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The Catalan numbers Ck were first studied by Euler, in the context of enumer-
ating triangulations of polygons Pk+2. Among the many generalizations of this
sequence, the Fuss–Catalan numbers C (d)

k count enumerations of dissections
of polygons Pk(d−1)+2 into (d+1)-gons. In this paper, we provide a formula
enumerating polygonal dissections of (n+2)-gons, classified by partitions λ of [n].
We connect these counts aλ to reverse series arising from iterated polynomials.
Generalizing this further, we show that the coefficients of the reverse series of
polynomials x = z−

∑
∞

j=0 b j z j+1 enumerate colored polygonal dissections.

1. Catalan numbers and polygonal partitions

The Catalan numbers

Ck =
1

k+1

(2k
k

)
for n ≥ 0

are the answer to myriad counting problems (see [Stanley 2012; 2013; Bajunaid
et al. 2005]). For example, they count the number of triangulations of a (k+2)-gon,
the number of noncrossing handshake-pairings of 2k people seated at a round table,
the number of binary rooted trees with k internal nodes, the number of Dyck paths
of length 2k, and the number of noncrossing partitions of k; see Figure 1.

In this paper, we will alternate between the recursive definition of the Catalan
numbers and the closed formula for Ck .

Theorem 1.1 (Catalan recursion [Stanley 2012]). Let {C0,C1,C2, . . .} be a se-
quence with C0 = 1 and Ck+1 =

∑k
i=0 Ci ·Ck−i . Then Ck are the Catalan numbers,

Ck =
1

k+1

(2k
k

)
.
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Triangulations of (k+2)-gon. Noncrossing pairings of 2k people. Binary rooted trees of k-pairs.

Dyck paths of length 2k. Noncrossing partitions of [k].

Figure 1. Examples of sets counted by Catalan number C3 = 5.

There is a similar recursive formula for the Fuss–Catalan numbers

C (d)
k =

1
k(d−1)+1

(dk
k

)
,

which specializes to the Catalan numbers when d = 2.

Theorem 1.2 (Fuss–Catalan recursion [Klarner 1970]). Let {C (d)
0 ,C (d)

1 ,C (d)
2 , . . .}

be a sequence with C (d)
0 = 1 and

C (d)
k+1 =

∑
k1+k2+···+kd=n

C (d)
k1

C (d)
k2
· · ·C (d)

kd
.

Then C (d)
k are the generalized Catalan (or Fuss–Catalan) numbers

C (d)
k =

1
k(d−1)+1

(dk
k

)
.

There is a well-known bijection between triangulations of (k+2)-gons Pk+2

and binary rooted trees with k internal nodes (see [Przytycki and Sikora 2000]
for a history of this problem). There is also a bijection between partitions of a
(k(d−1)+2)-gon Pk(d−1)+2 into (d+1)-gons and d-ary trees with k internal nodes
(see [Hilton and Pedersen 1991]). The wording of Theorem 0.2 from [loc. cit.] has
been changed slightly to reflect the notation used in this note.

Theorem 1.3 [Hilton and Pedersen 1991, Theorem 0.2]. Let Pd
k denote the number

of ways of subdividing a convex polygon into k disjoint (d+1)-gons by means of
nonintersecting diagonals, k ≥ 1, and let Ad

k denote the number of d-ary trees with
k-internal nodes, k ≥ 1. Then Pd

k = Ad
k = C (d)

k for all d ≥ 2, k ≥ 1.

Proof. That the number of d-ary rooted trees with k internal nodes can be counted
by the Fuss–Catalan numbers can easily be shown inductively via the generalized
Catalan recursion formula. For k = 1, there are precisely Ad

k = 1 such trees. For



POLYGONAL DISSECTIONS AND REVERSIONS OF SERIES 225

Ad
k1

Ad
k2

Ad
k3
· · · · Ad

kd

Figure 2. Recursive construction of Ad
k+1.

k ≥ 1, each tree in the set Ad
k+1 consists of an internal node with d branches and

some rooted d-ary tree (possibly empty) attached to each branch (see Figure 2).
As there are k remaining internal nodes to partition amongst the branches, we

have k1+· · ·+ kd = k, and our d-ary rooted trees with (k+ 1) internal nodes must
satisfy the recursion formula

Ad
k+1 =

∑
k1+k2+···+kd=k

Ad
k1

Ad
k2
· · · Ad

kd
.

