of (7) for n,m ≤ 6.

3.2. The free monoid. If we adjoin the unique string of length 0 (denoted by ε) to
the set D+, then we form the set D∗. Paired with the operation of string concate-
nation, D∗ forms the free monoid on D. We refer to ε as the empty string, and it
serves as the identity element in D∗. That is, for any W ∈ D∗,

Wε =W = εW.

We define an endomorphism on D∗ to be a mapping φ : D∗ → D∗ such that
φ(W1W2)= φ(W1)φ(W2) for all W1,W2 ∈ D∗.

Remark 13. Note that if φ is an endomorphism on D∗, then φ(ε)= ε. This follows
since for any W ∈ D∗, we have

φ(W )= φ(εW )= φ(ε)φ(W ),

which implies that φ(ε) has length 0.
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Now, an m-endomorphism on D∗ is an endomorphism such that |φ(d)| ≤ m
for all d ∈ D. Thus, an m-endomorphism on D∗ can map elements of D to ε. To
determine the number of m-endomorphisms on D∗ up to combinatorial equivalence,
we put R = {W ∈ D∗ : |W | ≤m}, and for each g ∈ Sym(D), we ask for the number
of f : D→ R that are fixed by g. Again, it suffices to count the number of possible
images under such an f of a single d ∈ D from each cycle in the decomposition
of g, and then multiply over all the cycles. But there is now one additional possible
value of f (d): the empty string. Hence, if d belongs to a cycle of length ki , then
we have

1+
m∑

k=1

(∑
j | ki

jc(gr , j)
)k

=

m∑
k=0

(∑
j | ki

jc(gr , j)
)k

choices of f (d). From this observation, we deduce the following.

Corollary 14. Let |D| = n, and suppose that g1, . . . , gp(n) ∈ Sym(D) have distinct
cycle types. Then the number of m-endomorphisms on D∗, up to combinatorial
equivalence, is the value of

1
n!

p(n)∑
r=1

(
|Cgr |

`r∏
i=1

( m∑
k=0

(∑
j | kri

jc(gr , j)
)k))

, (8)

where kr1, . . . , kr`r is the cycle type of gr , and Cgr is as in Proposition 8.

When n = 2, the number of m-endomorphisms on D∗, up to combinatorial
equivalence, is

1
2

(
(2m+1

− 1)2+ (2m+1
− 1)

)
.

This is sequence A006516 from [OEIS 1996]. The corresponding expressions for
n = 3, 4, 5, 6 are

1
6

(
13

3
+ 3(m+ 1)13 + 213

)
,

1
24

(
14

4
+ 612

214 + 314
2
+ 8(m+ 1)14 + 614

)
,

1
120

(
15

5
+1013

315+15(m+1)15
2
+2012

215+201213+30(m+1)15+2415
)
,

1
720

(
16

6
+ 1514

416 + 4512
216

2
+ 1516

3
+ 4013

316 + 120(m+ 1)1314

+4016
2
+ 9012

216 + 901216 + 144(m+ 1)16 + 12016
)
,

where 1k = (km+1
− 1)/(k− 1). Once again, the sequences given by these expres-

sions appear to be little-known. Table 3 gives the values of (8) for n,m ≤ 6.

4. (χ ,ζ )-patterns

In closing, we briefly place the relation ∼ from Section 1 into a more general
context. Let G be a finite group, and let N and M be finite nonempty sets. Suppose
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n = 1 n = 2 n = 3 n = 4

m = 1 2 6 16 45
m = 2 3 28 390 8,442
m = 3 4 120 10,760 2,180,845
m = 4 5 496 295,603 563,483,404
m = 5 6 2,016 8,039,304 144,651,898,755
m = 6 7 8,128 217,629,416 37,057,640,711,850

n = 5 n = 6

m = 1 121 338
m = 2 244,910 8,967,034
m = 3 770,763,470 419,527,164,799
m = 4 2,421,556,983,901 19,636,295,549,860,505
m = 5 2,370,422,688,990,078 916,720,535,022,517,503,173
m = 6 23,683,244,198,577,149,289 42,775,066,732,111,188,868,070,978

Table 3. Values of (8) for n,m ≤ 6.

that χ : G→ Sym(N ) and ζ : G→ Sym(M) are group homomorphisms. Denote
the set of all functions from N into M by M N. This notation comes from de Bruijn
[1972], who also introduced the equivalence relation Eχ,ζ on M N defined by

( f1, f2) ∈ Eχ,ζ ⇐⇒ f2 ◦χ(γ )= ζ(γ ) ◦ f1 for some γ ∈ G.

Example 15 [de Bruijn 1972]. Suppose that N is a set of size n ∈N, and define an
equivalence relation S on the set of all mappings of N into itself by

( f1, f2) ∈ S ⇐⇒ f2 ◦ γ = γ ◦ f1 for some γ ∈ Sym(N ).

Letting G=Sym(N ), M=N , and χ=ζ be the identity homomorphism on Sym(N )
shows that S is a special case of the relation Eχ,ζ . Moreover, the sequence in
Remark 11 gives the number of equivalence classes under S for n= 1, 2, 3 . . .. (See
[de Bruijn 1972, § 3].)

The relation Eχ,ζ stems from the left action of G on M N given by

γ · f = ζ(γ ) ◦ f ◦χ(γ−1)

for all γ ∈ G, f ∈ M N . De Bruijn [1972] referred to the orbits of G on M N

as (χ, ζ )-patterns, and provided a formula for the number of these by applying
Burnside’s lemma, and then evaluating |{ f ∈ M N

: γ · f = f }| for each γ ∈ G. But
the relation ∼ on the set � = {mappings of D into R}, where 0 < |D| <∞ and
R = {W ∈ D+ : |W | ≤ m}, is a special instance of the relation Eχ,ζ . To see this,
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take N = D, M = R, and G = Sym(D). Let χ be the identity homomorphism on
Sym(D), and define ζ : G→ Sym(R) by

ζ(g)= φg|R

for all g ∈ Sym(D). Then for any g, g′ ∈ Sym(D),

ζ(g ◦ g′)= φg◦g′ |R = (φg ◦φg′)|R = φg|R ◦φg′ |R = ζ(g) ◦ ζ(g′),

so ζ is a group homomorphism. Now, for any f1, f2 ∈�, we have

f1 ∼ f2 ⇐⇒ f2 ◦ g = φg ◦ f1 = φg|R ◦ f1 for some g ∈ Sym(D)

⇐⇒ f2 ◦χ(g)= ζ(g) ◦ f1 for some g ∈ Sym(D)

⇐⇒ ( f1, f2) ∈ Eχ,ζ .

It follows that the equivalence classes in � under the relation ∼ are (χ, ζ )-patterns
for χ , ζ chosen as above. In particular, our Theorem 6 is a special case of de Bruijn’s
formula.
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