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Every link diagram can be represented as a signed ribbon graph. However, differ-
ent link diagrams can be represented by the same ribbon graphs. We determine
how checkerboard colourable diagrams of links in real projective space, and
virtual link diagrams, that are represented by the same ribbon graphs are related to
each other. We also find moves that relate the diagrams of links in real projective
space that give rise to (all-A) ribbon graphs with exactly one vertex.

1. Introduction and overview

It is well known that a classical link diagram can be represented by a unique signed
plane graph, called its Tait graph (see, for example, the surveys [Bollobás 1998;
Ellis-Monaghan and Moffatt 2013; Welsh 1993]). This construction provides a
seminal connection between the areas of graph theory and knot theory, and has
found impressive applications, such as in proofs of the Tait conjectures [Murasugi
1987; Thistlethwaite 1987]. Tait graphs can also be constructed for checkerboard
colourable link diagrams on other surfaces, in which case the resulting graph is
embedded on the surface. However, as this construction requires checkerboard
colourability, Tait graphs cannot be constructed for arbitrary link diagrams on a
surface, or arbitrary virtual link diagrams. Recently, Dasbach, Futer, Kalfagianni,
Lin, and Stoltzfus [Dasbach et al. 2008] extended the idea of a Tait graph by
associating a set of signed ribbon graphs to a link diagram (see also [Turaev 1987]).
Chmutov and Voltz [2008] extended this construction, giving a way to describe
an arbitrary virtual link diagram as a signed ribbon graph. These constructions
extend to graphs in other surfaces. The ribbon graphs of link diagrams have found
numerous applications, and we refer the reader to the surveys [Champanerkar and
Kofman 2014; Ellis-Monaghan and Moffatt 2013] for details.

MSC2010: primary 57M15; secondary 05C10.
Keywords: ribbon graph, links in real projective space, Turaev surface, virtual link, partial dual, Tait

graph.

133

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2016.9-1


134 IAIN MOFFATT AND JOHANNA STRÖMBERG

Every signed plane graph represents a unique classical link diagram. In contrast,
a single signed ribbon graph can represent several different link diagrams or virtual
link diagrams. This observation leads to the fundamental problem of determining
how link diagrams that are presented by the same signed ribbon graphs are related
to each other. It is this problem that interests us here. It was solved for classical link
diagrams in [Moffatt 2012]. Here we solve it for checkerboard colourable diagrams
of links in RP3 (in Theorem 7), and for virtual link diagrams (in Theorem 22).

We also examine the one-vertex ribbon graphs of diagrams of links in RP3. Every
classical link diagram can be represented as a ribbon graph with exactly one vertex.
Abernathy et al. [2014] gave a set of moves that provide a way to move between all
of the diagrams of a classical link that have one-vertex all-A ribbon graphs. We
extend their work to the setting of links in RP3.

This paper is structured as follows. In Section 2 we give an overview of diagrams
of links in RP3 and of ribbon graphs. In Section 3 we describe how diagrams of links
in RP3 can be represented by ribbon graphs, and we determine how checkerboard
colourable diagrams that give rise to the same ribbon graphs are related to one
another. In Section 4 we study the ribbon graphs of diagrams of links in RP3 that
have exactly one vertex. Finally, in Section 5 we describe how virtual link diagrams
that give rise to the same ribbon graphs are related to one another.

This work arose from Strömberg’s undergraduate thesis at Royal Holloway,
University of London, which was supervised by Moffatt.

2. Notation and terminology

2.1. Links in RP3 and their diagrams. In this section we provide a brief overview
of links in RP3 and their diagrams. Further results and details can be found in
[Drobotukhina 1994; 1990; Huynh and Le 2008; Mroczkowski 2003; Murasugi
1987; Prasolov and Sossinsky 1997].

A diagram of a link in RP3 is a disc D2 in the plane together with a collection
of immersed arcs (where an arc is a compact connected 1-manifold possibly with
boundary). The end points of arcs with boundary lie on the boundary of the disc
@D2, are divided into antipodal pairs, and these are the only points of the arcs
that intersect @D2. We further assume that the arcs are generically immersed, in
that they have finitely many multiple points and each multiple point is a double
point in which the arcs meet transversally. Finally, each double point is assigned an
over/under-crossing structure, and is called a crossing. Figure 1(a) shows a diagram
of a link in RP3. Here, D will always refer to a diagram of a link.

A net is the real projective plane RP2 together with a distinguished projective
line, called the line at infinity, and a collection of generically immersed closed
curves where each double point is assigned an over/under-crossing structure. Let
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(a) A diagram D of a link in (b) A state � of D. (c) Redrawing the arrow
in RP3. presentation for G.D;�/.

a� bC
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(d) G.D;�/ as a ribbon graph. (e) Embedding G.D;�/ in (f) G.D;�/ as a cellularly
a surface. embedded graph.

Figure 1. A diagram D of a link in RP3 and one of its ribbon graphs.