By Theorem 1.2, we have that the number of d-ary rooted trees is Ad
k = C (d)

k .
There is a bijection (illustrated in Figure 3) between d-ary rooted trees with k

internal nodes and subdivisions of convex polygons into k disjoint (d+1)-gons via
diagonals. Choose one edge to correspond to the root; then draw the d branches
from that root to the d other edges of the (d+1)-gon in the dissection. Continue
this, treating each vertex lying on a diagonal as the new root of a subtree.

This process is easy to reverse (constructing a unique polygonal dissection
from a rooted tree); i.e., given a polygonal dissection into (d+1)-gons, we have a
unique d-ary rooted tree, and vice versa. This provides our desired bijection, and
Pd

k = Ad
k = C (d)

k . �

There have been several papers enumerating general polygonal dissections of
n-gons with k nonintersecting diagonals (see [Motzkin 1948; Read 1978; Mc-
Cammond 2006]). We consider here a case that does not currently appear in the
literature: enumerating polygonal dissections of convex n-gons Pn , where each

Figure 3. Bijection between (d + 1) dissections and rooted d-ary trees.
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Figure 4. A 3-dissection (left) of type λ = 2+ 2+ 2+ 2 and a
(2, 3, 4)-dissection (right) of type λ= 3+ 2+ 2+ 1 of a 10-gon.

piece of the dissection must be a (d+1)-gon, where d ∈ {d1, d2, . . . , dk} for fixed,
distinct integers di ≥ 2 (see Figure 4 for examples). To standardize terminology
and indices for polygonal dissections, we include precise definitions here.

Definition 1.4 (polygonal dissections). A polygonal dissection of a convex n-gon
is the union of the polygon and any nonintersecting subset of its diagonals. A
d-dissection (respectively, a (d1, d2, . . . , dr )-dissection) is a polygonal dissection
such that the regions formed by the dissection are all convex (d+1)-gons (respec-
tively, each region is a (di+1)-gon for some di ∈ {d1, d2, . . . , dr }).

Definition 1.5 (type of a polygonal dissection). Let λ be a partition of n with k j

parts of size j . We say a dissection of an (n+2)-gon consisting of k j ( j+2)-gons is
a polygonal dissection of type λ, and denote the set of all such polygonal dissections
as Pλ,n .

Polygonal dissections of an (n(d−1)+1)-gon into (d+1)-gons are in bijection
with d-ary rooted trees with n+1 internal nodes, as shown in Theorem 1.3. Similarly,
polygonal dissections of type λ are in bijection with rooted plane trees with a
particular downdegree sequence.

Definition 1.6 (rooted trees and downdegree sequences). A rooted plane tree is a
tree T with a distinguished vertex called the root. The downdegree sequence r =
(r0, r1, r2, . . . , rn) of a rooted tree counts the number of vertices r j with j neighbors
further away from the root than the vertex itself. See Figure 5 for an example.

Theorem 1.7 [Stanley 2012]. Let Pλ,n be the number of all polygonal dissections of
type λ, where λ is a partition of n with k j parts of size j and n total parts. Let Tr,m
be the number of rooted plane trees on m+ 1 vertices with downdegree sequence
r = (r0, r1, r2, . . . , rm). Then Pλ,n = Tr,m for r = (n + 1, 0, k1, k2, . . . , kn) and
m = n+ k.

Proof. Let λ be a partition of n as above, and fix a polygonal dissection of type
λ ∈ Pλ,n . We construct our tree in Tr,n+k recursively as follows:

Choose an edge of the (n+2)-gon and place a root v there. This will be an edge
of some ( j+2)-gon in the dissection with k j ≥ 1 in λ. Place a vertex on each of
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Figure 5. Rooted planar trees with downdegree sequence
(17, 0, 2, 2, 2, 1, 0, 0, . . . , 0).

the j + 1 other sides of the ( j+2)-gon, and connect each of these vertices to the
original root vertex. The root note will have ( j+1) neighbors further from the root,
contributing one to the value of r j+1 in the downdegree sequence of the rooted tree.

Repeat this process for each of the edges in the dissection now connected to v. If
a node is connected to an edge in the boundary of the (n+2)-gon, it will contribute
one to the value of r0 in the downdegree sequence (as it will be a leaf of the
rooted tree, and has no further neighbors). If a node is not on the boundary of the
(n+2)-gon, treat it as the new root node of a subtree, and repeat the first step.

