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Let G be a finite group. A subgroup H of G is called weakly s-permutably
embedded in G if there is a subnormal subgroup T of G and an s-permutably
embedded subgroup Hse of G contained in H such that G= HT and H∩T ≤ Hse.
The subgroup H is called weakly s-supplemented in G if G has a subgroup K
such that HK = G and H ∩ K ≤ HsG , where HsG is the largest s-permutable
subgroup of G contained in H . In this paper, we investigate the influence of
weakly s-permutably embedded and weakly s-supplemented subgroups on the
structure of finite groups. Some recent results are generalized.

1. Introduction

Throughout only finite groups are considered. We use conventional terminology
and notation, as in [Robinson 1982]. Let G denote a group and |G| denote the order
of G. Let BE A ≤ G. Then A/B is a section of G. In the theory of groups, G is
said to be A4-free if G does not posses a section isomorphic to A4.

Let F be a class of groups. Then F is called a formation provided that (1) if G ∈F
and H CG, then G/H ∈ F , and (2) if G/M and G/N are in F , then G/M ∩ N is
in F for all normal subgroups M, N of G. A formation F is said to be saturated if
G/8(G) ∈ F implies that G ∈ F , where 8(G) denotes the Frattini subgroup of G.

Two subgroups H and K of G are said to be permutable if HK = KH . Following
[Kegel 1962], the subgroup H of G is said to be s-permutable in G if H permutes
with every Sylow subgroup of G, that is, HP = PH for any Sylow subgroup P of G.
Schmid [1998] showed that if both H and K are s-permutable subgroups of G,
then both H ∩ K and 〈H, K 〉 are s-permutable in G. Recently, Ballester-Bolinches
and Pedraza-Aguilera [1998] generalized s-permutable subgroups to s-permutably
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embedded subgroups. A subgroup H is said to be s-permutably embedded in G
provided every Sylow subgroup of H is a Sylow subgroup of some s-permutable
subgroup of G. By applying this concept, Ballester-Bolinches and Pedraza-Aguilera
got new criteria for the supersolvability of groups. Moreover, a nice result in [Li
et al. 2005] on the p-nilpotency of a group could be stated as follows: Let G be a
group and P a Sylow p-subgroup of G, where p is the smallest prime dividing |G|.
If G is A4-free and all 2-maximal subgroups of P are s-permutably embedded in G,
then G is p-nilpotent.

In recent years, it has been of interest to use supplementation properties of
subgroups to characterize properties of a group. Wang [1996] first introduced
the concept of c-normal subgroups. Furthermore, Li, Qiao, and Wang [Li et al.
2009] continued to promote this concept and introduced weakly s-permutably
embedded subgroups, which are a generalization of both c-normality [Wang 1996]
and s-permutably embedding. A subgroup H of G is called weakly s-permutably
embedded in G if there is a subnormal subgroup T of G and an s-permutably
embedded subgroup Hse of G contained in H such that G = HT and H ∩T ≤ Hse.
In the meantime, Skiba [2007] introduced the definition of a weakly s-supplemented
subgroup. A subgroup H is said to be weakly s-supplemented in G if G has a
subgroup T such that HT = G and H ∩ T ≤ HsG , where HsG is the largest
s-permutable subgroup of G contained in H .

We note that weakly s-permutably embedded subgroups and weakly s-supple-
mented subgroups are two distinct concepts. There are examples that show that
weakly s-permutably embedded subgroups are not weakly s-supplemented sub-
groups, and, in general, the converse is also false.

Example 1.1. Let G = A5 be the alternating group of degree 5. Then the Sylow
2-subgroups of G are weakly s-permutably embedded in G, but not weakly s-
supplemented in G.

Example 1.2. Let H = S4 be the symmetric group of degree 4, let V be an irre-
ducible and faithful module for H over F3, the finite field of 3 elements, and consider
G = [V ]H , the corresponding semidirect product. If X is a Sylow 3-subgroup of H ,
then X is weakly s-supplemented in G but not weakly s-permutably embedded in G.