D be a diagram of a link in RP3, then the net of D, denoted ND , is obtained from
D by identifying the antipodal points of @D2. The image of @D2 in the net gives
the line at infinity.

A component of D is a collection of its arcs that give rise to a single closed curve
in its net ND . A component is null-homologous if the corresponding curve in ND is
trivial inH1.RP2/DZ2 and is 1-homologous otherwise. We will say that a diagram
is null-homologous if each of its components is. The faces of D (respectively, ND)
are the components of Dn˛ (respectively, NDn˛), where ˛ is the set of immersed
curves. A region of D is a collection of its faces that correspond to a single face in
its net ND . A diagram D is checkerboard colourable if there is an assignment of
the colours black and white to its regions such that no two adjacent regions (those
meeting a common arc) are assigned the same colour. A diagram may or may not
be checkerboard colourable. For example, the diagram in Figure 1(a) is not, but
that in Figure 7(d) is.

The Reidemeister moves for diagrams of links in RP3 consist of isotopy of the
disc that preserves the antipodal pairing (which we call the R0-move), together with
the five moves in Figure 2 that change the diagram locally as shown (the diagrams
are identical outside of the given region). In the figure, the bold lines represent the
boundary of the disc. Two diagrams are equivalent if they are related by a sequence
of Reidemeister moves.

For brevity we work a little informally in this paragraph, referring the reader to
[Drobotukhina 1990] for details. Links in RP3 give rise to diagrams by representing
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(a) The classical moves. (b) The boundary moves.

Figure 2. The Reidemeister moves for diagrams of links in RP3.

RP3 as a ball D3 with antipodal points of its boundary identified, lifting the link
from RP3 to D3 and projecting to the equatorial disc D2. Conversely, given a
diagram, regarding D2 as the equatorial disc of such a representation of RP3 and
“pulling the over-crossings up a little” gives rise to a link in RP3. With this, we
have from [Drobotukhina 1990] that two links in RP3 are ambient isotopic if and
only if their diagrams are equivalent.

2.2. Ribbon graphs.

Definition 1. A ribbon graph G D .V .G/;E.G// is a (possibly nonorientable)
surface with boundary represented as the union of two sets of discs, a set V.G/ of
vertices, and a set of edges E.G/ such that

(1) the vertices and edges intersect in disjoint line segments;

(2) each such line segment lies on the boundary of precisely one vertex and
precisely one edge;

(3) every edge contains exactly two such line segments.

An example of a ribbon graph can be found in Figure 1(d), and additional details
about them can be found in, for example, [Ellis-Monaghan and Moffatt 2013; Gross
and Tucker 2001].

Two ribbon graphs are equivalent if there is a homeomorphism taking one to the
other that sends vertices to vertices, edges to edges, and preserves the cyclic ordering
of the edges at each vertex. The homeomorphism should be orientation-preserving
if the ribbon graphs are orientable. Note that any embedding of a ribbon graph is
3-space is irrelevant.

A ribbon graph is topologically a surface with boundary and the genus of a
ribbon graph is its genus when it is viewed as a surface. It is orientable if it is
orientable as a surface. A ribbon graph is said to be plane if it is homeomorphic
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Figure 3. Moving between arrow presentations and ribbon graphs.

to a sphere with holes (or equivalently if it is connected and of genus zero), and
is said to be RP2 if it is homeomorphic to a real projective plane with holes (or
equivalently it is connected, nonorientable and of genus one).

Since a ribbon graph is a surface with boundary, each ribbon graph G admits
a unique (up to homeomorphism) cellular embedding into a closed surface †.
(The cellular condition here means that †nG is a collection of discs). Using this
embedding, it is easy to see that ribbon graphs are equivalent to cellularly embedded
graphs (in one direction, contract the ribbon graph to obtain a graph drawn on the
surface; in the other direction take a neighbourhood of the graph in a surface) and
so are the main object of topological graph theory. See Figure 1(d)–(f).

We will make use of the following combinatorial description of ribbon graphs
which is due to Chmutov [2009].

Definition 2. An arrow presentation consists of a set of closed curves, each with a
collection of disjoint, labelled arrows, called marking arrows, lying on them. Each
label appears on precisely two arrows.

A ribbon graph can be obtained from an arrow presentation as follows. View
each closed curve as the boundary of a disc (the disc becomes a vertex of the ribbon
graph). Edges are then added to the vertex discs in the following way: take an
oriented disc for each label of the marking arrows; choose two nonintersecting
arcs on the boundary of each of the edge discs and direct these according to the
orientation; identify these two arcs with two marking arrows, both with the same
label, aligning the direction of each arc consistently with the orientation of the
marking arrow. This process is illustrated in Figure 3.