For each k j ≥ 1 in λ, we will have k j = r j+1 vertices with downdegree j , and
as each boundary edge of our (n+2)-gon (excepting our first root node) will have
a leaf vertex placed on it, we must have r0 = (n + 2) − 1 = n + 1. The tree
constructed has k internal vertices, one for the root and k− 1 for the diagonals, and
n+ 1 leaves, so we have n+ k+ 1 total vertices in our tree. Note that no vertices
in this tree will have downdegree 1, so r1 = 0. So our constructed tree is in Tr,m
for r = (n+ 1, 0, k1, k2, . . . , kn) and m = n+ k.

Note also that this bijection can easily be reversed: Given a rooted tree in Tr,n+k

with k internal nodes each with some downdegree j ≥ 2, we may place the internal

Figure 6. Bijection between a dissection of an 18-gon of type
λ= 1+ 1+ 2+ 2+ 3+ 3+ 4= 16 and a rooted planar tree with
downdegree sequence d = (17, 0, 2, 2, 2, 1, 0, 0, . . . , 0).
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node and its neighbors on the edges of a ( j+1)-gon. Glue a pair of these polygons
together along an edge if they share a vertex, and shift the resulting shape so that all
edges that are unmatched form the boundary of a convex polygon. Of the internal
nodes, only the original root node will appear on the boundary of this polygon. As
there were n+k+1 original vertices and k internal vertices, there must be n+1 ver-
tices on the boundary apart from the root node. So we have constructed a polygonal
dissection of an (n+2)-gon with k j ( j+2)-gons, and our bijection is complete. �

For an illustration of one such bijection between a polygonal dissection and a
rooted planar tree, see Figure 6.

Using results of Kreweras [1972] and Armstrong and Eu [2008], the count for
the number of rooted trees with a fixed downdegree sequence is known:

Theorem 1.8 [Rhoades 2011, Theorem 1.1]. Let n ≥ 1, v = (1, 2, . . . , n) and
r = (r1, . . . , rn) such that v · r = n. Set r! = r1!r2! · · · rn! and |r| =

∑
r j . Then

the number of rooted plane trees with n + 1 vertices and downdegree sequence
(n− |r| + 1, r1, r2, . . . , rn) is

Ar(v)=
1

1+ n
(1+ n)|r|

r!
,

where (y)k = y(y− 1) · · · (y− k+ 1)= y!/(y− k)! is the falling factorial.

For a list of several other related classes of connected Catalan-type objects,
enumerated by type and counted by the same formula, see the recent paper [Rhoades
2011]. From Theorem 1.7, we have added a new class of objects (polygonal
dissections of type λ) to their list. We will make use of the count provided by
this bijection to prove our main theorem, showing the connection between the
coefficients of reverse series of certain types and polygonal dissections.

Theorem 1.9 (polygonal partitions). The polynomial x = z −
∑r

i=1 zdi with
2≤ d1< d2< · · ·< dr has reverse series z =

∑
∞

n=0 anxn+1, where an counts the
number of (d1, d2, . . . , dr )-dissections of a convex (n+2)-gon.

Before delving into the connections between series reversions and polygonal
dissections, we examine in Section 2 the initial problem that led us to consider
reversions of series of the form x = z− zd .

2. Iterated Mandelbrot polynomials and reversions of series

The work in this paper began initially as a study of the coefficients of iterated
Mandelbrot (and d-multibrot) polynomials.

Definition 2.1 (Mandelbrot and d-multibrot polynomials). For variables x, z ∈ C,
we define the Mandelbrot polynomial fx by fx(z)= z2

+ x . For d ≥ 2, we define
the d-multibrot polynomial fd to be the map fd,x(z)= zd

+ x .
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Of particular interest in complex dynamics is the orbit of 0 under fx or fd,x .
We were interested in a formula for the coefficients of the power series in x of the
infinitely iterated d-multibrot polynomial

f (∞)d (x)= lim
n→∞

f (n)d (x),

where f (n)d (x) is defined recursively by the formula f (0)d (x)= 0 and

f (n)d (x)= ( f (n−1)
d (x))d + x for n ≥ 1.

Note that if the subscript d is omitted, we assume that d = 2.
The power series obtained by considering the limit of the iteration of zero under

the d-multibrot polynomial f (∞)d (x)=
∑

k ak xk+1 must satisfy

f (∞)d (x)= ( f (∞)d (x))d + x .

Setting z = f (∞)d (x), we see that calculating the coefficients of x in f (∞)d (x) is
equivalent to computing the series reversion of the polynomial x = z− zd . With
this in mind, here we introduce a version of the Lagrange inversion formula to
explicitly calculate the coefficients of f (∞)d (x)=

∑
∞

k=0 ak xk+1.

