
inv lve
a journal of mathematics

msp

Adjacency matrices of zero-divisor graphs of integers modulo
n

Matthew Young

2015 vol. 8, no. 5



msp
INVOLVE 8:5 (2015)

dx.doi.org/10.2140/involve.2015.8.753

Adjacency matrices of zero-divisor graphs of
integers modulo n

Matthew Young

(Communicated by Kenneth S. Berenhaut)

We study adjacency matrices of zero-divisor graphs of Zn for various n. We find
their determinant and rank for all n, develop a method for finding nonzero eigen-
values, and use it to find all eigenvalues for the case nD p3, where p is a prime
number. We also find upper and lower bounds for the largest eigenvalue for all n.

1. Introduction

Let R be a commutative ring with a unity. The notion of a zero-divisor graph of R

was pioneered by Beck [1988]. It was later modified by Anderson and Livingston
[1999] to be the following.

Definition 1.1. The zero-divisor graph �.R/ of the ring R is a graph with the set
of vertices V .R/ being the set of zero-divisors of R and edges connecting two
vertices x;y 2R if and only if x �y D 0.

To each (finite) graph � , one can associate the adjacency matrix A.�/ that is a
square jV .�/j � jV .�/j matrix with entries aij D 1, if vi is connected with vj , and
zero otherwise. In this paper we study the adjacency matrices of zero-divisor graphs
�n D �.Zn/ of rings Zn of integers modulo n, where n is not prime. We note that
the adjacency matrices of zero-divisor graphs of Zp �Zp , Zp Œi �, and Zp Œi ��Zp Œi �,
where p is a prime number and i2 D�1, were studied in [Sharma et al. 2011].

2. Properties of adjacency matrices of �n

Let nD p
t1

1
� � �p

ts
s , where p1; : : : ;ps are distinct primes. For any divisor d of n,

we define S.d/D fk 2 Zn j gcd.k; n/D dg. If d D p
a1

1
� � �p

as
s , we will also write

S.d/D S.a1; : : : ; as/. We can easily compute the size of the sets S.d/.

