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We investigate the size of monic, orthogonal polynomials defined on the unit
circle corresponding to a finite positive measure. We find an upper bound for the
L1 growth of these polynomials. Then we show, by example, that this upper
bound can be achieved. Throughout these proofs, we use a method developed by
Rahmanov to compute the polynomials in question. Finally, we find an explicit
formula for a subsequence of the Verblunsky coefficients of the polynomials.

1. Introduction

Let V DC.TIC/, where TDfz 2C W jzj D 1g. We define an inner product on V by

hf;gid� D

Z
T

f .z/g.z/ d�;

where d� is of the form

d�D p.�/ d� C

nX
jD1

mj ı.� � �j /;

where p.�/ is a continuous function, ı is the Dirac delta function, and the mj are
masses placed at the �j satisfying mj � 0. We will confine our analysis to measures
in the restricted Steklov class of order ı, denoted Sı, which consists of measures
with the properties

p.�/ > ı; mj� 0; h1; 1id� D 2: (1-1)
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This inner product gives a norm k � k defined as

kf .z/kd� D
q
hf; f id�:

Given a measure d� 2 Sı , there exists a unique set of monic orthogonal polyno-
mials f�n.zI d�/g [Simon 2005]. We will adopt the convention that �n.zI d�/ is the
polynomial of degree n in this set. When there is no ambiguity about what measure
is being used, we will simply write these polynomials as �n.z/. Corresponding to
the set f�n.zI d�/g is the set f'n.z/g of orthonormal polynomials, defined by

'n.z/D
�n.z/

k�n.z/k
:

These polynomials form an orthonormal set. Uniqueness of this set follows the
from uniqueness of f�n.z/g.1

A conjecture of Steklov stated that the sequence

Mn;ı D sup
d�2Sı

max
z2T
j'n.zI d�/j

is bounded in n. This was disproven by Rahmanov [1979]. In particular, Rahmanov
proved the existence of a probability measure d�D �.�/ d� C

Pn
jD1 mj ı.� � �j /

such that
j'n.1; d�/j � C ln.n/CB

for some constants B, C . The hard part in making such estimates is that, in general,
there are few tools available to compute 'n.z/ other than the Gram–Schmidt process.
To establish his result, Rahmanov found a formula for computing the �n.zI d�/,
where d�Dd�C

Pn
kD0 mj ı.���j / in terms of �n.zI d�/, meaning that d� differs

from d� only in its masses. This formula uses the Christoffel–Darboux kernel

Kn.z; �/D

nX
jD0

'j .z/'j .�/: (1-2)

The roots of the Christoffel–Darboux kernel are those �j satisfying

Kn.�j ; �i/

�
D 0 for i ¤ j ;

¤ 0 for i D j:
(1-3)

Rahmanov’s formula, in light of these definitions, is

�n.zI d�/D �n.zI d�/�

nX
jD1

mj�n.�j I d�/

1Cmj Kn�1.�j ; �j /
Kn�1.z; �j /: (1-4)

1Originally, the last condition given for the Steklov class is stated as h1; 1id� D 1. This is a minor
modification though, because 'n.z/=

p
2 is in the Steklov class S

ı=
p

2
, given the original definition.
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We now outline our results. In Theorem 2.3, we use Rahmanov’s method
for computing �n.�/ for the measure d� D d�=2� C

Pbn=4c
jD1

mj ı.� � �j /, with
�j D .2�j � �/=n, mj D 4=n and show that the corresponding polynomials
�n.zI d�/ are uniformly bounded above by 8=.5�2/ log.bn=4c� 1/CC , where C

is a constant. Our next main result is Theorem 4.1, where we construct a family of
measures d�n such that �n.1I d�n/ > 1=� log nCc, c a bounded constant. Finally,
in Theorem 5.1, we show that, given the measure d�Dd�=2�C

Pn
jD1 mj ı.���j /,

with �j D 2�j=n��0, the subsequence f˛nk�1g
1
kD1

of the Verblunsky coefficients
j̨ .d�/ satisfies

˛nk�1 D eink�0

nX
jD1

mj

1Cmj nk
:

The reader may notice that all of our results are stated in terms of �n.z/, while
Steklov’s conjecture is stated in terms of 'n.z/. We will end this introduction with
a lemma, proven by Rahmanov [1979], that shows why bounds on �n.z/ imply
bounds on 'n.z/, and thus why it is sufficient to evaluate f�n.z/g.

Lemma 1.1. Given a measure d� 2 Sı, ı > 0, there exists a constant C such that

1

C
k�n.z; d�/k � k'n.z; d�/k � Ck�n.z; d�/k

for all n� 0.