Theorem 2.2 (Lagrange inversion formula [Muller 1985]). Let x be a (convergent)
power series

x = z
(

1−
∞∑

n=1

bnzn
)
,

with reverse series

z = x
(

1+
∞∑

n=1

anxn
)
.

Then the coefficients an are given in terms of the bn by

an =
1

n+1

∑
λ

(n+k
k

)( k
k1, k2, . . . , kn

) n∏
j=1

bk j
j ,

where the sum is taken across all partitions λ of n into k j parts of size j and k total
parts, i.e., across all nonnegative integer n-tuples {k1, k2, . . . , kn} such that

n∑
j=1

k j = k,

n∑
j=1

k j · j = n.

As an immediate application of the Lagrange inversion formula, we produce the
series reversion of the polynomial x = z− zd :
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Theorem 2.3. The polynomial z = zd
+ x has inverse series solution

z =
∞∑

k=0

C (d)
k xk(d−1)+1.

Proof. This result is fairly immediate from noting that only for j = d − 1 are the
b j nonzero (specifically bd−1 = 1). So all parts in partitions λ contributing to the
sum are of size (d − 1), and nonzero an must be of form n = k(d − 1). From the
Lagrange inversion formula in Theorem 2.2, these coefficients must then be

an =
1

n+1

(n+k
k

)
=

1
k(d−1)+1

(k(d−1)+k
k

)
=

1
k(d−1)+1

(kd
k

)
= C (d)

k .

So the only nonzero terms in our series reversion are of the form

anxn+1
= ak(d−1)xk(d−1)+1

= C (d)
k xk(d−1)+1,

and we have our inverse series for x = z− zd . �

As a corollary, we have that the coefficients of the infinitely iterated d-multibrot
polynomials are given by the Fuss–Catalan numbers C (d)

k . While this result was
found and proved independently by the authors, the following statement appears to
be fairly well known for d = 2, 3 (see the OEIS at A001764). The formula holds in
general for all d ≥ 2.

Corollary 2.4 (coefficients of infinitely iterated d-multibrot polynomials). Let
f (n)d (x) be defined recursively by the formula f (0)d (x)= 0 and

f (n)d (x)= ( f (n−1)
d (x))d + x for n ≥ 1,

and set f (∞)d (x)= limn→∞( f (n)d (x)). Then

f (∞)d (x)=
∞∑

k=0

C (d)
k xk(d−1)+1.

Proof. This is immediate from Theorem 2.3 and the fact that z = f (∞)d (x) =∑
k ak xk+1 must satisfy

f (∞)d (x)= ( f (∞)d (x))d + x,
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or z = zd
+ x . Note that this corollary could also be proved fairly directly via

induction and the general recursion formula for the Fuss–Catalan series found in
Theorem 1.2. �

As a further interesting note from this, the sum of the series formula for z found
in the Mandelbrot case gives a formula for the two fixed points of the (filled) Julia
set Jx (the set of all points z ∈ C such that the orbit of 0 remains bounded under
iterations by fx(z)= z2

+ x) for a fixed x ∈ C. See [Milnor 2006] for more details
on dynamical systems and their fixed points.

Remark 2.5 (fixed points of filled Julia sets Jx ). The series reversion of z= z2
+x is

z =
∞∑

k=0

Ck xk+1

= x
∞∑

k=0

Ck xk

=
2x

1+
√

1− 4x
.

For a fixed x ∈ C, the two complex values taken on by 2x/(1+
√

1− 4x) each
correspond to a separate fixed point of the Mandelbrot map, one each for the stable
and unstable fixed points of fx(z)= z2

+ x in Jx .

3. Iterations of general polynomials and polygonal dissections

To return to polygonal partitions and their connections to the reversions of series,
we note that Theorem 2.3 gives us immediately that d-dissections of polygons are
counted by the coefficients of the series inverse of x = z− zd .

Corollary 3.1. The coefficients ak of the series inversion z =
∑
∞

k=0 ak xk+1 of the
polynomial z = zd

+ x count the number of (d+1)-gon polygonal partitions of a
(k+2)-gon.

Proof. From Theorem 2.3, we have that the coefficients of the series reversion of
x = z− zd are the Fuss–Catalan numbers

C (d)
n =

1
(d−1)n+1

(nd
d

)
.