Hence it is natural to ask the following question: can these two concepts and the
related results be unified and generalized? The purpose of this article is to present an
answer to the above question. By using these subgroup properties, we determine the
structure of G based on the assumption that all 2-maximal subgroups of a Sylow sub-
group of G are either weakly s-permutably embedded or weakly s-supplemented sub-
groups in G. Our results unify and generalize the above mentioned result and some
other results in the literature on p-nilpotency and formation theory of finite groups.
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2. Preliminaries

For the sake of convenience, we include the following results.

Lemma 2.1 [Ballester-Bolinches and Pedraza-Aguilera 1998, Lemma 1]. Let H
be a subgroup of G.

(1) If H is s-permutably embedded in G and H ≤ M ≤G, then H is s-permutably
embedded in M.

(2) Let N CG and assume that H is s-permutably embedded in G. Then HN is
s-permutably embedded in G and HN/N is s-permutably embedded in G/N.

Lemma 2.2 [Li et al. 2009, Lemma 2.5]. Let U be a weakly s-permutably embedded
subgroup of G and N a normal subgroup of G. Then:

(1) If U ≤ H ≤ G, then U is weakly s-permutably embedded in H.

(2) If N ≤U , then U/N is weakly s-permutably embedded in G/N.

(3) Let π be a set of primes, U a π -subgroup and N a π ′-subgroup. Then UN/N
is weakly s-permutably embedded in G/N.

Lemma 2.3 [Skiba 2007, Lemma 2.10]. Let H be a subgroup of a group G.

(1) If H is weakly s-supplemented in G and H ≤ M ≤ G, then H is weakly
s-supplemented in M.

(2) Let N C G and N ≤ H. If H is weakly s-supplemented in G, then H/N is
weakly s-supplemented in G/N.

(3) Let π be a set of primes, H a π-subgroup of G and N a normal π ′-subgroup
of G. If H is weakly s-supplemented in G, then HN/N is weakly s-supple-
mented in G/N.

Lemma 2.4 [Guo and Shum 2003, Lemma 3.12]. Let P be a Sylow p-subgroup of
a group G, where p is the smallest prime dividing |G|. If G is A4-free and |P| ≤ p2,
then G is p-nilpotent.

Lemma 2.5 [Guo et al. 2009, Lemma 2.12]. Let p be a prime, and let G be a group
with (|G|, p− 1)= 1. Suppose that P is a Sylow p-subgroup of G such that each
maximal subgroup of P has a p-nilpotent supplement in G. Then G is p-nilpotent.

Lemma 2.6 [Li et al. 2005]. (1) If P is an s-permutable p-subgroup of G for
some prime p, then O p(G)≤ NG(P).

(2) Suppose that H is s-permutable in G and P is a Sylow p-subgroup of H ,
where p is a prime. If HG = 1, then P is s-permutable in G.

(3) Suppose that P is a p-subgroup of G contained in Op(G). If P is s-permutably
embedded in G, then P is s-permutable in G.
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Lemma 2.7 [Li and Guo 2000, Lemma 2.6]. Let H be a nontrivial solvable normal
subgroup of G. If every minimal normal subgroup of G which is contained in H is
not contained in 8(G), then the Fitting subgroup F(H) of H is the direct product
of minimal normal subgroups of G which are contained in H.

Lemma 2.8 [Doerk and Hawkes 1992, A, Lemma 1.2]. Let U, V and W be sub-
groups of G. The following statements are equivalent:

(1) U ∩ V W = (U ∩ V )(U ∩W ).

(2) U V ∩U W =U (V ∩W ).

Lemma 2.9 [Guo and Shum 2003, Lemma 3.16]. Let F be the class of groups with
Sylow tower of supersolvable type. Also let P be a normal p-subgroup of G such
that G/P ∈ F . If G is A4-free and |P| ≤ p2, then G ∈ F .

Lemma 2.10 [Zhang and Li 2012, Lemma 2.11]. Let p be the smallest prime
dividing |G| and P a Sylow p-subgroup of G. If G is A4-free and every 2-maximal
subgroup of P is weakly s-permutably embedded in G, then G is p-nilpotent.

