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We prove a Harnack-type inequality for nonnegative solutions of second order
ordinary differential inequalities. Maximum principles are the main tools used,
and to make the paper self-contained, we provide alternative proofs to those
available in the literature.

1. Introduction

The aim of this paper is to present a self-contained discussion of the Harnack and
Harnack-type inequalities for nonnegative solutions of second order linear ordinary
differential inequalities of the form

Lu ≤ f (x), x ∈ I := (A, B), (1-1)

where, for u ∈ C2(I ),

Lu := u′′(x)+ p(x)u′(x)+ q(x)u. (1-2)

Here and in the sequel, the notation C2(I ) stands for the class of twice continuously
differentiable real-valued functions on the open interval I . Likewise, we write C(I )
for the class of continuous real-valued functions on I . Throughout, we will assume,
without further mention, that p, q, f ∈C(I ). In this case, (1-2) can be rewritten as

Lu = 1
r(x)

(r(x)u′)′+ q(x)u, where r(x) := exp
(∫ x

p(t) dt
)
. (1-3)

Let H be a class of nonnegative and locally bounded functions in the open interval
I = (A, B). We say that Harnack’s inequality holds for the class H if and only if
given any closed interval [a, b] ⊆ I , there is a positive constant C such that

sup
x∈[a,b]

u(x)≤ C inf
x∈[a,b]

u(x) for all u ∈H. (1-4)
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The important point here is that C is independent of u ∈H. The class H is usually
a collection of nonnegative (or nonpositive) solutions of some differential equations.

This type of inequality is named after Carl Gustav Axel von Harnack (1851–
1888) who first derived the inequality for nonnegative harmonic functions in the
plane. The inequality became a very important tool in the study of solutions to
second order linear and nonlinear elliptic partial differential equations. We refer
the interested reader to the article [Kassmann 2007] for a detailed account on some
history and theoretical developments of this fascinating inequality, as well as an
extensive bibliography of articles and monographs related to Harnack’s inequality.
We direct the reader to the paper [Berhanu and Mohammed 2005] for a simple
application of Harnack’s inequality to the ordinary differential equation Lu = f .
The same paper also provides an example that shows the explicit dependence of the
constant C in (1-4) on the differences a− A and B− b.

2. On maximum principles

To develop a version of Harnack’s inequality for nonnegative solutions of (1-1),
we need several results on maximum principles which can be found in [Protter
and Weinberger 1984]. To make the paper self-contained and for the readers’
convenience, we provide alternative proofs to these maximum principles under the
assumption that p and q are continuous on I .

We first introduce an auxiliary function that will be used in our proof of a basic
theorem on maximum principles. We use the notation J := (α, β) for α < β.
Consider the following auxiliary function, with σ > 0 to be chosen:

z(x)= σ(x −α)− eσ(x−α). (2-1)

We observe that
z(α)=−1 and z′(α)= 0.

Direct computation shows

Lz =−σ 2eσ(x−α)
(

1+
p(x)
σ

(1− e−σ(x−α))+
q(x)
σ

(
1
σ
− (x −α)e−σ(x−α)

))
.

If p and q are bounded on [α, β], we see that

lim
σ→∞

(
p(x)
σ

(1− e−σ(x−α))+
q(x)
σ

(
1
σ
− (x −α)e−σ(x−α)

))
= 0,

uniformly on [α, β]. Therefore, in this case we can choose σ > 0 large enough
such that

Lz ≤−cσ 2eσ(x−α) in J

for some constant c > 0.
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Most of the theorems on maximum principles will be easy consequences of the
following basic and useful result.

Theorem 2.1. Let p, q ∈C(J ) and q ≤ 0 in J . Let u ∈C2(J )∩C(J ) be a solution
of Lu ≤ 0 in J . Suppose u has a nonpositive minimum at x0 ∈ {α, β}. If u is
differentiable at x0, and u′(x0)= 0, then u is a constant in J .

Proof. We consider the case x0=α first. Suppose u has a nonpositive minimum u(α)
at α. Furthermore, assume that u is differentiable at α, and u′(α)= 0. We consider
the auxiliary function z in (2-1) with σ > 0 such that Lz ≤ 0 in J . We note
that z(α) = −1 and z′(α) = 0. We fix ε > 0, and set w := u + εz. We note that
Lw= Lu+εLz= Lu≤0. On recalling that u(α)≤0, we havew(α)=u(α)−ε<0,
and w′(α) = 0. By continuity of w on [α, β], we see that w(x) < 0 on [α, τ) for
some τ > 0. Let

η := sup{ρ ∈ [α, β] : w(s) < 0 ∀ 0≤ s < ρ}.