Proof. Since

j'n.z/j D
j�n.z/j

k�n.z/kd�
;

it suffices to find constant upper and lower bounds on k�n.z/kd�.
To find an upper bound, we first claim that �n.z/ minimizes the integralZ

T

jP .z/j2 d�;

where P .z/ is any monic polynomial of degree n. Let q.z/ be an arbitrary poly-
nomial of degree less than n. Then, since �n.z/ is orthogonal to all polynomials
of degree less than n under the measure d� and the inner product of a polynomial
with itself is nonnegative, we have

h�n.z/C q.z/; �n.z/C q.z/id�

D h�n.z/; �n.z/id�Ch�n.z/; q.z/id�Chq.z/; �n.z/id�Chq.z/; q.z/id�

D h�n.z/; �n.z/id�Chq.z/; q.z/id�

� h�n.z/; �n.z/id�:
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Hence �n.z/ minimizes the integral
R

T
jP .z/j2 d�. In particular this gives us

k�n.z/k
2
d� D

Z 2�

0

j�n.z/j
2 d��

Z 2�

0

jzn
j
2 d�D

Z 2�

0

1 d�D 2: (1-5)

We can derive a lower bound using the fact that d� 2 Sı and, in particular,
that d� satisfies (1-1), which gives

k�n.z/k
2
d� D

1

2�

Z 2�

0

j�n.e
i� /j2p.�/ d� C

lX
jD1

mj j�n.e
i�j /j2

�
ı

2�

Z 2�

0

j�n.e
i� /j2 d�:

Let the coefficient of the zk term of �n.z/ be ak . In particular, an D 1. Using that
the integral of eik� over the unit circle is 0 for a nonzero integer k, we get

Z 2�

0

j�n.e
i� /j2 d� D

Z 2�

0

nX
kD0

a2
k d� �

Z 2�

0

a2
n d� D 2�:

Hence, k�n.z/k
2
d�
� ı.

Combining this with the upper bound on k�n.z/k
2
d�

from (1-5) gives

ı � k�n.z/k
2
d� � 2;

and as a result
j�n.z/j
p

2
� j'n.z/j �

j�n.z/j
p
ı
: �

2. Review of Rahmanov’s result

We begin by reviewing Rahmanov’s argument [1979] to show that the growth of
the monic polynomials under Rahmanov’s scheme is bounded below by c log n,
where c is a constant. Before doing that, though, we need to prove two lemmas that
simplify our future calculations.

We now characterize the roots of the Christoffel–Darboux kernel (which we
defined on page 2) for a certain measure:

Lemma 2.1. For d�D d�=2� , the roots of the Christoffel–Darboux kernel are the
n-th roots of unity times a constant of modulus one.
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Proof. Recall the definition of the Christoffel–Darboux kernel and its roots from
(1-2) and (1-3). For our d�, 'j D zj , so assuming �j is of modulus one for all j ,

Kn�1.�i ; �j /D

n�1X
jD0

�
j
i =�

j
j

D
�n

i =�
n
j � 1

�i=�j � 1
(since this is a geometric series)

D
�n

i � �
n
j

.�i � �j /�
n�1
j

: (2-1)

Therefore, by (2-1), �j D e2i�j=n �0, where 1 � j � n and �0 is an arbitrary
point on the unit circle, and so �j is an n-th root of unity times a constant. �
Lemma 2.2. We need only assess �n.zI d�/ at z D 1, since

sup
�2Sı

max
z2T
j�n.zI d�/j D sup

�2Sı

j�n.1I d�/j:

Proof. Let

d�1 D p.�/ d� C

mX
jD1

mj ı.� � �j /;

where d�1 2 Sı. Then d�2 2 Sı, where

d�2 D p.� � ��/ d� C

mX
jD1

mj ı.� � �
�
� �j /; �� 2 Œ0; 2�/:

In particular, �n.e
i� I d�1/D �n.e

i.�C��/I d�2/.
Hence,

max
z2T
j�n.zI d�1/j Dmax

z2T
j�n.zI d�2/j;

sup
�2Sı

max
z2T
j�n.zI d�/j D sup

�2Sı

j�n.1I d�/j:

Henceforth, we will only look at �n.zI d�/ evaluated at z D 1. �

Theorem 2.3. Under a finite measure d�D d�C
Pbn=4c

jD1
mj ı.� � �j /, the monic

polynomials are not uniformly bounded from above; specifically, there exists a d�

such that the maximums are greater than or equal to 8=.5�2/ log.bn=4c� 1/.

Remark 2.4. This is Rahmanov’s result [1979], whose proof we have included for
the reader’s convenience.