Lemma 2.11 [Yang et al. 2012, Lemma 2.12]. If a p-subgroup H is s-permutable
in G, then H ≤ Op(G).

3. Main results

Our first result unifies and improves the results [Ballester-Bolinches and Guo 1999,
Theorem 3; Guo and Shum 2001, Theorem 3.2; Wang 2000, Theorem 4.2] on the
p-nilpotency of a group.

Theorem 3.1. Let p be the smallest prime dividing |G| and P a Sylow p-subgroup
of G. If G is A4-free and every 2-maximal subgroup of P is either weakly s-permut-
ably embedded or weakly s-supplemented in G, then G is p-nilpotent.

Proof. Suppose that the statement is false and let G be a counterexample of minimal
order. We proceed with the following steps.

Step 1: By Lemma 2.4, |P| ≥ p3 and thus every 2-maximal subgroup of P is
nontrivial.

Step 2: G is not a nonabelian simple group.
Assume that G is nonabelian simple. By Lemma 2.5, P has a maximal subgroup

P1 which has no p-nilpotent supplement in G. It follows that any 2-maximal
subgroup P2 of P contained in P1 has no p-nilpotent supplement in G. From the
hypothesis, P2 is either weakly s-permutably embedded or weakly s-supplemented
in G. If P2 is weakly s-permutably embedded in G, then there is a subnormal
subgroup T of G and an s-permutably embedded subgroup (P2)se of G contained
in P2 such that G = P2T and P2∩T ≤ (P2)se. Clearly, T =G and thus P2= (P2)se
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is s-permutably embedded in G. Thus there is an s-permutable subgroup K of G
such that P2 is a Sylow p-subgroup of K . Since G is simple, we get KG = 1.
By Lemma 2.6, P2 is s-permutable in G. Consequently, 1 6= P2 ≤ Op(G) by
Lemma 2.11, which is a contradiction. If P2 is weakly s-supplemented in G, then
there is a non-p-nilpotent subgroup T of G such that

G = P2T and P2 ∩ T ≤ (P2)sG ≤ Op(G)= 1

by Lemma 2.11. By Lemma 2.4, T is p-nilpotent, a contradiction.

Step 3: G has a unique minimal normal subgroup N , and G/N is p-nilpotent.
Furthermore, 8(G)= 1.

Let N be a minimal normal subgroup of G. Consider the factor group G/N ;
we will prove that G/N meets the hypotheses of the theorem. Since P is a Sylow
p-subgroup of G, PN/N is a Sylow p-subgroup of G/N . If |PN/N | ≤ p2, then
G/N is p-nilpotent by Lemma 2.4. Hence we assume |PN/N | ≥ p3. Let M2/N
be a 2-maximal subgroup of PN/N . Then M2 = N (M2∩ P). Let P2 = M2∩ P . It
follows that P2 ∩ N = M2 ∩ P ∩ N = P ∩ N is a Sylow p-subgroup of N . Since

p2
= |PN/N : M2/N | = |PN : (M2 ∩ P)N | = |P : M2 ∩ P| = |P : P2|,

P2 is a 2-maximal subgroup of P . If P2 is weakly s-supplemented in G, then there
is a subgroup T of G such that G = P2T and P2 ∩ T ≤ (P2)sG . So

G/N = M2/N · TN/N = P2 N/N · TN/N .

Since (|N : P2 ∩ N |, |N : T ∩ N |)= 1,

(P2 ∩ N )(T ∩ N )= N = N ∩G = N ∩ P2T .

By Lemma 2.8, (P2 N )∩ (TN )= (P2 ∩ T )N . It follows that

(P2 N/N )∩ (TN/N )= (P2 N ∩ TN )/N = (P2 ∩ T )N/N ≤ (P2)sG N/N .