Proposition 2.1. For a divisor d of n, the cardinality of the set S.d/ is equal to
jS.d/j D �.n=d/, where � denotes Euler’s totient function.
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Proof. A positive integer m less than n is contained in the set S.d/ if and only
if gcd.n;m/ D d , which happens if and only if m D Omd and gcd.n=d; Om/ D 1.
Thus, there is a one-to-one correspondence between the element m of S.d/ and
integers Om, where 0< Om< n=d and gcd.n=d; Om/D 1. �
Example 2.2. We illustrate Proposition 2.1 with the zero-divisor graph �6 and its
adjacency matrix:

```````̀

   
   

  rr
r

2

4

3

A.�6/D

240 1 0

1 0 1

0 1 0

35 ; S.2/D f2; 4g; jS.2/j D �.6=2/D 2:

Theorem 2.3. If n> 4, then det A.�n/D 0.

Proof. Write n D p
t1

1
p

t2

2
� � �p

ts
s as above. For i D 1; : : : ; s, if pi > 2, then

jS.n=pi/j D pi � 1 > 1. If a vertex v of �n corresponding to some divisor d

of n is adjacent to one of the elements of S.n=pi/, then d � .n=pi/D 0 .mod n/.
Thus the product of d with any multiple of n=pi is also zero, and v is adjacent to
every element of S.n=pi/. So A.�n/ will have repeated rows corresponding to
each element of S.n=pi/. Since jS.n=pi/j> 1, we conclude that det A.�n/D 0.

If nD2t , we must have t > 2. Then 6 2 S.2/, and jS.2/j> 1. So A.�n/ will
have repeated rows corresponding to 2 and 6, and det A.�n/D 0. �

The sets S.d/ for all divisors d of a given integer n are an equitable partition of
the set of vertices V .�n/. That is, any two vertices in S.di/ have the same number of
neighbors in S.dj / for all divisors di ; dj of n. This allows us to define a projection
graph ��n as a graph with vertices S.d/ for all d jn and edges connecting S.di/

with S.dj / if every element in S.di/ is connected with every element in S.dj / in �n.

Example 2.4. The projection graph ��15: rrS.3/ S.5/

Proposition 2.5. The number of vertices in the graph ��n, where nD
sQ

iD1

p
t1

i , is

jV .��n/j D
sQ

iD1

.ti C 1/� 2:

Proof. The vertices of ��n are the sets S.d/ that are in one-to-one correspondence
with the divisors d of n. If the prime decomposition for n is nD

Qs
iD1 p

ti

i and the
prime decomposition for a divisor d of n is d D

Qs
iD1 p

ai

i , then we have ti C 1



ADJACENCY MATRICES OF ZERO-DIVISOR GRAPHS OF INTEGERS MODULO n 755

choices for the exponent ai of pi in d . The choice of all ai D 0 leads to d D 1, and
the choice of each ai D ti leads to d D n, neither of which are proper divisors of n.
So the number of proper divisors d is

Qs
iD1.ti C 1/� 2. �

Let A.�.�n// denote the adjacency matrix of �.�n/. We will also consider
the weighted adjacency matrix A.�.�n//, where aij D jS.dj /j whenever S.di/ is
connected with S.dj /. In the above example,

A.�.�15//D

�
0 1

1 0

�
; A.�.�15//D

�
0 2

4 0

�
:

The following theorem relates the ranks of the various adjacency matrices.

Theorem 2.6. Let nD
Qs

iD1 p
ti

i . Then,

rank A.�n/D rank A.��n/D rankA.��n/D

sY
iD1

.ti C 1/� 2:

Proof. Recall that vertices in V .��n/ correspond to sets S.d/, where d jn. Since
each element of S.d/ contributes exactly the same row to the adjacency matrix
A.�n/, it follows that rank A.�n/� jV .��n/j. On the other hand, rank A.��n/�

rank A.�n/ since we just remove repeated rows and columns to get A.��n/

from A.�n/. Obviously, rank A.��n/ D rankA.��n/. So it is enough to show
rank A.��n/D jV .��n/j.

Let nD p
t1

1
p

t2

2
� � �p

ts
s . Since the rank of the matrix does not change with permu-

tations of rows, assume that the rows of A.��n/ correspond to the S.d/, with d jn,
in the following order: S.p1/, S.n=p1/, S.p2/, S.n=p2/, : : : , S.ps/, S.n=ps/,
S.pipj / with i and j not necessarily distinct, S.n=.pipj // for all possible pairs
of i and j , S.pipj pk/, S.n=.pipj pk// for all possible triples i; j ; k with i; j ; k

not necessarily distinct, etc.
We will compute the determinant of A.��n/ and, by showing that it is not zero,

will prove that jV .��n/j rows of A.��n/ are linearly independent.