Then we note that

(r(x)w′)′ = (r(x)w′)′+ r(x)q(x)w− r(x)q(x)w(x)

= r(x)Lw− r(x)q(x)w

≤−r(x)q(x)w(x)≤ 0, α < x < η. (2-2)

Thus rw′ is decreasing on [α, η] so that r(x)w′(x)≤ r(α)w′(α)= 0 on [α, η]. In
particular, this implies that w is decreasing on [α, η]. Hence w(x)≤ w(α) < 0 for
all α≤ x ≤ η. This and the continuity of w on [α, β] would contradict the definition
of η if η < β. Therefore we must have η = β, so that w is decreasing on [α, β]. In
particular, we have

u(x)+ εz(x)≤ u(α)+ εz(α), α ≤ x ≤ β.

Letting ε→ 0, we find that u(x)≤ u(α) on [α, β]. This, together with the fact that
u(x)≥ u(α), shows that u(x)= u(α) on [α, β].

Now suppose u has a nonpositive minimum at β and u′(β) = 0. Let w(x) =
u(2β−x) for x ∈ I := [β, 2β−α]. Then clearlyw∈C2(I )∩C(I ), and moreover, w
is differentiable at β with w′(β) = −u′(β) = 0. Furthermore, w satisfies the
inequality

L̃w = w′′+ p̃(x)w′+ q̃(x)w ≤ 0, x ∈ I,

where
p̃(x)=−p(2β − x) and q̃(x)= q(2β − x), x ∈ I.

Finally we also note thatw has a nonpositive minimum at β. Therefore, by the above
result, we must have w(y)=w(β) for all y ∈ [β, 2β−α]. Thus for any x ∈ [α, β],
we have w(β)= w(2β − x)= u(x), that is, u(x)= u(β), as was to be shown. �
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As consequences of Theorem 2.1, we have the following immediate and useful
theorems on maximum principles.

Theorem 2.2. Let p, q ∈ C(J ) and q ≤ 0 in J . Suppose u satisfies the differential
inequality Lu ≤ 0 in an interval J . If u assumes a nonpositive minimum value at an
interior point x0 of J , then u(x)≡ u(x0).

Proof. Suppose u attains its nonpositive minimum at x0 ∈ J = (α, β). Then
u′(x0) = 0. Consider the intervals [α, x0] and [x0, β]. By Theorem 2.1, we see
that u(x) = u(x0) for all x ∈ [α, x0] and u(x0) = u(x) for all x ∈ [x0, β]. That is,
u(x)= u(x0) for all x ∈ [α, β]. �

Theorem 2.3. Let p, q ∈ C(J ) and q ≤ 0 in J . Suppose u ∈ C2(J ) ∩ C(J )
satisfies the differential inequality Lu ≤ 0 in an interval J := (α, β). If u assumes
a nonpositive minimum value at x0 ∈ {α, β} and u is differentiable at x0, then
u′(x0) > 0 if x0 = α, and u′(x0) < 0 if x0 = β unless u is a constant on J .

Proof. Suppose u satisfies Lu ≤ 0 in J , and u has a nonpositive minimum at
x0 ∈ {α, β}. By hypothesis, u is differentiable at x0. Let us take the case x0 = α.
Then clearly u′(α) ≥ 0. If u′(α) = 0, then by Theorem 2.1, we conclude u is a
constant. Therefore, if u is nonconstant, we must have u′(α) > 0. If x0 = β, here
again we have u′(β)≤ 0. If u is nonconstant, then again by Theorem 2.1, we must
have u′(β) < 0. �

Theorem 2.4. Let p, q ∈C(J ) and q ≤ 0 in J . Suppose u ∈C2(J )∩C(J ) satisfies
the differential inequality Lu ≤ 0 in an interval J := (α, β). Suppose u(γ )≤ 0 for
some γ ∈ J . In case γ ∈ {α, β}, we assume that u is differentiable at γ :

(i) If u′(γ )≤ 0, then u(x)≤ 0 for all x ∈ [γ, β].

(ii) If u′(γ )≥ 0, then u(x)≤ 0 for all x ∈ [α, γ ].

(iii) If u′(γ )= 0, then u(x)≤ 0 for all x ∈ J .