By Lemma 2.6(2) of [Skiba 2007], we know that (P2)sG N/N is s-permutable
in G and thus (P2)sG N/N ≤ (P2 N/N )sG . Hence M2/N is weakly s-supplemented
in G/N . If P2 is weakly s-permutably embedded in G, by Lemma 2.1, it follows
analogously that M2/N is weakly s-permutably embedded in G/N , too. Conse-
quently, G/N meets the hypotheses of the theorem. The minimal choice of G
implies that G/N is p-nilpotent. The uniqueness of N and 8(G)= 1 are clear.

Step 4: Op′(G)= 1.
If Op′(G) 6= 1, then N ≤ Op′(G) by Step 3. Since

G/Op′(G)∼= (G/N )/(Op′(G)/N )

is p-nilpotent, we get that G is p-nilpotent, a contradiction.
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Step 5: Op(G)= 1.
If Op(G) 6= 1, Step 3 yields N ≤ Op(G) and 8(Op(G))≤8(G)= 1. Hence, G

has a maximal subgroup M such that G = MN and G/N ∼= M is p-nilpotent.
Since Op(G)∩M is normalized by N and M , and also by G, the uniqueness of N
yields N = Op(G). Obviously, P = N (P ∩ M). Since P ∩ M < P , there exists
a maximal subgroup P1 of P such that P ∩ M ≤ P1. Then P = NP1. Pick a
2-maximal subgroup P2 of P such that P2 ≤ P1. Under the hypothesis, P2 is either
weakly s-permutably embedded or weakly s-supplemented in G. If P2 is weakly
s-permutably embedded in G, then there is a subnormal subgroup T of G and an
s-permutably embedded subgroup (P2)se of G contained in P2 such that G = P2T
and P2 ∩ T ≤ (P2)se. Thus there is an s-permutable subgroup K of G such that
(P2)se is a Sylow p-subgroup of K . If KG 6= 1, then N ≤ KG ≤ K . It follows that
N ≤ (P2)se≤ P1, and thus P = N (P∩M)= N P1= P1, a contradiction. If KG = 1,
by Lemma 2.6, (P2)se is s-permutable in G. It follows from Lemma 2.11 that

P2 ∩ T ≤ (P2)se ≤ Op(G)= N .

Hence, (P2)se ≤ P1 ∩ N . It follows that

((P2)se)
G
= 1 or ((P2)se)

G
= P1 ∩ N = N .

If ((P2)se)
G
= 1, then P2 ∩ T = 1 and thus |T |p = p2. Hence T is p-nilpotent

by Lemma 2.4. Let Tp′ be the normal p-complement of T . Then Tp′ is a normal
Hall p′-subgroup of G since T is subnormal in G, which is a contradiction. If
((P2)se)

G
= P1 ∩ N = N , then N ≤ P1 and thus P = P1, a contradiction. Now we

may assume that P2 is weakly s-supplemented in G. Then there is a subgroup T
of G such that G = P2T and P2 ∩ T ≤ (P2)sG ≤ Op(G) = N by Lemma 2.11.
Similarly, we get that

((P2)sG)
G
= 1 or ((P2)sG)

G
= P1 ∩ N = N .

Arguing as before we may assume that ((P2)sG)
G
= 1 and deduce that T is p-

nilpotent. Let Tp′ be the normal p-complement of T . Since M is p-nilpotent, we
have that M has a normal Hall p′-subgroup Mp′ and M ≤ NG(Mp′) ≤ G. The
maximality of M and the fact that Op′(G) = 1 imply that M = NG(Mp′). By
using a deep result of Gross [1987, main theorem], there exists g ∈ G such that
T g

p′ = Mp′ . Hence T g
≤ NG(T

g
p′) = NG(Mp′) = M . But Tp′ is normalized by T ,

thus g can be considered to be an element of P2. It follows that G = P2T g
= P2 M

and P = P2(P ∩M)= P1, a contradiction.