The first row corresponding to S.p1/ has 1 in the second column corresponding

to S.n=p1/ and the rest of the entries are 0. Expand the determinant of A.��n/

along the first row to get

det A.��n/D� det A1;2;

where � det A1;2 is the cofactor of the .1; 2/ entry of A.��n/. Note that the first
column of A1;2 has 1 in the first row and the rest of the entries are 0. Expand
det A1;2 along the first column to get det A1;2 D det A.2/, where A.2/ is a matrix
obtained from A.��n/ by deleting the first two rows and columns. So, we can
conclude that det A.��n/D� det A.2/.
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We repeat this procedure for all S.pi/ and S.n=pi/ to get

det A.��n/D .�1/s det A.2s/;

where A.2s/ is obtained from A.��n/ by deleting the first 2s rows and columns.
Now consider S.pipj /. In ��n, the vertex corresponding to S.pipj / is adjacent

to vertices of S.n=pi/, S.n=pj / and S.n=.pipj //. However, in the matrix A.2s/,
the row corresponding to S.pipj / will have only one 1 in the column corresponding
to S.n=.pipj // since the columns corresponding to S.n=pi/ and S.n=pj / were
deleted. So we can repeat the procedure of expanding the determinant along the
rows and columns corresponding to S.pi/ to expand the determinant along the
rows and then the columns corresponding to S.n=.pipj //.

Then continue to S.n=.pipj pk// in a similar fashion. In the end we will be left
either with a 2� 2 matrix of determinant �1, or a 1� 1 matrix of determinant 1.
So det A.��n/D .�1/m, where m is the number of distinct divisors d of n such
that d <

p
n. It follows that rank A.��n/ D jV .��n/j. The result follows from

Proposition 2.5. �

Corollary 2.7. We have det A.��n/D .�1/m, where mD b.rank A/=2c.

Proof. This follows from the proof of Theorem 2.6. �

Corollary 2.8. We have detA.��n/D.�1/m
Q

d jn jS.d/j, where mDb.rankA/=2c.

Proof. This result follows from the previous corollary and the fact that A.��n/ is
obtained from A.��n/ by multiplying the j -th column by jS.dj /j. �

Corollary 2.9. The multiplicity of the eigenvalue 0 of A.�n/ is

n��.n/�

sY
iD1

.ti C 1/C 2:

Proof. The multiplicity of the eigenvalue 0 of A.�n/ is jV .�n/j� jV .�.�n//j. The
number of vertices of �n is the number of positive integers less than n and not
relatively prime to n, which is n��.n/. The number of vertices of ��n is

sY
iD1

.ti C 1/� 2: �

Part of the following result is known, but we will include it for the convenience
of the reader.

Proposition 2.10. A nonzero � 2 R is an eigenvalue of A.�n/ if and only if it is an
eigenvalue of A.�.�n//.
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Thus, to find all the nonzero eigenvalues of A.�n/, it is enough to find all
the eigenvalues of A.�.�n//. The proposition makes it especially easy when n

has few factors. When n D pq is a product of distinct primes, �n is a bipartite
graph. It is known (and easy to see) that the nonzero eigenvalues of A.�pq/

are ˙
p
.p� 1/.q� 1/ with multiplicity 1. When nD p2, the matrix A.�n/ is a

1� 1 matrix with p� 1 as a sole entry and hence the eigenvalue. So we consider
the following two examples.

Example 2.11. Consider �p3 . The matrix A.�p3/ takes the form

AD
�

0 p� 1

p.p� 1/ p� 1

�
:

Its characteristic polynomial is p.�/D�2�.p�1/��p.p�1/2, and the eigenvalues
are �1;2 D

1
2
.p� 1/.1˙

p
1C 4p/.

Example 2.12. Consider �p2q , where p and q are distinct primes. In this case,

A.�p2q/D

2664
0 p� 1 0 0

.p� 1/.q� 1/ p� 1 q� 1 0

0 p� 1 0 p2�p

0 0 q� 1 0

3775 :
The characteristic polynomial of this matrix is

p.�/D�4
�.p�1/�3

�2p.p�1/.q�1/�2
Cp2.p�1/.q�1/�Cp.p�1/2.q�1/3:

The roots can be found by the formulas for the roots of the fourth degree polynomial,
but are too cumbersome to include here.

3. Estimates on eigenvalues

Since the increase in the number of factors of n leads to a rapid increase of the size
of the adjacency matrix and the degree of the characteristic polynomial, one can
use some known results to approximate the nonzero eigenvalues of A.�n/. Since