Conversely, to describe a ribbon graph G as an arrow presentation, start by
arbitrarily labelling and orienting the boundary of each edge disc of G. On each
arc where an edge disc intersects a vertex disc, place an arrow on the vertex disc,
labelling the arrow with the label of the edge it meets and directing it consistently
with the orientation of the edge-disc boundary. The boundaries of the vertex set
marked with these labelled arrows give the arrow-marked closed curves of an
arrow presentation. See Figure 1(c)–(d) for an example, and [Chmutov 2009;
Ellis-Monaghan and Moffatt 2013] for further details.

Arrow presentations are equivalent if they describe equivalent ribbon graphs.
We will need to make use of signed ribbon graphs. A signed ribbon graph is

a ribbon graph G together with a function from E.G/ to fC;�g. Thus it consists
of a ribbon graph with a sign associated to each of its edges. Similarly, a signed
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(a) A Crossing. (b) Its marked A-splicing. (c) Its marked B-splicing.

Figure 4. Marked splicings of a link diagram.

arrow presentation consists of an arrow presentation together with a function from
its set of labels to fC;�g. Signed ribbon graphs and signed arrow presentations are
equivalent in the obvious way.

3. The ribbon graphs of links in RP3

3.1. The ribbon graphs of link diagrams. We now describe how a set of ribbon
graphs can be associated to a link diagram. Let D be a diagram of a link in RP3.
Assign a unique label to each crossing of D. A marked A-splicing or a marked
B-splicing of a crossing c is the replacement of the crossing with one of the schemes
shown in Figure 4.

Notice that we decorate the two arcs in the splicing with signed labelled arrows
that are chosen to be consistent with an arbitrary orientation of the disc. The
labels of the arrows are determined by the label of the crossing, and the signs are
determined by the choice of splicing.

A state � of D is the result of marked A- or B-splicing each of its crossings.
Observe that a state is a signed arrow presentation of a signed ribbon graph. We
denote the signed ribbon graph corresponding to the state � of D by G.D;�/. These
ribbon graphs are the ribbon graphs of a link diagram:

Definition 3. Let D be a diagram of a link in RP3. Then the set of signed ribbon
graphs associated with D, denoted GD , is defined by

GD D fG.D;�/ j � is a marked state of Dg:

If G 2GD then we say that G is a signed ribbon graph of D. We will also say that
G represents D.

An example of a ribbon graph G.D;�/ for a state � of a link diagram D is given
in Figure 1(a)–(d). The construction of GD is a direct extension of the construction
for classical links from [Dasbach et al. 2008; Turaev 1987].

If D is checkerboard coloured, then we can construct a signed ribbon graph
of D by choosing the splicing that follows the black regions at each crossing. The
resulting signed ribbon graph is called a Tait graph of D. If D is checkerboard
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colourable, then it has exactly two Tait graphs, one corresponding to each of the
two checkerboard colourings.

Proposition 4. LetD be a checkerboard colourable diagram of a link in RP3. Then
its Tait graphs are either plane or RP2 ribbon graphs.

Proof. Checkerboard colour D and let G be its Tait graph. If D is not null-
homologous then all of its regions are discs. Since the marked splicings follow the
black regions and the black regions are discs, we can embed G in RP2 by taking
the black regions bounded by the curves of the splicings as vertices, and embedding
the edge disc between the pairs of labelled arrows in the obvious way. Since D is
checkerboard coloured, all regions of the embedded ribbon graph are discs, and no
two face regions or vertex regions share a boundary. Thus G is cellularly embedded
in the net and is therefore RP2.

If D is null-homologous replace the face of its net that is a Möbius band with
a disc to obtain a diagram on the sphere, and repeat the above argument with this
embedding. �

We note that it follows from the proof of Proposition 4 that the Tait graphs
defined here coincide with the “usual” Tait graphs obtained by placing vertices in
black regions and embedding edges through each crossing.

Remark 5. One of the significant applications of the ribbon graphs of links is that
they provide a way to connect graph and knot polynomials. A seminal result of
Thistlethwaite [1987] expresses the Jones polynomial of an alternating classical
link as an evaluation of the Tutte polynomial of either of its Tait graphs. There
have been several recent extensions of this result that express the Jones polynomial
and Kauffman bracket of virtual and classical links as evaluations of Bollobás and
Riordan’s extension of the Tutte polynomial to ribbon graphs; see [Bradford et al.
2012; Chmutov 2009; Chmutov and Pak 2007; Chmutov and Voltz 2008; Dasbach
et al. 2008; Moffatt 2010; 2011].

Kauffman brackets and Jones polynomials of links in RP3 can similarly be
expressed in terms of the (multivariate) Bollobás–Riordan polynomials of ribbon
graphs that represent their diagrams. In fact, the statement and proofs of the results
for links in RP3 follow those for the existing results with almost no change. Accord-
ingly we only remark here that they hold. Following the notation of the exposition
[Ellis-Monaghan and Moffatt 2013] gives that for a diagram D of a link in RP3,

hDi D dk.A/�1An.A/�r.A/R.AI �A4; A�2d; d�1; 1/;

and
hDi D d�1Ae�.GD/�eC.GD/Z.GDI 1;w; d; 1/;

where

we D

�
A�2 if e is negative,
A2 if e is positive.
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D D0 D D0 D D0

D1 cut, flip and glue D2

Figure 5. A summand-flip.