Proof. First, we will deal generally with some d� without specifying the added
masses.
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In light of Lemma 2.1, let �j D .2�j ��/=n for 1 � j � bn=4c. Then, using
Rahmanov’s formula in (1-4), we have

�n.zI d�/D �n.zI d�/�

bn=4cX
jD1

mj �n.�j I d�/

1Cmj Kn�1.�j ; �j /
Kn�1.z; �j /; (2-2)

which, by noting that Kn�1.�j ; �j /D
Pn�1

jD1 1D n and substituting z and �j into
(2-2), becomes

�n.zI d�/D zn
�

bn=4cX
jD1

mj�
n
j

1Cmj n

�zn� 1

ze�i�j � 1

D zn
C

bn=4cX
jD1

mj

1Cmj n

znC 1

1� ze�i�j
:

Now we want to find a lower bound for j�nj:

max
z2T
j�n.zI d�/j �max

z2T

ˇ̌̌̌
Im
�

zn
C

bn=4cX
jD1

mj

1Cmj n

znC 1

1� ze�i�j

�ˇ̌̌̌
:

We take z D 1, in line with Lemma 2.2, to get

max
z2T
j�n.zI d�/j �

ˇ̌̌̌
Im
�

1C 2

bn=4cX
jD1

mj

1Cmj n

1

1� e�i�j

�ˇ̌̌̌

D

ˇ̌̌̌
Im
�

1� 2

bn=4cX
jD1

mj

1Cmj n

ei�j � 1

j1� e�i�j j2

�ˇ̌̌̌
:

Note that 0< �j < �=2, j1� e�i�j j � �j , and

Im.ei�j � 1/D sin �j �
2�j

�
for � 2

�
0;
�

2

�
;

which givesˇ̌̌̌
Im
�

1� 2

bn=4cX
jD1

mj

1Cmj n

ei�j � 1

j1� e�i�j j2

�ˇ̌̌̌
� 2

bn=4cX
jD1

mj

1Cmj n

2

��j
: (2-3)

Now, we specify the masses of d� to get a precise bound. Let mj D 4=n for
all j . This simplifies (2-3) to

max
z2T
j�n.zI d�/j �

16

5�n

bn=4cX
jD1

1

.2j � 1/�
n

�
8

5�2

bn=4cX
jD1

1

j
:
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Note that log aD
aR
1

1=x dx �
a�1P
jD1

1=j since 1=x is decreasing.

Therefore,

max
z2T
j�n.zI d�/j �

8

5�2
log
�j

n

4

k
� 1

�
: (2-4)

Since 4=.5�2/ log.bn=4c� 1/ is strictly increasing in n, maxz2T j�n.z; d�/j is not
uniformly bounded from above. �

3. Finding a general upper bound

In this section, we find a general upper bound for the growth of the monic orthogonal
polynomials under a d� which differs from d�=2� only in the discrete portion. We
prove the following theorem by making a sequence of overestimates of j�n.1; d�/j.

Theorem 3.1. Let d� be a measure such that

d�D
1

2�
d� C

nX
jD1

mj ı.� � �j /;

where mj � 0, �j D 2�j=nC �0 for 1� j � n, and �0 2 Œ0; 2�/.
Then

j�n.1; d�/j �
1
�

log nCC;

where C is a constant uniformly bounded in n.

Remark 3.2. Note the generalized offset �0 in the theorem. In Section 2, we used
the specific offset of �0 D��=n, but here, we find a general upper bound under
any offset.

We prove the theorem using two lemmas. The first, Lemma 3.3, finds an overes-
timate for j�n.1; d�/j using Rahmanov’s formula [1979] . The second, Lemma 3.4,
makes another overestimate using Taylor series.

Lemma 3.3. Let d� be a measure such that

d�D
1

2�
d� C

nX
jD1

mj ı.� � �j /;

where mj � 0 and �j D 2�j=nC �0; 1� j � n.
Then

j�n.1/j D

8̂<̂
:
j1�ein�0 j

2

ˇ̌̌ nP
jD1

mj
1Cmjn

sin �j
1�cos �j

ˇ̌̌
C cn if �0 ¤ 0;

cn if �0 D 0;

where jcnj< 2 for all n.
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Proof. We first consider the case where �0 D 0. If �0 D 0, then Kn�1.1; e
i�j /D 0

for 1� j < n and Kn�1.1; e
i�n/D n. From Rahmanov’s formula (1-4),

j�n.1/j D

ˇ̌̌̌
1�

mn

1Cmnn
n

ˇ̌̌̌
< 1:

Therefore, �n.1/ is not increasing in n for �0D 0. Henceforth, we restrict ourselves
to working with �0 ¤ 0.

From Rahmanov’s formula in (1-4) and applying Lemma 2.1, we derive

�n.1/D 1�

nX
jD1

mj

1Cmj n
ein�j

ein�j � 1

ei�j � 1
:

Then, using algebra, we find that

�n.1/D 1C

nX
jD1

mj

1Cmj n

1� ein�j

1� ei�j

D 1C
1� ein�0

2

nX
jD1

mj

1Cmj n

�
1� i

sin �j
1� cos �j

�
;

(3-1)

which implies by the triangle inequality thatˇ̌̌̌
�n.1/�

1� ein�0

2
i

nX
jD1

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌
� 1C

j1� ein�0 j

2

ˇ̌̌̌ nX
jD1

mj

1Cmj n

ˇ̌̌̌
:

Note that

j1� ein�0 j � 2 and 0�
mj

1Cmj n
�

1

n
; so

j1� ein�0 j

2

ˇ̌̌̌ nX
jD1

mj

1Cmj n

ˇ̌̌̌
� 1:

Hence, ˇ̌̌̌
�n.1/�

1� ein�0

2
i

nX
jD1

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌
� 2: �

Thus, it is sufficient to consider the growth of

j1� ein�0 j

2

ˇ̌̌̌ nX
jD1

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌
: (3-2)

We want to eliminate the magnitude around the sum in (3-2).
Since mj � 0, and sin �j=.1 � cos �j / is positive on .0; �/ and negative on

.�; 2�/, we have
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jD1

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌

�max
�ˇ̌̌̌ X
�j2.0;�/

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌
;

ˇ̌̌̌ X
�j2.�;2�/

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌�
:

Now, if we alter d� so that the masses are instead located at �j� D �2�j=n� �0,
essentially reflecting the discrete portion of the measure over the real axis, we see
that (3-2) does not change.

Hence, since we are looking to find an upper bound of (3-1) that is independent
of mj and �0, we can assume without loss of generality that we are only looking at
�j 2 .0; �/, and thus take

j1� ein�0 j

2

ˇ̌̌̌ nX
jD1

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌
�
j1� ein�0 j

2

X
�j2.0;�/

mj

1Cmj n

sin �j
1� cos �j

:

Since replacing �0 with �0C 2�=n and then shifting the index of the mj does not
affect the value of (3-2), assume �0 2 .�2�=n; 0/. Having made these simplifica-
tions, we can now move on to the main lemma, which finds an upper bound as
described in the theorem.

Lemma 3.4.

j1� ein�0 j

2

X
�j2.0;�/

sin �j
1� cos �j

� n
�
1C

1

�
C

1

�
log
j

n

2

k�
;

where �j D 2�j=nC �0; �0 2 .�2�=n; 0/.

Proof. We separate the first term from the sum, since that term contributes the most
to the magnitude. Recall that �1 D 2�=nC �0. Thus,

j1� ein�0 j

2

X
�j2.0;�/

sin �j
1� cos �j

�
j1� ein�0 j

2

sin �1

1� cos �1

C

X
�j2.2�=n;�/

sin �j
1� cos �j

since j1� ein�0 j � 2. We now bound these two terms of the sum separately.
We claim that

j1� ein�0 j

2

sin �1

1� cos �1

� n

for �0 2 .�2�=n; 0/. Recall �1 D �0C 2�=n, so hence j1� ein�0 j D j1� ein�1 j.
Denote �1 by t , where t 2 .0; 2�=n/. We do the calculation
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j1� eint j

2

sin t

1� cos t

D

p
.1� cos nt/2C .sin nt/2

2

sin t

2
�
sin t

2

�2 D
p

2� 2 cos nt

2

sin t

2
�
sin t

2

�2 :
Because sin.nt=2/ is nonnegative for t 2 .0; 2�=n/, we have

sin
nt

2

sin t

2
�
sin t

2

�2 D sin nt
2

�
2 sin t

2
cos t

2

�
2
�
sin t

2

�2 D
sin nt

2
cos t

2

sin t
2

;

sin.nt=2/=sin.t=2/ is nonnegative for t 2 .0; 2�=n/ and cos t=2 is bounded above
by 1. Hence, the expression is bounded above by sin.nt=2/=sin.t=2/. It remains to
show this is bounded above by n.

This is clearly true for nD 1. Let n> 1. Recall that nt 2 .0; 2�/. Consider an
.nC 1/-gon inscribed in a unit circle in which n of the sides of the polygon form
a central angle of t . The last side of the polygon forms a central angle of nt (this
angle may be reflexive.) Recall that the length of a chord of a unit circle which
forms a central angle of t is 2 sin.t=2/. Similarly the length of the chord which
forms a central angle of nt is 2 sin.nt=2/. As the polygon is not degenerate, the
sum of the lengths of the n equal side lengths is greater than the length of the
remaining side length. Namely 2n sin.t=2/� 2 sin.nt=2/ as desired.

We now handle the second term. To boundX
�j2.2�=n;�/

sin �j
1� cos �j

;

note that sin �j=.1� cos �j / is decreasing on .0; 2�/, so

X
�j2.2�=n;�/

sin �j
1� cos �j

�

bn=2cX
jD1

sin
�

2�
n

j
�

1� cos
�

2�
n

j
� :

Recall from the Taylor expansion that we can approximate sin x=.1� cos x/

near 0 by 2=x. In fact, since

lim
x!0

sin x

1� cos x
�

2

x
D 0

and for x 2 .0; ��, we have

d

dx

�
sin x

1� cos x
�

2

x

�
< 0;

we arrive at the inequality

sin x

1� cos x
�

2

x
for x 2 .0; ��:
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Therefore,
bn=2cX
jD1

sin
�

2�
n

j
�

1� cos
�

2�
n

j
� � bn=2cX

jD1

2
2�
n

j
D

n

�

bn=2cX
jD1

1

j
:

Recall that log aD
aR
1

1=x dx �
aP

jD2

1=j since 1=x is decreasing, so that

n

�

bn=2cX
jD1

1

j
D

n

�
C

n

�

bn=2cX
jD2

1

j
�

n

�
C

n

�
log
j

n

2

k
;

and thus

j1� ein�0 j

2

X
�j2.0;�/

sin �j
1� cos �j

� n
�
1C

1

�
C

1

�
log
j

n

2

k�
: �

Returning to the statement of the theorem,

j�n.1/j � 2C
j1� ein�0 j

2

ˇ̌̌̌ nX
jD1

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌

� 2C
j1� ein�0 j

2

ˇ̌̌̌ nX
jD1

1

n

sin �j
1� cos �j

ˇ̌̌̌
� 3C

1

�
C

1

�
log
j

n

2

k
:

Since logbn=2c is equal to log n plus some uniformly bounded term, we can
conclude that

j�n.1/j �
1
�

log nCC;

where C is constant in n, which completes the proof of the theorem.

Remark 3.5. Note that here we used that

mj

1Cmj n
�

1

n
:

If we were to use the Rahmanov scheme of distributing masses and set all mj D 1=n

then
mj

1Cmj n
D

1

2n
;

and the monic orthogonal polynomials given by the Rahmanov type of measure
would have growth bounded from above by 1=2� log nC b, where b is a bounded
constant.
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4. Proving the lower bound

In this section, we construct a measure that achieves the upper bound of 1=� log n

plus a bounded term, as described in Theorem 3.1. We accomplish this primarily
by applying the technique of Lagrange multipliers to find an optimal measure.

Theorem 4.1. For all n 2 N, there exists a measure

d�D
1

2�
d� C

nX
jD1

mj ı.� � �j /;

where mj � 0 and
Pn

jD1 mj D 1 such that

j�n.1; d�/j �
1
�

log nC c;

where c is a bounded constant.

We will prove this theorem as a sequence of lemmas.
The first lemma, Lemma 4.2, finds a lower bound for the expression from

Lemma 3.3 which is simpler to manipulate. In the second lemma, Lemma 4.4, we
apply the technique of Lagrange multipliers to that lower bound to find a critical
“point”, in our case a scheme of mj s. Finally, in the third lemma, Lemma 4.6, we
insert those derived mj into the approximation and find that we achieve the growth
stated in the theorem.

Set �j D .2�j ��/=n. Inserting those �j into (3-1), we have that

j�n.1/j D
j1�e��i j

2

ˇ̌̌̌ nX
jD1

mj

1Cmj n

sin �j
1�cos �j

ˇ̌̌̌
Ccn D

ˇ̌̌̌ nX
jD1

mj

1Cmj n

sin �j
1�cos �j

ˇ̌̌̌
Ccn

for some constant jcnj<2. We know that sin �j=.1�cos �j / is positive for �j 2 .0; �/
and negative for �j 2 .�; 2�/. Thus, in order to maximize j�n.1/j, we set mj D 0

for all j such that �j 2 .�; 2�/, which prevents destructive interference from the
other side of the circle.

Under this setting, we can say thatˇ̌̌̌ nX
jD1

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌
D

bn=2cX
jD1

mj

1Cmj n

sin �j
1� cos �j

:

We next bound this equation from below with a simpler expression.

Lemma 4.2. For �j D .2�j ��/=n and mj � 0,

bn=2cX
jD1

mj

1Cmj n

sin �j
1� cos �j

�
1

�

bn=2cX
jD1

nmj

1Cmj n

1

j
C d;

where d is some constant.
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Remark 4.3. It may appear contradictory that we first find a lower bound when we
want the n-th degree monic polynomial to be as large as possible. However, this
lower bound is easier to manipulate, and we show in the subsequent lemmas that it
actually achieves the growth stated in the theorem.

Proof. We prove this lemma using two approximations. We first approximate
sin �j=.1 � cos �j / by 2=�j , from the Taylor series; we then approximate 2=�j
by 1=.�j /.

First, we show that 2=�j is a good approximation of sin �j=.1� cos �j /. Let

M D max
�j2Œ0;��

ˇ̌̌̌
sin �j

1� cos �j
�

2

�j

ˇ̌̌̌
:

This maximum, M , is achieved becauseˇ̌̌̌
sin �j

1� cos �j
�

2

�j

ˇ̌̌̌
is continuous in an open neighborhood containing Œ0; ��. Thus, 2=�j is a good
approximation and we can bound the following difference by a constant:ˇ̌̌̌bn=2cX

jD1

mj

1Cmj n

sin �j
1� cos �j

�

bn=2cX
jD1

mj

1Cmj n

2

�j

ˇ̌̌̌

�

bn=2cX
jD1

mj

1Cmj n

ˇ̌̌̌
sin �j

1� cos �j
�

2

�j

ˇ̌̌̌
�

bn=2cX
jD1

1

n
M �M:

Having established this, we can now replace 2=�j with 2n=..2j � 1/�/ and
attain the inequality

bn=2cX
jD1

mj

1Cmj n

2

�j
�

n

�

bn=2cX
jD1

mj

1Cmj n

1

j
:

Combining this and the previous inequality proves the lemma. �

Now that we have the simplified lower bound

1

�

bn=2cX
jD1

nmj

1Cmj n

1

j
;

we can apply the method of Lagrange multipliers to it in order to construct the mj

that prove the theorem.