The corollary is immediate from Theorem 1.3, as the Fuss–Catalan numbers enu-
merate d-partitions of (n+2)-gons. �

This will be a special case of our main theorem:
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Theorem 1.9 (polygonal partitions). The polynomial x = z −
∑r

i=1 zdi with
2≤ d1 < d2 < · · ·< dr has reverse series z =

∑
∞

n=0 anxn+1, where an counts
the number of (d1, d2, . . . , dr )-dissections of a convex (n+2)-gon.

We begin our proof with a lemma counting the number of polygonal dissections
of a fixed type (with a fixed number of each type of (d+1)-gon appearing in the
dissection).

Lemma 3.2. Fix integers 2≤ d1< d2< · · ·< dr , an integer n≥ 0, and a partition λ
of n with parts of sizes j ∈ {d1− 1, d2− 1, . . . , dr − 1}. Let k j for 1≤ j ≤ r be the
number of times that j appears in λ, and let k be the total parts in λ, i.e.,

n =
r∑

j=1

(d j − 1)k j ,

k =
r∑

j=1

k j .

Then the number of all polygonal dissections of type λ of an (n+2)-gon is given by

aλ =
1

n+ 1

(n+k
k

)( k
k1, k2, . . . , kr

)
.

Proof. From Theorem 1.7, we know that the number of polygonal dissections of
type λ above is in bijection with the set of rooted planar trees with downdegree
sequence r = (n+ 1, 0, k1, k2, . . . , kn) and n+ k+ 1 vertices. From Theorem 1.8,
we know that the count of such planar trees is

Ar(v)=
1

1+ n+ k
(1+ n+ k)k

0! k1! k2! · · · kn!

=
1

n+ k+ 1
(n+ k+ 1)!

k1! k2! · · · kn! (n+ 1)!

=
1

n+ 1
(n+ k)!

k1! k 2! · · · kn! n!

=
1

n+ 1
(n+ k)!

k! n!
k!

k1! k2! · · · kn!

=
1

n+ 1

(n+k
k

)( k
k1, k2, . . . , kn

)
.

This proves the count aλ given in the statement of the theorem. �

With this in hand, we return to the proof of the main theorem.

Proof of Theorem 1.9. Given an (n+2)-gon, any fixed partition λ of n into positive
integer parts of sizes chosen from the set {d1− 1, d2− 1, . . . , dr − 1} corresponds
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to some fixed type of polygonal (d1, d2, . . . , dr )-dissection. From Lemma 3.2, we
know that there are

aλ =
1

n+1

(n+k
k

)( k
kd1−1, kd2−1, . . . , kdr−1

)
such dissections, where kd j−1 parts of size d j − 1 appear in partition λ. Note that
we have changed from k j to kd j−1 to better match the notation used in the statement
the Lagrange inversion theorem.

Examining our polynomial

x = z−
r∑

i=1

zdi = z
(

1−
r∑

i=1

zdi−1
)
,

we see that in the notation of the Lagrange inversion formula given in Theorem 2.2,
the only nonzero b j are those with j=di−1 for some 1≤ i≤r . So the coefficients an

of the reverse series z =
∑
∞

i=0 anxn+1 are of the form

an =
1

n+ 1

∑
λ

(n+k
k

)( k
k1, k2, . . . , kn

)
,

where the sum is taken across partitions λ of the form

n = kd1−1(d1− 1)+ kd2−1(d2− 1)+ · · ·+ kdr−1(dr − 1).

Note that
an =

1
n+1

∑
λ

(n+k
k

)( k
k1, k2, . . . , kn

)
=

∑
λ

1
n+1

(n+k
k

)( k
kd1−1, kd2−1, . . . , kdr−1

)
=

∑
λ

aλ,

and our coefficients an can be calculated by summing over all possible types of
dissections in λ, made from parts of size (d + 1), with d ∈ {d1, d2, . . . , dr }. This
completes the proof. �

Example 3.3. Consider the polynomial f (z)= z3
+ z2
+ x . The coefficients of the

infinitely iterated polynomial are given by the series reversion of z = z3
+ z2
+ x ,

or x = z− z3
− z2:

z = x + x2
+ 3x3

+ 10x4
+ 38x5

+ 154x6
+ 654x7

+ · · · .

These coefficients an count the number of dissections of an (n+2)-gon into triangles
(3-gons) and quadrilaterals (4-gons).