In these equations, hDi is the Kauffman bracket of [Drobotukhina 1990], d D
�A2�A�2, A is the ribbon graph ofD obtained by choosing the A-splicing at each
crossing, R is the Bollobás–Riordan polynomial [2002], and Z is the multivariate
Bollobás–Riordan polynomial of [Moffatt 2008]. These identities can be obtained
by following Section 5.4.2 of [Ellis-Monaghan and Moffatt 2013].

Furthermore, a connection between the Bollobás–Riordan polynomial and the
HOMFLY-PT polynomial of links in RP3 from [Mroczkowski 2004] that is analogous
to Jaeger’s connection [1988] between the Tutte polynomial of a plane graph and the
HOMFLY-PT polynomial of a classical link (see also [Jin and Zhang 2012; Moffatt
2008; Traldi 1989]) can also be found:

P.L.G/Ix;y/D
�
1

xy

�v.G/�1�y
x

�e.G/
.x2�1/k.G/�1R

�
GIx2;

x�x�1

xy2
;

y

x�x�1

�
:

Again the notation here is from [Ellis-Monaghan and Moffatt 2013], and the result
can be obtained by following Section 5.5.2 of that text.

3.2. Relating link diagrams with the same ribbon graph. As mentioned in the
introduction, two diagrams can give rise to the same set of signed ribbon graphs.
That is, it is possible thatD¤D0 but GD DGD0 . A fundamental question is then if
D and D0 are diagrams such that GD D GD0 , how are D and D0 related? Here we
answer this question in the case when D and D0 are both checkerboard colourable.
To describe the result, we need to introduce some notation.

Definition 6. LetD andD0 be diagrams of links in RP3. We say thatD andD0 are
related by a summand-flip if D0 can be obtained from D by the following process:
Orient the discD2 and choose a disc D inD2 whose boundary intersectsD transver-
sally in exactly two points a and b. Cut out D and glue it back in such a way that the
orientations ofD andD2nD disagree, the points a on the boundaries ofD and S2nD
are identified, and the points b on the boundaries of D and S2nD are identified. See
Figure 5. We say that two link diagrams D and D0 are related by summand-flips
if there is a sequence of summand-flips and R0-moves taking D to D0.

Our first main result is the following.

Theorem 7. Let D and D0 be checkerboard colourable diagrams of links in RP3.
Then GD D GD0 if and only if D and D0 are related by summand-flips.
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+ and -

Figure 6. Forming a diagram DG from a signed ribbon graph G.

Before proving Theorem 7, we note that the requirement that the link diagrams
are checkerboard colourable is essential to our approach, and we pose the following.

Open problem. LetD andD0 be diagrams of links in RP3 (that are not necessarily
checkerboard colourable). Determine necessary and sufficient conditions for GD

and GD0 to be equal.

To prove Theorem 7, we need to be able to recover link diagrams from ribbon
graphs. Given a signed RP2 or plane ribbon graph, it is straight-forward to recover
a link diagram that it represents. Let G be a signed RP2 ribbon graph, fill in the
holes to obtain a cellular embedding of it in RP2, as in Section 2.2. Represent RP2

as a disc D2 with antipodal points identified, and lift the embedding of G to a
drawing on D2. Finally, draw the configuration of Figure 6 on each of its edges,
and connect the configurations by following the boundaries of the vertices of G, to
obtain the link diagram. See Figure 7 for an example.

If G is a signed plane ribbon graph, fill in all but one of the holes to obtain a
cellular embedding of it in a disc D2. Drawing the configuration of Figure 6 on
each of its edges and connecting the configurations by following the boundaries
of the vertices of G gives the required link diagram. In either case, we denote the
resulting diagram of a link in RP3 by DG .

Proposition 8. Let G be a signed RP2 or plane ribbon graph. Then DG is checker-
board colourable.

Proof. This follows by colouring the regions of DG that correspond to the vertices
of the ribbon graph black. �

To recover a link diagram from a ribbon graph that is not plane or RP2 requires
more work, and for our application, Chmutov’s concept [2009] of a partial dual of
a ribbon graph. The idea behind a partial dual is to form the geometric dual of an
embedded graph but with respect to only some of its edges. We approach partial
duals and geometric duals via arrow presentations as this is particularly convenient
for us here. Other descriptions of partial duality can be found in, for example,
[Chmutov 2009; Ellis-Monaghan and Moffatt 2013].

Definition 9. Let G be a ribbon graph viewed as an arrow presentation, and let
A�E.G/. Then the partial dualGA ofG with respect toA is the arrow presentation
(or ribbon graph) obtained as follows. For each e 2 A, suppose ˛ and ˇ are the
two arrows labelled e in the arrow presentation of G. Draw a line segment with an
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(a) A ribbon graph G. (b) A partial dual Gf3g of G.