Proof. Suppose u′(γ )≤ 0. We assume that γ < β, for otherwise there is nothing to
prove. Suppose that u(c) > 0 for some c ∈ (γ, β]. Since u(γ )≤ 0, and u(c) > 0, we
note that u has a nonpositive minimum on [γ, c] at some γ ≤ d < c. If γ < d < c,
then u′(d)= 0 and we invoke Theorem 2.2 to conclude that u is a constant in [γ, c].
If d = γ , then the assumption u′(γ ) ≤ 0 and Theorem 2.3 lead us to conclude
that u is a constant on [γ, c]. In any case, we see that u(c) > 0 for some c ∈ (γ, β]
implies that u is a constant on [γ, c]. But then u(c)= u(γ )≤ 0, which contradicts
the assumption that u(c) > 0. This proves statement (i).

To prove (ii), let us assume that u′(γ )≥ 0, and that γ > α. Assume that u(c) > 0
for some c ∈ [α, γ ). Since u(γ )≤ 0, as in the previous case we note that u takes a
nonpositive minimum on [c, γ ] at some c< d ≤ γ . If c< d<γ , then u′(d)= 0, and
by Theorem 2.2, we see that u is a constant on [c, γ ]. If, on the other hand, d = γ ,
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then since u′(γ ) ≥ 0, we conclude that u is a constant on [c, γ ] by Theorem 2.3.
In either case, we conclude that u is a constant on [c, γ ]. But this implies that
u(c)= u(γ )≤ 0, which again contradicts the assumption that u(c) > 0. Therefore
statement (ii) holds as well.

Finally statement (iii) follows from statements (i) and (ii). �

3. The Harnack and Harnack-type inequalities

We start with following existence and uniqueness theorem for solutions of Lu = f
that satisfy initial conditions. This theorem is usually taught in a first course
on ordinary differential equations in undergraduate curriculum (see [Boyce and
DiPrima 1965] for instance), and will be needed in our proof of Harnack’s inequality.

Theorem E (existence and uniqueness). Suppose p, q, f ∈ C(I ). Let x0 ∈ I and
let c0 and c1 be arbitrary real constants. Then there exists a unique solution
u ∈ C2(I ) of equation Lu = f such that u(x0)= c0 and u′(x0)= c1.

We now begin our considerations of Harnack’s inequality with respect to the
class of nonnegative solutions of the differential inequality

Lu ≤ 0 in I := (A, B). (3-1)

To proceed further, we fix some notations, some of which are fairly standard. For
any function h : (A, B)→ R, we write

h+(x) :=max{h(x), 0} and h−(x) :=max{−h(x), 0}, x ∈ (A, B).

Note that we have
h = h+− h−.

In the sequel, we will also use the following notation repeatedly.

L0u := u′′+ p(x)u′− q−(x)u, x ∈ I.

Remark 3.1. We first make note of the following:

(1) If u is a nonnegative solution of (3-1), then u is a solution of L0u ≤ 0 in I .

(2) If u is a nonnegative solution of (3-1) with u 6≡ 0 on I , then u > 0 in I , for if
u(x0) = 0 for some x0 ∈ I , then u′(x0) = 0. Since L0u ≤ 0 in I , we invoke
Theorem 2.2 and conclude that u(x)≡ 0 in I .

We start with the following theorem on Harnack’s inequality for nonnegative
solutions of (3-1).

Theorem 3.2. Given [a, b] ⊆ I , there is a positive constant C that depends on the
coefficients p, q and the constants A, B, a and b only, such that

max
a≤x≤b

u(x)≤ C min
a≤x≤b

u(x) (3-2)

for any nonnegative solution u of (3-1).
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We break down the proof into two lemmas, each of which may be of independent
interest. The proof closely follows the method in [Berhanu and Mohammed 2005].

Lemma 3.3. Given [a, b] ⊆ I , there are constants Ca and Cb that depend on the
coefficients p, q and the constants A, B, a and b only, such that

u′(a)
u(a)

≤ Ca and
u′(b)
u(b)

≥ Cb (3-3)

for all positive solutions u of (3-1).

Proof. Let w1 and w2 be solutions of

L0w := w
′′
+ p(x)w′− q−(x)w = 0, A < x < B,

such that w1(a)= 1, w′1(a)= 0, and w2(a)= 0, w′2(a)= 1.
We define

v(x) := u(x)− u(a)w1(x)− u′(a)w2(x), A < x < B.