Lemma 4.4. Let n 2 N. Consider any l 2 N with l � n. Under the constraints
mj � 0 and

Pl
jD1mj D 1, we achieve the maximum of
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lX
jD1

mj n

.1C nmj /j

by setting

mj D
m1
p

j
C

1

n

�
1
p

j
� 1

�
for all 1� j � l , where

m1 D

�
1C

l

n

�
1Pbn=2c

jD1
1=
p

j
�

1

n
:

Proof. Set up f , the function to be maximized, and the constraint g, where m is
the vector listing all mj :

f .m/D

lX
jD1

mj n

.1C nmj /j
;

g.m/D

lX
jD1

mj � 1D 0:

(4-1)

If f under the constraint g has a local extremum at m0 and m0 is not on the boundary,
for example m0j > 0 for all 1� j � l , then there is a � 2 R such that

rf .m0 /D �rg.m0 /: (4-2)

To simplify the following expressions, denote

lX
jD1

1p
j
D ˛.l/:

Calculations yield that, for all j ,
n

.1C nm0
1
/2
D

n

j .1C nm0j /
2
;

which, substituting m0
1

and m0j , gives m0j in terms of m0
1
, that is,

m0j D
m0

1p
j
C

1

n

�
1p
j
� 1

�
: (4-3)

Inserting that expression for m0j into g.m0/D
Pl

jD1 m0j � 1D 0 yields

m01 D
�
1C

l

n

�
1

˛.l/
�

1

n
:
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Remark 4.5. For all 1 � j � l , we have m0j > 0 since ˛.l/ <
lR

0

1=
p

l dl D 2
p

l .
Thus, we satisfy the condition that m0j � 0.

To insure that, in the computation for m0, the Lagrange multipliers method
did in fact give us the m that maximized f .m/ under the constraint mj � 0 andPl

jD1mj D 1, we must check the boundary. We next provide a quick proof that
the maximum is not achieved at the boundary.

Consider the Lagrangian L.m/ D f .m/ � �g.m/ defined on .�1=n;1/l ,
where � is the constant in (4-2). Note that m0 is a critical point of L since m0

satisfies rLDrf ��rgD 0. It suffices to show that L is concave on .�1=n;1/l .
We first calculate the entries of the Lagrangian L:

@2L

@m2
j

D�
2n2

j

1

.1C nmj /3
< 0;

@2L

@mj@mk

D 0 for j ¤ k:

The Hessian of L is then negative definite and hence L is concave on .�1=n;1/l .
Therefore, m0 as computed in (4-3) is a point where L achieves a global maximum
on the open neighborhood .�1=n;1/l . In particular, L.m0/ is the maximum of L

on the region defined by mj � 0 and
Pl

jD1mj D 1, a subset of .�1=n;1/l . On
this region, g D 0, so LD f . Hence f , constrained to the aforementioned region,
achieves a global maximum at m0. �

We conclude the proof by calculating the value of

lX
jD1

mj n

.1C nmj /j

for mj as described in Lemma 4.4. Since this function evaluated at l D bn=2c is a
lower bound of j�n.1; d�/j, as proved in Lemma 4.2, this final lemma concludes
the proof of the theorem.

Lemma 4.6. For the mj described in Lemma 4.4 in (4-3),

lX
jD1

mj n

.1C nmj /j
D

1
�

log l C c;

where c is uniformly bounded.
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Proof. We simply evaluate f from (4-1) at the m0 given by (4-3):

f .m0 /D

lX
jD1

m0j

1C nm0j

n

j
D

lX
jD1

1
n

�
1p
j
.1C nm0

1
/� 1

�
1C n1

n

�
1p
j
.1C nm0

1
/� 1

� n

j

D

lX
jD1

1p
j
.1C nm0

1
/� 1

p
j .1C nm0

1
/
D

lX
jD1

1

j
�

1

1C nm0
1

˛.l/

D

lX
jD1

1

j
�

˛.l/2�
1C l

n

�
n

D

lX
jD1

1

j
�
˛.l/2

nC l
:

Now
Pl

jD1 1=j differs from log l by at most 1, and ˛.l/2=.nC l/ is bounded in n

and l since

0�
˛.l/2

nC l
<
.2
p

l/2

nC l
D

4l

nC l
�

4n

n
D 4:

Therefore, for the m0 given by (4-3), f .m0/D log lCdl , where dl is a constant
bounded uniformly in l . In light of Lemma 4.2, we have constructed a d� such that
j�n.1; d�/j � 1=� log nC c, where c is a bounded constant, completing the proof
of Theorem 4.1. �

5. Investigating higher degree polynomials

In the previous sections, we described the magnitude of monic polynomials of
degree less than or equal to n, where n is the number of discrete masses in the
measure, using Rahmanov’s formula in (1-4). However, we also want to describe
the higher degree monic polynomials, i.e., �n0.zI d�/, where n0 > n. Unfortunately,
we are not able to do this for all n0 > n, but we can partially describe �n0.zI d�/,
where n0 D kn; k 2 N.