3� 2�1C

(c) Drawing Gf3g in a disc. (d) Recovering DGf3g .

Figure 7. Recovering a link diagram from a ribbon graph.

arrow on it directed from the head of ˛ to the tail of ˇ, and a line segment with an
arrow on it directed from the head of ˇ to the tail of ˛. Label both of these arrows e,
and delete ˛ and ˇ and the arcs containing them. This process is illustrated locally
at a pair of arrows in Figure 8. The ribbon graph GE.G/ is the geometric dual of G.

If G is a signed ribbon graph then GA is also a signed ribbon graph with the
signs of GA given by the rule that if an edge e of G has sign " 2 fC;�g, then the
corresponding edge in GA has sign �" if e 2 A, and " if e … A. (Thus taking the
dual of an edge toggles its sign.)

Figure 7(a)–(b) gives an example of a partial dual.
We will need the following properties of partial duals from [Chmutov 2009].

Proposition 10. Let G be a (signed) ribbon graph and A;B � E.G/. Then the
following hold.

(1) G∅ DG.

(2) GE.G/ DG�, where G� is the geometric dual of G.

(3) .GA/BDG.A4B/, whereA4BD .A[B/n.A\B/ is the symmetric difference
of A and B .

(4) G is orientable if and only if GA is orientable.

We emphasise that the construction of the geometric dualG� ofG agrees with the
usual graph theoretic construction of the geometric dual of a cellularly embedded
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Figure 8. Taking the partial dual of an edge in an arrow presentations.

graph in which a cellularly embedded graph G� is obtained from a cellularly
embedded graph G by placing one vertex in each of its faces, and embedding an
edge of G� between two of these vertices whenever the faces of G they lie in are
adjacent, and the edges of G� are embedded so that they cross the corresponding
face boundary (or edge of G) transversally.

Proposition 11. Let G be a signed RP2 or plane ribbon graph. Then DG DDG� .

Proof. Upon remembering that taking the dual of a signed ribbon graph changes
the sign of each edge, the result is readily seen by comparing Figures 6 and 8. �
Lemma 12. Let D be a diagram of a link in RP3. Then all of the signed ribbon
graphs in GD are partial duals of each other.

Proof. Let G;H 2 GD . Then G DG.D;�/ and H DH.D;� 0/. It can be seen from
Figure 8 that taking partial duals corresponds exactly to choosing another state
of D as in Figure 4. �
Lemma 13. LetD be a checkerboard colourable diagram of a link in RP3. Then G
represents D if and only if D DDGA , where GA is a signed plane or RP2 ribbon
graph.

Proof. We begin by assuming that D D DGA , where GA is a signed plane or
RP2 ribbon graph. Then GA D G.D;�/ for some state � of D. By Lemma 12, it
follows that the partial dual .GA/A DG also represents D.

Conversely, assume that G represents D. Since D is checkerboard colourable, it
can be represented by a Tait graph T . Clearly D DDT . Then from Lemma 12, it
follows that T DGA for some A�E.G/. Since T is a plane or RP2 ribbon graph
(by Proposition 4), T is the ribbon graph required by the lemma. �

Lemma 13 provides a way to construct all of the checkerboard colourable link
diagrams represented by a given signed ribbon graph: find all of its plane or
RP2 partial duals and construct the links associated with them. This process is
illustrated in Figure 7. The checkerboard colorability requirement here cannot be
dropped. For example, if D is the diagram from Figure 1(a), then GD contains no
plane or RP2 ribbon graphs. This leads to the following problem.

Open problem. Let G be a signed ribbon graph. Find an efficient way to construct
all of the diagrams of links in RP3 that have G as a representative.
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We continue with some corollaries of Lemma 13.

Corollary 14. Let D and D0 be checkerboard colourable diagrams of links in RP3

such that GD D GD0 . Then D is null-homologous if and only if D0 is.

Proof. D is null-homologous if and only if it has a plane Tait graph. The result
then follows since partial duality preserves orientability. �
Corollary 15. Let D and D0 be checkerboard colourable diagrams of links in
RP3 such that GD D GD0 . Then there exists a plane or, respectively, RP2 ribbon
graph G, and A�E.G/ such that GA is plane or, respectively, RP2 and such that
D DDG and D0 DDGA .

Proof. We have that D and D0 give rise to the same set of ribbon graphs. Since D
is checkerboard colourable, it gives rise to a plane or RP2 ribbon graph G (namely
one of its Tait graphs, by Proposition 4). Moreover, since D0 is also checkerboard
colourable, it also gives rise to a plane or RP2 ribbon graph H . We also have that
H 2 GD , so H DGA for some A�E.G/ by Lemma 12. �

Corollary 15 is of key importance here: it tells us that if two checkerboard
colourable diagrams of links in RP3, D and D0, are represented by the same
ribbon graphs, then they are both diagrams associated with partially dual plane or
RP2 ribbon graphs G and G0. Thus if we understand how G and G0 are related
to each other, we can deduce how D and D0 are related to each other. This is our
strategy for proving Theorem 7.