Then recalling that L0u ≤ 0, and L0w1 = 0= L0w2 in (A, B), we see that L0v ≤ 0
in (A, B). Moreover, we have v(a) = 0 and v′(a) = 0. By Theorem 2.4, we
conclude that v ≤ 0 on (A, B). Thus

0≤ u(x)≤ u(a)w1(x)+ u′(a)w2(x), A < x < B,

whence
u′(a)
u(a)

w2(x)+w1(x)≥ 0, A < x < B. (3-4)

Since w′2(a)= 1, we note that there is a small interval centered at a on which w2

is increasing. So we fix a∗ with α < a∗ < a such that w2(a∗) < 0. Therefore, on
taking x = a∗ in (3-4), we conclude that

u′(a)
u(a)

≤−
w1(a∗)
w2(a∗)

= Ca. (3-5)

Next we establish the second estimate in (3-3). This is very similar to the previous
case, and hence we will be brief. Let z1 and z2 be solutions of

L0z1 = 0, z1(b)= 1, z′1(b)= 0 and L0z2 = 0, z2(b)= 0, z′2(b)= 1.

Let us consider the function

v(x) := u(x)− u(b)z1(x)− u′(b)z2(x), A < x < B.

Then Lv ≤ 0 in (A, B) and v(b)= 0, v′(b)= 0. Arguing as before, we can show
that v ≤ 0 on (A, B), from which we conclude

u′(b)
u(b)

z2(x)+ z1(x)≥ 0, A < x < B.



HARNACK’S INEQUALITY 287

Since z2 is increasing in some interval centered at b, we can find b < b∗ < B such
that z2(b∗) > 0. Thus we find that

u′(b)
u(b)

≥−
z1(b∗)
z2(b∗)

= Cb. (3-6)

This completes the proof of the lemma. �

Lemma 3.4. Given [a, b] ⊆ I , there is a positive constant C , depending on the
coefficients p, q and the constants A, B, a and b only, such that

|u′(x)| ≤ Cu(x), a ≤ x ≤ b (3-7)

for all nonnegative solutions u of (3-1) in I .

Proof. Let u be a nonnegative solution of (3-1) in I with u 6≡ 0 so that u > 0 in I .
Direct computation shows that(u′

u

)′
=

u′′

u
−

(u′

u

)2

≤
1
u
(
−p(x)u′− q(x)u

)
=−p(x)

(u′

u

)
− q(x).

Therefore, (u′

u

)′
+ p(x)

(u′

u

)
≤ q−(x).

This leads to (
exp

(∫ x

a
p(t) dt

)
u′

u

)′
≤ q− exp

(∫ x

a
p(t) dt

)
.

This gives (
r(x)u

′

u
−

∫ x

a
r(t) q−(t) dt

)′
≤ 0, x ∈ (a, b),

where we have set

r(x) := exp
(∫ x

a
p(t) dt

)
.

Thus for any a ≤ x ≤ b, we have

r(b)
u′(b)
u(b)

−

∫ b

a
r(t) q−(t) dt ≤ r(x)

u′

u
−

∫ x

a
r(t) q−(t) dt ≤ r(a)

u′(a)
u(a)

.

In conclusion, we have

r(b)
u′(b)
u(b)

− Q(b)≤ r(x)
u′

u
≤

u′(a)
u(a)

+ Q(b), x ∈ (a, b), (3-8)
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where Q(b) denotes the constant

Q(b) :=
∫ b

a
r(t)q−(t) dt.

Using Lemma 3.3 in (3-8), we obtain

r(x)
∣∣∣∣u′(x)u(x)

∣∣∣∣≤ C0, x ∈ [a, b],

for some positive constant C0, independent of u. Since

1
r(x)
= exp

(
−

∫ x

a
p(t) dt

)
≤ exp

(
‖p‖∞(b− a)

)
, x ∈ [a, b],

we conclude that ∣∣∣∣u′(x)u(x)

∣∣∣∣≤ C, x ∈ [a, b], (3-9)

for a constant C > 0 that is independent of u. �

Proof of Theorem 3.2. For any x, y ∈ [a, b], we see that

log
(

u(x)
u(y)

)
=

∫ x

y

d
dt

log u(t) dt

=

∫ x

y

u′(t)
u(t)

dt.

Therefore,
u(x)
u(y)
= exp

(∫ x

y

u′(t)
u(t)

dt
)
.