As there are no 2-gons, there is one way to cover the empty object with triangles
or squares, so the coefficient of x is a0 = 1. For n = 1, 2, 3, see Figure 7.
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a1 = 1 a2 = 3 a3 = 10

Figure 7. (2, 3)-dissections of n-gons for n = 1, 2, 3.

Extending this slightly, we have a power series whose reverse series has coeffi-
cients counting all dissections of an (n+2)-gon by noncrossing diagonals.

Theorem 3.4 (super-Catalan numbers and series reversions). The power series
x = z −

∑
∞

j=1 z j has reverse series z =
∑
∞

k=0 snxn+1, where sn counts the all
possible subsets of noncrossing diagonals of a convex (n+2)-gon. The coefficient sn

is given by

sn =
1

n+1

∑
λ

(n+k
k

)( k
k1, k2, . . . , kn

)
,

where the sum is taken across all partitions λ of n with k j parts of size j and k total
parts.

Proof. From the Lagrange inversion theorem, we know that the coefficient sn in the
reverse power series of x= z−

∑
∞

j=1 z j must be of the form given in the statement of
the theorem. All partitions λ of n contributing to the sum must have parts at most n,
so the sn above must be the same as the coefficient an for the reverse series of the
polynomial x = z−

∑n+1
j=1 z j . From Theorem 1.9, we know that the coefficients an

of the reversion of the polynomial with nonzero terms z2, z3, . . . , zn+1 enumerate
(2, 3, . . . , n+1)-dissections of an (n+2)-gon — a set which includes all possible
polygonal dissections. �

The set of all polygonal dissections of an (n+2)-gon is counted by the super-
Catalan numbers sn (also called the Schröder–Hipparchus numbers). (See [Fan et al.
2005] for an extensive list of other families of sets counted by sn .) While several
other formulas for the super-Catalan numbers are known, Theorem 3.4 gives a nice
decomposition of sn , summed across structures indexed by partitions λ of n.

4. Generalizations to colored dissections

The coefficients of slightly more general series reversions can be immediately
interpreted using the formula in Theorem 1.9.

Definition 4.1. A colored polygonal dissection is a polygonal dissection where each
(d+1)-gon appearing in the dissection can be assigned bd possible colors for d ≥ 2.
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Theorem 4.2 (colored polygonal partitions). The polynomial x=z−
∑r

i=1bdi z
di with

d1>d2> · · ·>dr≥2 and bdi ≥1 for all 1≤i≤r has reverse series z=
∑
∞

k=0 anxn+1,
where an counts the number of colored polygonal (d1, d2, . . . , dr )-dissections of a
convex (n+2)-gon.

Proof. From Lemma 3.2, we know that the number of (d1, d2, . . . , dr )-partitions
of an n-gon with precisely k j of the (d j+1)-gons appearing in the dissection for
1≤ j ≤ r is given by

aλ =
1

n+1

(n+k
k

)( k
kd1−1, kd2−1, . . . , kdr−1

)
.

If each (di+1)-gon can be assigned one of bdi colors, then there are

a∗λ =
1

n+1

(n+k
k

)( k
kd1−1, kd2−1, . . . , kdr−1

) r∏
i=1

b
kdi−1

di

such colored dissections, as we have bdi choices for each of kdi−1 of the (di+1)-gons
appearing in a given dissection.

As in the proof of Theorem 1.9, we have that the coefficients of the inverse series
of the polynomial x = z−

∑r
i=1 bdi z

di must be

an =
1

n+1

∑
λ

(n+k
k

)( k
k1, k2, . . . , kn

) n∏
j=1

bk j
j+1

=

∑
λ

1
n+1

(n+k
k

)( k
kd1−1, kd2−1, . . . , kdr−1

) r∏
i=1

bkdr−1
dr

=

∑
λ

a∗λ. �

5. Further questions

This paper provides a complete combinatorial interpretation of series reversions of
polynomials of the form

z = b1zd1 + b2zd2 + · · ·+ br zdr + x

for positive integers b j . As future work, we would be curious to see combinatorial
approaches to the following question:

Question 5.1. In general, given a pair of polynomials g(z) and h(x) with integer
coefficients, is there a family of sets of objects Ag,h counted by the coefficients of
the reversion of the power series z = g(z)+ h(x)?

This question is answered here for h(x) = x and g(z) with positive integer
coefficients and all terms of degree at least two, but remains open in other cases.
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Series other than the generating functions of Catalan-type objects may appear as
series inversions using similar iterative techniques, and we would be interested in
seeing other classes of objects enumerated by such coefficients.
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