In [Moffatt 2012; 2013], rough structure theorems for the partial duals of plane
ribbon graphs and RP2 ribbon graphs were given. These papers also contained
local moves that allow us to move between all partially dual plane or RP2 ribbon
graphs. To describe this move, we need a little additional terminology.

Let G be a ribbon graph, v 2 V.G/, and P and Q be nontrivial ribbon subgraphs
of G. Then G is said to be the join of P and Q, written P _Q, if G D P [Q and
P \QD fvg and if there exists an arc on v with the property that all edges of P
meet it there, and none of the edges of Q do. See the left-hand side of Figure 9,
which illustrates a ribbon graph of the form P _Q. We do not require the ribbon
graphs G, P or Q to be connected. Note that since genus is additive under joins,
if G is plane then both P and Q are plane, and if G is RP2 then exactly one of P
or Q is RP2 and the other is plane.

Let G D P _Q be a ribbon graph. We say that the ribbon graph GE.Q/ D
P _QE.Q/ D P _Q� is obtained from G by a dual-of-a-join-summand move.
We say that two ribbon graphs are related by dualling join-summands if there is a
sequence of dual-of-a-join-summand moves taking one to the other, or if they are
geometric duals. See Figure 9.

The following result is an amalgamation of Theorem 7.3 of [Moffatt 2012] and
Theorem 5.8 of [Moffatt 2013].
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P‚ …„ ƒ

„ ƒ‚ …
Q

P‚ …„ ƒ

„ ƒ‚ …
Q�

Figure 9. The dual of a join-summand move.

Theorem 16. Let G and H be connected plane or RP2 ribbon graphs. Then G
and H are partial duals if and only if they are related by dualling join-summands.

Theorem 16 allows us to prove the following key result.

Lemma 17. If two RP2 ribbon graphs G and G0 are related by dualling join-
summands, then the link diagrams DG and DG0 they represent are related by
summand-flips.

Proof. It suffices to show that if G and G0 are related by a single dual-of-a-join-
summand move then DG and DG0 are related by a summand-flip. Suppose that
G D A_B , that A\B D fvg, and that G0 D A� _B or G0 D A_B�. Since we
know that genus is additive under joins, we have that one of A or B is RP2 and the
other is plane. Without loss of generality, suppose that A is the RP2 summand.

First suppose that G0 D A� _B . We start by determining how the cellular em-
beddings of G and G0 are related. From this, we will deduce how the corresponding
link diagrams are related. Start by taking the cellular embedding of G in RP2. This
is illustrated in Figure 10(a). For each edge of B that meets v, place a labelled
arrow on the intersection of the edge with v. We can then “detach” B from G, as
indicated in Figure 10(b), so that G is recovered from A and B by identifying the
corresponding arrows in A and in B with its copy of v removed. After detaching B ,
we obtain a cellular embedding of A in RP2. From this, form the cellular embedding
of A� by interchanging the vertices and faces. (In detail, A��RP2 is obtained from
A� RP2 by reassigning the face (respectively, vertex) discs of A� RP2 as vertex
(respectively, face) discs of A��RP2. Edge discs are unchanged.) This is indicated
in Figure 10(c). Finally, obtain an embedding of G0 D A� _ B by reattaching
B according to the labelled arrows, as is indicated in arrows as in Figure 10(d),
and notice that B has been “flipped over”. Finally consider the diagrams DG and
DG0 drawn using these embeddings. Since A and A� have the same edges and
vertex/face boundaries, and by Proposition 11, DA DDA� , we see that DG and
DG0 are related by a summand-flip, as in Figure 10(e)–(f).

Next suppose that G0 D A_B�. Then, using Proposition 10 and that duality
preserves joins, we haveG0D .A_B�/D .A_B�/��D .A�_B��/�D .A�_B/�.
Then since D.A�_B/� DD.A�_B/, by Proposition 11, this case reduces to the first,
completing the proof. �
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A

B

v

A

B

v

A�

B

(a) G � RP2. (b) A� RP2. (c) A� � RP2.

A�
B

˛

ˇ

˛

ˇ

(d) G0. (e) DG . (f) DG0 .

Figure 10. A figure used in the proof of Lemma 17.

Proof of Theorem 7. It is readily seen that ifD and D0 are related by summand-flips
then GD D GD0 .