Recall the definition of Verblunsky coefficients [Simon 2005]:

�nC1.z/D z�n.z/� N̨n�
�
n .z/; (5-1)

where
�n.z/D ˇnzn

C � � �Cˇ0; 0� j � n; ǰ 2 C;

��n .z/D
Ň
0zn
C � � �C Ňn:

In the n0D kn case, we are able to derive the corresponding Verblunsky coefficients,
and do so explicitly for a d� similar to that of Rahmanov’s in Section 2.
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Theorem 5.1. For a measure d� D d�=2� C
Pn

jD1mjı.� � �j /, with masses
located at �j D ei�j and �j D 2�j=nC �0 (cf. Lemma 2.1),

�nk.z; d�/D znk
� �nk

0

nX
jD1

mj

1Cmj nk
Knk�1.z; �j /;

and

˛nk�1 D �
nk
0

nX
jD1

mj

1Cmj nk
;

where ˛nk�1 is a Verblunsky coefficient. Furthermore, under Rahmanov’s scheme,
where �j D 2�j=n and

d�D
d�

2�
C

nX
jD1

ı.� � �j /

n
;

the Verblunsky coefficients are

˛nk�1 D
1

1C k
:

Proof. Note that, since �n.zI d�/ is a monic polynomial, ˇn from the above
definition of the Verblunsky coefficients is 1, so

��n .0I d�/D 1;

which by (5-1) implies

�nC1.0I d�/D� N̨n: (5-2)

Having set out these preliminaries, we can simply apply Rahmanov’s formula
[1979] from (1-4) to find a formula for �nk.zI d�/ under a measure d� as described
in the statement of Theorem 5.1:

�nk.zI d�/D znk
�

nX
jD1

mj �nk.�j I d�/

1Cmj Knk�1.�j ; �j /
Knk�1.z; �j / (5-3)

D znk
� �nk

0

nX
jD1

mj

1Cmj nk
Knk�1.z; �j /: (5-4)

Remark 5.2. The simplification of the numerator from (5-3) to (5-4) depends upon
the �j being roots of unity times a constant (as in Lemma 2.1). Such a simplification
is only possible in the �nk case, which is why the description of other higher-degree
monic polynomials is considerably more complicated.
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Now consider z D 0 to find the Verblunsky coefficients:

�nk.0; d�/D��
nk
0

nX
jD1

mj

1Cmj nk
Knk�1.0; �j /D��

nk
0

nX
jD1

mj

1Cmj nk
;

and, applying (5-2), we obtain

� N̨nk�1 D �nk.0; d�/D��
nk
0

nX
jD1

mj

1Cmj nk
;

˛nk�1 D �
nk
0

nX
jD1

mj

1Cmj nk
:

(5-5)

If we now take �0 D 0, as Rahmanov does, and

d�D
d�

2�
C

nX
jD1

ı.� � �j /

n
;

then (5-5) simplifies to

˛nk�1 D
1

1C k
: (5-6)

�
Remark 5.3. It is noteworthy that, as k grows, the ˛nk�1 decay at the rate of
1=.1C k/. In light of the fact that

P1
jD1˛

2
j <1 [Simon 2005], this suggests that

the j̨ are small for j 2 .n.k � 1/; nk/, where k 2 N, and increase rapidly near
j D kn. However, as mentioned above, describing �j .zI d�/ for j ¤ kn is much
more complicated.

Appendix: Numerical appendix

In order to help visualize the results of this paper, the graphs of the magnitudes
of four orthogonal monic polynomials induced by four respective measures have
been included at the end of this section. Each measure has a continuous portion
of d�=2� as well as masses placed at �j D �=n.2j � 1/, where 1 � j � n=2 (cf.
Lemma 2.1). For simplicity, throughout this section, we will consider only even n.
For the first two polynomials (displayed in Figure 1), masses of uniform size 2=n

are used as suggested by Rahmanov (see Section 2). For the second two (Figure 2),
the masses are given their weights according to (4-3).