It follows from this and Lemma 3.4 that

exp(−C |x − y|)≤
u(x)
u(y)
≤ exp(C |x − y|), x, y ∈ [a, b].

Therefore, we finally see that

exp(−C(b− a))≤
u(x)
u(y)
≤ exp(C(b− a)), x, y ∈ [a, b],

which leads to the inequality stated in (3-2). �

Remark 3.5. The differential inequality (3-1) with the inequality reversed doesn’t
satisfy Harnack’s inequality as can be seen from the following simple example. Fix
x0 ∈ [a, b]. Then uk(x)= ek(x−x0) satisfies the inequality u′′ ≥ 0 in R, and note that

ek(b−x0) ≤ sup
[a,b]

uk(x)≤ C inf
[a,b]

uk(x)≤ Cuk(x0)= C.

But there is no single positive constant C , independent of uk and hence k, such that

ek(b−x0) ≤ C.
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Next we study a Harnack-type inequality for nonnegative solutions of nonhomo-
geneous equations.

We will start by deriving a Harnack-type inequality for nonnegative solutions of
the following equation, assuming that f ≥ 0 on I :

L0u = f in I := (A, B). (3-10)

However, it should be noted that Harnack’s inequality (3-2) does not hold for
nonnegative solutions of (3-10) for general f . This is to be expected as nonnegative
solutions of (3-10) are not necessarily positive in (A, B). In fact, the following
simple example shows that the inequality (3-2) cannot hold even for positive
solutions of (3-10).

Example 3.6. Consider the equation u′′ = 1 in the interval (A, B) := (−2, 2). For
any positive integer k,

uk =
1
2

(
x − 1

k

)2
+

1
k

is a solution of u′′k = 1, and uk > 0 in (−2, 2) for all k. Suppose there is a constant
C > 0 such that

max
[−1,1]

u ≤ C min
[−1,1]

u ∀ u > 0, u′′ = 1. (3-11)

Then note that

uk(1)=
1
2

(
1− 1

k

)2
+

1
k

and uk

(1
k

)
=

1
k
.

If (3-11) were to hold, then

1
2

(
1− 1

k

)2
+

1
k
≤ C

(1
k

)
∀ k = 1, 2, . . . .

Letting k→∞, we arrive at a contradiction.

We now state the following theorem on a Harnack-type inequality for solutions
of (3-10). For the remainder of our discussion, we will use the following notations.

α := 1
2(a+ A) and β := 1

2(b+ B).

We will also find it convenient to use the notation ‖g‖∞ to denote the following
number for any g bounded on an interval I :

‖g‖I,∞ := sup
x∈I
|g(x)|,

or simply ‖g‖∞ if I is clear from the context.
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Theorem 3.7. Suppose f ≥ 0 in I . Given [a, b] ⊆ I , there is a positive constant C
that depends on the coefficients p, q and the constants A, B, a and b such that

max
a≤x≤b

u(x)≤ C
(

min
a≤x≤b

u(x)+
∫ β

α

f (x) dx
)

(3-12)

for all nonnegative solutions u of (3-10).

Proof. We prove the theorem in three steps. Suppose u ≥ 0 in (A, B) is a solution
of (3-10).

Step 1. Let u(x0)=min{u(x):x∈[α,β]}. By Theorem E, we pick z∗ ∈C2(I )∩C(I )
such that

L0z∗ = f, z∗(x0)= 0= z′
∗
(x0). (3-13)

By Theorem 2.4(iii), we note that z∗ ≥ 0 in (A, B). We claim that u ≥ z∗ in [α, β].
To see this, we start by observing that

L0(u− z∗)= 0 in (A, B) and (u− z∗)(x0)≥ 0.

Suppose first that α < x0 < β. Then u′(x0) = 0, and therefore (u − z∗)′(x0) = 0.
Consequently, by Theorem 2.4(iii), we conclude that u − z∗ ≥ 0 in [α, β], as
desired. Suppose x0 = α. Then u′(x0)= u′(α) ≥ 0, so that (u− z∗)′(x0) ≥ 0. By
Theorem 2.4(i), we conclude that u− z∗ ≥ 0 in [x0, β] = [α, β]. Finally, suppose
that x0 = β. Then u′(x0) = u′(β) ≤ 0, so that (u − z∗)′(x0) ≤ 0. Again, by
Theorem 2.4(ii), we conclude that u− z∗ ≥ 0 in [α, x0] = [α, β]. Thus, in all cases,
we have shown that u ≥ z∗ in [α, β] as claimed.