For the converse, assume that D and D0 are checkerboard colourable link
diagrams on RP2 such that GD D GD0 . If D and D0 are not null-homologous
then, by Corollary 15, for some G, we have D DDG and D0 DDGA , where G
and GA are both RP2 . We know by Theorem 16 that G and GA are related by
dualling join-summands. Thus either GA DG�, in which case the result follows
from Proposition 11, or GA is obtained from G by a sequence of dual-of-a-join-
summand moves, in which case the result follows from Lemma 17. �

4. One vertex ribbon graphs

We let AD denote the all-A ribbon graph of D, which is the ribbon graph obtained
from D by choosing the marked A-splicing at each crossing. The all-A ribbon
graph is of particular interest since all of the signs are the same, and so a link
diagram can be represented by an unsigned ribbon graph (see also Remark 5). It
was shown in [Abernathy et al. 2014] that every classical link (i.e., in S3) can be
represented as a ribbon graph with exactly one vertex. Furthermore, the authors of
that paper gave a set of moves, analogous to the Reidemeister moves, that provide
a way to move between all of the diagrams of a classical link that have one-vertex
all-A ribbon graphs. In this section we extend their result to links in RP3.

Lemma 18. Every link in RP3 has a diagram D for which AD has exactly one
vertex.
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a a a a
b b b b

c c c c

M0

M1

M2

M3

M4

M5

M6

Figure 11. The M-moves.

Proof. Let D be a diagram of a link in RP3. Let �A denote the all-A state of D
obtained by choosing the marked A-splicing at each crossing. If �A has exactly one
component then AD has exactly one vertex. Otherwise, consider the all-A state N�A
of the net ND of D. There must be two closed curves of N�A that can be joined
by an embedded arc N̨ in RP2 n N�A. Performing an RII-move (possibly with some
RIV-moves) along the image of this arc in D gives a new diagram D0. Then AD0

has one less vertex than AD . Repeat this process until only one curve remains. �
The M-moves for diagrams of links in RP3 consist of isotopy of the disc that

preserves the antipodal pairing, together with the moves shown in Figure 11 that
change the diagram locally as shown (the diagrams are identical outside of the
shown region). For the M0-move, we require the diagram to be connected in a
specific way, as indicated by the labels.

Lemma 19. Let D be a diagram of a given link in RP3. Then the M-moves do not
change the number of vertices in AD .

Proof. For movesM0–M4, we refer the reader to [Abernathy et al. 2014]. It is easy to
see that theM5 move does not affect the number of components of the all-A state �A
of D, since it does not affect the number of, or type of, crossings. It is also easy to
see that M6 does not change the number of vertices of the all-A ribbon graph. �

Let D denote the set of all diagrams of links in RP3, QD denote D modulo the
Reidemeister moves, D1 � D denote the subset of diagrams such that their all-A
ribbon graphs have exactly one vertex, and QD1 denote D1 modulo the M-moves.
Now consider the two natural projections � W D! QD and �1 W D1! QD1.
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Theorem 20. Given D;D0 2 D1, we have �.D/D �.D0/ if and only if �1.D/D
�1.D

0/.

Proof. First assume that �1.D/D �1.D0/. Then the link diagrams are related by
M-moves. It is easy to see that the link diagrams are then related by Reidemeister
moves, so we have that �.D/D �.D0/.

Conversely, suppose that �.D/ D �.D0/. Hence the diagrams are related by
Reidemeister moves. We need to show that each Reidemeister move can be described
as a sequence of M-moves. For RI–RIII, we refer the reader to [Abernathy et al.
2014]. RIV and RIV are exactly M5 and M6 moves, so we have that all the
Reidemeister moves can be described as a sequence of M -moves. Hence �1.D/D
�1.D

0/, as required. �

5. Virtual link diagrams with same the signed ribbon graphs.

A virtual link diagram consists of n closed piecewise-linear plane curves in which
there are finitely many multiple points and such that at each multiple point exactly
two arcs meet and they meet transversally. Moreover, each double point is assigned
either a classical crossing structure or is marked as a virtual crossing. See the
left-hand side of Figure 12, where the virtual crossings are marked by circles. A
virtual link is oriented if each of its plane curves is. Further details on virtual knots
can be found in, for example, the surveys [Kauffman 1999; 2000; 2012; Kaufman
and Manturov 2006; Manturov 2004].

Virtual links are considered up to the generalised Reidemeister moves. These
consist of orientation-preserving homeomorphisms of the plane (which we include
in any subset of the moves), the classical Reidemeister moves of Figure 2(a), and the
virtual Reidemeister moves of Figure 13. Two virtual link diagrams are equivalent
if there is a sequence of generalised Reidemeister moves taking one diagram to the
other.

Virtual knots are the knotted objects that can be represented by Gauss diagrams.
Here a Gauss diagram consists of a set of oriented circles together with a set
of oriented signed chords whose end points lie on the circles (see the right-hand

12

3
1

2

3

C

C

�

Figure 12. A virtual link (on the left) and its Gauss diagram (on
the right). The crossings and chords are numbered for clarity.
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vRIII

vRI vRII

RIII
mixed

Figure 13. The virtual Reidemeister moves.

side of Figure 12). A Gauss diagram is obtained from an oriented n component
virtual link diagram D as follows. Start by numbering each classical crossing. For
each component, choose a base point and travel around the component from the
base point following the orientation and reading off the numbers of the classical
crossings as they are met. Whenever a crossing is met as an over-crossing, label the
corresponding number with the letter O . Place each number, in the order met, on an
oriented circle corresponding to the component. Connect the points on the circles
that have the same number by a chord that is directed away from the O-labelled
number. Finally, label each chord with the oriented sign of the corresponding
crossing, shown in Figure 14, and delete the numbers. The resulting Gauss diagram
describes D. See Figure 12 for an example.