A.�n/ is symmetric, all its eigenvalues are real numbers. We will number them
from largest to smallest �1 � �2 � � � � � �k .

The degree of a vertex of a graph is the number of the edges incident to this
vertex. Given a (finite) graph � , let maxdeg.�/Dmaxfdeg v j v 2 V .�/g and

avedeg.�/D

P
v2V .�/ deg v

jV .�/j
:

It is known (see [Brouwer and Haemers 2012, Proposition 3.1.2]) that

avedeg.�/� �1 �maxdeg.�/:
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We next compute maxdeg.�n/ and avedeg.�n/.

Proposition 3.1. Let nD p
t1

1
� � �p

ts
s with p1 < p2 < � � �< ps . Then

maxdeg.�n/D n=p1� 1:

Proof. For a divisor d of n, denote the corresponding vertex in �n by vd . The
vertex vd is connected to a vertex vc corresponding to a divisor c of n by an edge
in �n if and only if dc � 0 .mod n/. This happens if and only if c is a multiple of
n=d (and is less than n). There are d � 1 such multiples, and so deg.vd /D d � 1.
Then the vertex with the largest degree will correspond to the largest divisor of n,
which is n=p1. Since for any d jn, the degrees of all vertices in S.d/ are the same
and the sets S.d/ partition V .�n/, maxdeg.�n/D n=p1� 1. �

Proposition 3.2. The average degree of the graph �n is

avedeg.�n/D

P
d jn;d¤n �.n=d/.d � 1/

n��.n/� 1
:

Proof. To compute the average degree, we take the degree d�1 of a vertex in S.d/,
multiply by the cardinality �.n=d/ of the set S.d/, sum these products over all
proper divisors d of n, and divide by the total number of vertices n��.n/� 1. �

The estimate of the eigenvalue �1 using the average degree of the graph is
inconvenient to use. So we use the results on interlacing and on bipartite subgraphs
of �n for alternative estimates that are easier to use. Let � be any graph and
� an induced subgraph, that is, a subgraph obtained from � by deleting some
vertices and all edges incident to the deleted vertices. The following result is known
(see [Brouwer and Haemers 2012, Proposition 3.2.1] or [Godsil and Royle 2001,
Theorem 9.1.1]). Let �1 � �2 � � � � � �k be eigenvalues of A.�/ and �1 � � � � � �l

be the eigenvalues of A.�/; then �i � �i � �k�lCi for i D 1; 2; : : : ; l . With the
interlacing result in mind, we prove the following proposition.

Proposition 3.3. Let �1 be the largest eigenvalue of A.�n/:

(1) If n is a product containing two or more distinct primes, then �1 �
p
�.n/.

(2) If nD pt , then �1 � pdt=2e� 1.

Proof. Let n D p
t1

1
p

t2

2
� � �p

ts
s . Consider the bipartite subgraph of �n induced by

the vertices in the sets S.p
t1

1
/ and S.n=p

t1

1
/. The largest eigenvalue �1 of this

subgraph is

�1 D

s
jS.p

t1

1
/j

ˇ̌̌̌
S

�
n

p
t1

1

�ˇ̌̌̌
D

s
�

�
n

p
t1

1

�
�.p

t1

1
/D

p
�.n/:

The interlacing results give �1 � �1.
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To prove the second statement, notice that all vertices of S.pi/ are connected to
all the vertices of S.pj /whenever iCj � t , 1� i; j � t�1. In the case t is even, �n

contains a complete subgraph induced by vertices in the sets S.pt=2/, : : : , S.pt�1/.
The largest eigenvalue �1 of this complete subgraph equals the number of vertices in
the subgraph, which we compute next. By Proposition 2.1, jS.d/jD�.n=d/, so the
number of vertices in the complete subgraph will be �.p/C�.p2/C� � �C�.pt=2/.
This can be expressed as .p� 1/Cp.p� 1/Cp2.p� 1/C � � �Cpt=2�1.p� 1/,
which after summing the arithmetic progression becomes pt=2 � 1D �1. In the
case of t odd, �n contains a complete subgraph induced by vertices in the sets
S.pdt=2e/, : : : , S.pk�1/. Using Proposition 2.1 and summing up the number of
vertices as in case of t even gives pbt=2c D �1. �

We can use the above estimates on the largest eigenvalue �1 of A.�n/ to prove
that there are only finitely many graphs with small eigenvalues.

Theorem 3.4. For any positive integer k, there exists only a finite number of
integers n such that all the eigenvalues of A.�n/ are less or equal than k.