These graphs have several key features in common, including the presence of
two peaks that grow in n: one at � D 0 and another at � D � . Also, both have
much lower minimums in the range 0� � � � than in �� � � � 0. Upon closer
inspection, it can be seen that the two peaks in Figure 1 are equal; in contrast, in
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4 3 2 1 0 1 2 3 4
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

4 3 2 1 0 1 2 3 4
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Figure 1. Left: j�10.�/j for �j D �
10
.2j � 1/ and mj D

1
5

, where
1 � j � 5. Right: j�100.�/j for �j D �

100
.2j � 1/ and mj D

1
50

,
where 1� j � 50.

Figure 2, the peak at � D 0 is larger than the peak at � D � . Additionally, the peak
at � D 0 in the latter case is higher than in the former, as predicted by Theorem 4.1.

To explain some of these features, first note that with the above choice of
placement of the masses, Rahmanov’s formula (1-4) [1979] reduces to

Re.�n.e
i� //

D .1Ccos.n�//
�

1C
1

2

n
2X

jD1

mj

1Cnmj

�
�1�1

2
sin.n�/

n=2X
jD1

mj

1Cnmj

sin.���j /
1�cos.���j /

;

Im.�n.e
i� //

D sin.n�/
�

1C
1

2

n=2X
jD1

mj

1Cnmj

�
C

1
2
.1Ccos.n�//

n=2X
jD1

mj

1Cnmj

sin.���j /
1�cos.���j /

:

4 3 2 1 0 1 2 3 4
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

4 3 2 1 0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

Figure 2. Left: j�10.�/j for �j D �
10
.2j � 1/ and mj chosen

optimally, where 1� j � 5. Right: j�100.�/j for �j D �
100
.2j �1/

and mj chosen optimally, where 1� j � 50.
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Analysis of the minima. Due to its prominent role in each term, let us evaluate
both the real and imaginary parts at the extrema of 1C cos.n�/, that is, � D �k D

.�=n/.2k�1/ and �D��
k
D2�k=n. For �D�k , sin.n�k/ and 1Ccos.n�k/ are each

zero. However, we must be careful, because for 1� k � n=2, one of the terms in the
sum will have a denominator of zero. Thus, using L’Hôpital’s rule, we take the limits

lim
�!�k

sin.n�/ sin.� � �k/

1� cos.� � �k/
D�2n;

lim
�!�k

.1C cos.n�// sin.� � �k/

1� cos.� � �k/
D 0:

Substituting these values into our formulae, we then have that

j�n.e
i�k /j D

(
1� nmk=.1C nmk/ if 1� k � n=2;

1 otherwise:

Thus, the minima will be lower in the region where the masses are placed than
outside that region. Also, we can now see the reason for the minima increasing
as � increases in the cases where the choice of mj is optimal, as in Figure 2.

Analysis of peaks at � D 0; �. Now, let us examine the values of the polynomials
at � D ��

k
. In this case, sin.n��

k
/ is still zero, but 1C cos.n��

k
/ is instead 2, so we

need not worry about zero denominators. Immediately, we have that our previous
formulae reduce to

Re
�
�n.e

i��
k /
�
D 1C

n=2X
jD1

mj

1C nmj
;

Im
�
�n.e

i��
k /
�
D

n=2X
jD1

mj

1C nmj

sin.��
k
� �j /

1� cos.��
k
� �j /

:

(A-1)

The real part is constant in ��
k

and can be ignored. For k D 0, we have precisely
the sum that was analyzed in Section 4. For k D n=2, we obtain the sum

Im
�
�n.e

i��
n=2/

�
D

n=2X
jD1

mj

1C nmj

sin.� � �j /
1� cos.� � �j /

D

n=2X
jD1

mj

1C nmj

sin �j
1C cos �j

:

It can easily be seen that, if mj is constant, this sum will be identical to the sum
for k D 0, and so the result will be two peaks of equal amplitude as we observed
before in Figure 1. If mj decreases proportionally to 1=

p
j , however, this sum
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will be very different from the sum for k D 0, since the largest terms of the sum
will now be those �j close to � rather than zero. The mj with corresponding �j
close to � will all be of the order 1=n, and so we would expect that the value of the
polynomial here will behave something more similarly to the peaks of the uniform
mass case than to those of the optimal m case.

Analysis of peaks away from � D 0; �. However, we have not yet explained why
the peaks away from � D 0 and � D � are all smaller, so now we consider the case
where � D ��

k
for 0< k < n=2. First, note that

��k � �j D
�

n
.2.k � j /C 1/;

and consider the terms in the sum (A-1), where j D k and j D kC 1. These terms
will be

mk

1C nmk

sin �
n

1� cos �
n

and

�
mkC1

1C nmkC1

sin �
n

1� cos �
n

:

In the case that all the masses have equal weight, these terms will cancel out
completely, and, even in the case of the optimal choice of mj , they still mostly
cancel out since the difference of mkC1 and mk will be small. In general, for the
j D k � l and j D kC l C 1 terms, as long as k � l � 1 and kC l C 1� n=2 are
satisfied, similar cancellations will occur. Thus, the values at these peaks will be
less than those at � D 0 and � D � .
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