Conversely, an oriented virtual link diagram can be obtained from a Gauss
diagram by immersing the circles in the plane so that the ends of chords are
identified (there is no unique way to do this), and using the direction and signs to
obtain a crossing structure. In general, immersing the circles will create double
points that do not arise from chords. Mark these as virtual crossings.

The following theorem of Goussarov, Polyak and Viro [Goussarov et al. 2000]
provides an important and fundamental relation between Gauss diagrams and virtual
links.

Theorem 21. Let L and L0 be two virtual link diagrams that are described by the
same Gauss diagram. Then L and L0 are equivalent. Moreover, L and L0 are
related by the virtual Reidemeister moves.

(a) A positive crossing. (b) A negative crossing.

Figure 14. The oriented signs of a link diagram.
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2C1
�

3�

2C1
�

3�

2C

1�

3�

Figure 15. Recovering a virtual link diagram from a signed ribbon graph.

Chmutov and Voltz [2008] observed that the construction of a ribbon graph from
a link diagram can be extended to include virtual links. That is, if D is a virtual link
diagram and � is a state ofD, then G.D;�/ and the set GD can be associated withD
just as in Section 3.1 (virtual crossings are not smoothed, and the curves of the arrow
presentation follow the component of the virtual link through the virtual crossings).

In Theorem 7 we determined how diagrams of links in RP3 that are represented by
the same set of ribbon graphs are related. We will now consider the corresponding
problem for virtual links. We start by determining which ribbon graphs represent
virtual link diagrams.

If G is a signed ribbon graph, then we can recover a virtual link diagram D with
G D GD as follows: Delete the interiors of the vertices of G (so that we obtain
a set of ribbons that are attached to circles). Immerse the resulting object in the
plane in such a way that the ribbons are embedded. (Note that as the circles are
immersed, they may cross each other and themselves.) Replace each embedded
ribbon with a classical crossing with the crossing structure determined by the sign,
as in Figure 6. Make all of the intersection points of the immersed circles into
virtual crossings. See Figure 15. The resulting virtual link diagram D has the
desired property that G DGD (as G can be obtained for D by reversing the above
construction). Moreover, every virtual link diagram that is represented by G can be
obtained in this way. This follows since if G D GD , then we can go through the
above process drawing the circles and crossings in such a way that they follow D.

Thus we have that every signed ribbon graph is the signed ribbon graph of some
virtual link diagram.

We now determine how virtual link diagrams that are represented by the same
ribbon graphs are related. For this we need the concept of virtualisation. The
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Figure 16. Virtualising a crossing.

virtualisation of a crossing of a virtual link diagram is the flanking of the crossing
with virtual crossings as indicated in Figure 16. The crossing in the figure can also
be of the opposite type.

Theorem 22. Let D and D0 be two virtual link diagrams. Then D and D0 are
presented by the same set of signed ribbon graphs if and only if they are related by
virtualisation and the virtual Reidemeister moves.

Proof. Let G be a signed ribbon graph. Label and arbitrarily orient each edge of G.
As described above, every virtual link diagram represented by G can be obtained by
(1) deleting the interiors of the vertices of G, (2) embedding the edges of G in the
plane, (3) immersing the arcs connecting the edges (note that arcs in an immersion
may cross each other), and (4) adding the crossing structure as described above.

Suppose D and D0 are two virtual link diagrams obtained from G by this
procedure. If the edges of G are oriented, in step (2) each embedding of an edge
either agrees or disagrees with the orientation of the plane. If in step (2) of the
constructions of D and D0 the corresponding edges either both agree or both
disagree with the orientation of the plane, it is easily seen that for some orientation
of their components (in each diagram choose orientations that agree at each pair of
crossings that correspond to the same edge of the ribbon graph), D and D0 must
then be described by the same Gauss diagram. In this case, by Theorem 21, they
are related by the purely virtual moves and the semivirtual move.

Now suppose that in step (2) of the construction of D and D0, there is an edge e
of G such that the orientations of the two plane embeddings disagree with each
other, and otherwise the embeddings of the edges and immersions of the arcs in
step (3) are identical. Then, by Figure 17, the resulting virtual link diagrams are
related by virtualisation.

C

a

b

d

c

a

b

d

c

C

a

b

d

c

a

b

d

c

Figure 17. Forming virtual link diagrams from a signed ribbon graph.
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It then follows that if G is a signed ribbon graph then the link diagrams it
represents are related by virtualisation and the virtual moves. The converse of the
theorem is easily seen to hold. �
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