Proof. We will use the estimates �1 on �1 obtained in Proposition 3.3. If, for a given
k>0, we have �1�k, then�1�k. We will show�1�k is only possible for a finite
number of integers n. Suppose nD pt . Then pt=2� 1 must be less than or equal
to k. Thus t � 2 logp.kC1/, and there are only finitely many such positive integers.

Now suppose n is divisible by at least two distinct primes, say nD p
t1

1
� � �p

ts
s .

The Euler function on n can be computed as

�.n/D �.p
t1

1
/ � � ��.pts

s /D p
t1�1
1

.p1� 1/ � � �pts�1
s .ps � 1/:

Since there are only finitely many primes less than kC 1, and only a finite number
of possible exponents t1; : : : ; ts that satisfy 0< t1; : : : ; ts � 2 log2 k, there are only
finitely many positive integers n such that �.n/� k2. �

Example 3.5. We will find all positive integers n such that all the eigenvalues of
A.�n/ are less than or equal to k D 2. Suppose nD pt . If t is even, then we must
have pt=2�1� 2. The only such possibilities are pD 2, t D 2 and pD 3, t D 2. If t

is odd, we must have pbt=2c � 2. This happens only if pD 2, t D 3. If n is divisible
by at least two distinct primes, we must have �.n/� 4, and computations show that
this is satisfied only for n D 6; 10; 12. For n D 4; 6; 8; 9; 10; 12, we compute the
eigenvalues of A.�n/ and see that for all above n except nD 12, the eigenvalues
are less or equal than 2. Thus, the adjacency matrices of �4, �6, �8, �9 and �10

have all their eigenvalues less or equal than 2.

Example 3.6. For k D 3, the graphs all of whose eigenvalues are less than or equal
to 3, in addition to the graphs of Example 3.5, are �12, �14 and �15. For k D 4,
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the new graphs (in addition to the ones with eigenvalues less or equal to 3) are �16,
�21, �22, �25, �26 and �34.

As we were considering the above examples, we noticed that for adjacency
matrices of even rank, precisely half of the nonzero eigenvalues were positive and
half negative. For adjacency matrices of odd rank, we always had one more positive
eigenvalue than negative. We investigate this further.

The independence number ˛.�/ of a graph � is the size of the largest set of pair-
wise nonadjacent vertices. Let r denote the number of eigenvalues of a (weighted)
adjacency matrix A.�/ of a graph � , rC.A/ the number of positive eigenvalues,
and r�.A/ the number of negative eigenvalues. It is known (see [Brouwer and
Haemers 2012, Theorem 3.5.4]) that ˛.�/� r � rC.A/ and ˛.�/� r � r�.A/. We
use this fact to show the following result.

Theorem 3.7. Suppose the rank of A.�n/ is r . Then A.�n/ has dr=2e positive
eigenvalues and br=2c negative eigenvalues.

Proof. We first note that it is enough to prove the theorem for A.��n/ since
A.�n/ and A.��n/ have the same nonzero eigenvalues. We start by computing the
independence number of ��n. Recall that the vertices of ��n are the sets S.d/,
for all divisors d of n, and S.d1/ is connected to S.d2/ by an edge if n divides the
product d1d2. So for all d �

p
n, the vertices S.d/ are pairwise not connected. It

is easy to see that all the vertices of ��n can be split into pairs S.d/ and S.n=d/,
with S.

p
n/ without a pair if

p
n is a divisor of n. So the set of S.d/ with d jn and

d <
p

n is the maximal nonadjacent set of cardinality br=2c, where r denotes the
number of vertices of ��n. The number of vertices of ��n is equal to the rank of
A.��n/ by Theorem 2.6. So the independence number ˛.��n/ is equal to br=2c.

For r even, we have r=2� r � rC.A/ and r=2� r � r�.A/, which implies the
statement of the theorem. For r odd, it remains to show that we have one more
positive eigenvalue than negative. By Corollary 2.8, we know that the sign of
detA.��n/ is given by .�1/br=2c. On the other hand, detA.��n/ is equal to the
product of eigenvalues. So the parity of the number of negative eigenvalues must
determine the sign of .�1/br=2c. Since br=2c � r � r�.A/ and br=2c � r � rC.A/,
we must have r�.A/D br=2c. �
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