Step 2. Let u(ζ ) :=min{u(x) : a ≤ x ≤ b}. Since u− z∗ is a nonnegative solution
of L0w = 0 in (α, β), we invoke Theorem 3.2 to obtain a positive constant C that
depends on p, q− and the constants A, B, a and b only such that the following
chain of inequalities hold:

max
[a,b]

u =max
[a,b]

(z∗+ u− z∗)

≤max
[a,b]

z∗+max
[a,b]

(u− z∗)

≤max
[a,b]

z∗+C min
[a,b]

(u− z∗) (by Theorem 3.2)

≤ C(u− z∗)(ζ )+max
[a,b]

z∗

≤ Cu(ζ )+max
[a,b]

z∗ (recall that u(ζ )=min
[a,b]

u)

= C min
[a,b]

u+max
[a,b]

z∗. (3-14)
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Step 3. We now estimate z∗ on [a, b]. Recall the notation ‖g‖∞ :=maxx∈[α,β] |g(x)|
for any function g ∈ C([α, β]). We recall that

f = L0z∗ =
1

r(x)
(r(x)z′

∗
)′− q−(x)z∗, x ∈ I,

where

r(x)= exp
(∫ x

a
p(s) ds

)
.

For x ∈ (x0, b), we have

z∗(x)=
∫ x

x0

1
r(t)

∫ t

x0

r(s)
(
q−(s)z∗(s)+ f (s)

)
ds dt.

Therefore, for x ∈ (x0, b),

z∗(x)≤ exp
(
(b− a)‖p‖∞

) ∫ x

x0

∫ t

x0

(
q−(s)z∗(s)+ f (s)

)
ds dt

≤ (b− a) exp
(
(b− a)‖p‖∞

) ∫ x

x0

(
q−(t)z∗(t)+ f (t)

)
dt

≤ P0

∫ β

α

f (t) dt + P0‖q−‖∞

∫ x

x0

z∗(t) dt,

where P0 := (b− a) exp
(
(b− a)‖p‖∞

)
.

Denoting the right-hand side of the last inequality by ϑ(x) for x0 < x < b, and
on noting that z∗(x)≤ ϑ(x) on (x0, b), we find

ϑ ′(x)= P0‖q−‖∞z∗(x)

≤ P0‖q−‖∞ϑ(x) (since z∗(x)≤ ϑ(x)), x ∈ (x0, b),

so that
ϑ ′(x)
ϑ(x)

≤ P0‖q−‖∞, x ∈ (x0, b).

Integrating on (x0, x), we find that

z∗(x)≤ ϑ(x)≤ P0 exp
(
P0‖q−‖∞(b− a)

) ∫ β

α

f (t) dt. (3-15)

The same inequality holds if a < x < x0.
Using (3-15) in (3-14) leads to the desired inequality (3-12). �

Finally we are ready to state and prove the following Harnack-type inequality for
nonnegative solutions of the differential inequality (1-1) with the nonhomogeneous
term f in C(I ), without any sign restrictions.
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Theorem 3.8. Given [a,b] ⊆ I , there is a positive constant C , that depends on the
coefficients p, q and the constants A, B, a and b only such that the Harnack-type in-
equality (3-12), with f replaced by f +, holds for all nonnegative solutions of (1-1).

Proof. Let u be a nonnegative solution of (1-1) in (A, B). Let u(x0)=min[a,b] u,
and consider the solution z of

L0z = f + in (A, B) and z(x0)= u(x0), z′(x0)= u′(x0).

Then L0(u−z)= L0u−L0z≤ f − f +≤ 0, and (u−z)(x0)= 0 and (u−z)′(x0)= 0.
By Theorem 2.4(iii), we conclude that u−z≤0 in (A, B), so that 0≤u≤ z in (A, B).
Thus

max
x∈[a,b]

u(x)≤ max
x∈[a,b]

z(x)

≤ C
(

min
x∈[a,b]

z(x)+
∫ β

α

f +(x) dx
)

(by Theorem 3.7)

≤ C
(

z(x0)+

∫ β

α

f +(x) dx
)

= C
(

u(x0)+

∫ β

α

f +(x) dx
)

= C
(

min
x∈[a,b]

u(x)+
∫ β

α

f +(x) dx
)
.

This is the desired result. �
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