Step 6: G has Hall p′-subgroups and any two Hall p′-subgroups of G are conjugate
in G.
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If every 2-maximal subgroup of P is weakly s-permutably embedded in G,
then G is p-nilpotent by Lemma 2.10, a contradiction. Thus there is a 2-maximal
subgroup P2 of P such that P2 is weakly s-supplemented in G. Then there exists
a subgroup T of G such that G = P2T and P2 ∩ T ≤ (P2)sG ≤ Op(G) = 1
by Lemma 2.11. By Lemma 2.4, T is p-nilpotent and thus T has normal p-
complement Tp′ . Obviously, Tp′ is also a Hall p′-subgroup of G. By [Gross 1987,
main theorem], we have that any two Hall p′-subgroups of G are conjugate in G.

Step 7: The final contradiction.
If NP < G, then NP meets the hypotheses of the theorem. The minimal choice

of G yields that NP is p-nilpotent. Let Np′ be the normal p-complement of N . It
is easy to see that Np′CG, so that Np′ = 1 by Step 4 and N is a nontrivial p-group,
contrary to Step 5. Consequently, we must have G = NP . From Step 6, G has Hall
p′-subgroups. Then we may assume that N has a Hall p′-subgroup Np′ . By the
Frattini argument,

G = N NG(Np′)= (P ∩ N )Np′NG(Np′)= (P ∩ N )NG(Np′),

and thus

P = P ∩G = P ∩ (P ∩ N )NG(Np′)= (P ∩ N )(P ∩ NG(Np′)).

Since NG(Np′) < G, we have P ∩ NG(Np′) < P . We pick a maximal subgroup P1

of P such that P ∩ NG(Np′) ≤ P1. Then P = (P ∩ N )P1. Let P2 be a 2-
maximal subgroup of P such that P2 ≤ P1. Under the hypothesis, P2 is either
weakly s-permutably embedded or weakly s-supplemented in G. If P2 is weakly
s-permutably embedded in G, then there is a subnormal subgroup T of G and an
s-permutably embedded subgroup (P2)se of G contained in P2 such that G = P2T
and P2 ∩ T ≤ (P2)se. Hence there is an s-permutable subgroup K of G such that
(P2)se is a Sylow p-subgroup of K . If KG 6= 1, then N ≤ KG ≤ K and so (P2)se∩N
is a Sylow p-subgroup of N . We have that (P2)se∩N ≤ P2∩N ≤ P∩N and P∩N
is a Sylow p-subgroup of N , thus (P2)se ∩ N = P2 ∩ N = P ∩ N . Consequently,

P = (N ∩ P)P1 = (P2 ∩ N )P1 = P1,

which is a contradiction. Thus KG = 1. By Lemma 2.6, (P2)se is s-permutable in G.
It follows from Lemma 2.11 that P2 ∩ T ≤ (P2)se ≤ Op(G)= 1. Since |T |p = p2,
T is p-nilpotent by Lemma 2.4. Let Tp′ be the normal p-complement of T . Then
Tp′ is a normal Hall p′-subgroup of G, a contradiction. Consequently, we may
assume P2 is weakly s-supplemented in G. Then there is a subgroup T of G such
that G = P2T and P2∩T ≤ (P2)sG ≤ Op(G)= 1 (where Op(G) denotes the p-core
of G) by Lemma 2.11. Since |T |p = p2, T is p-nilpotent by Lemma 2.4. Let Tp′

be the normal p-complement of T . Then Tp′ is a Hall p′-subgroup of G. By Step 6,



260 GUO ZHONG, XUANLONG MA, SHIXUN LIN, JIAYI XIA AND JIANXING JIN

Tp′ and Np′ are conjugate in G. Since Tp′ is normalized by T , there exists g ∈ P2

such that T g
p′ = Np′ . Hence

G = (P2T )g = P2T g
= P2 NG(T

g
p′)= P2 NG(Np′)

and
P = P ∩G = P ∩ P2 NG(Np′)= P2(P ∩ NG(Np′))≤ P1,

a final contradiction. �

The following corollaries are immediate from Theorem 3.1.

Corollary 3.2. Let p be the smallest prime dividing |G| and suppose G is A4-free.
Assume that H is a normal subgroup of G such that G/H is p-nilpotent. If there
exists a Sylow p-subgroup P of H such that every 2-maximal subgroup of P is
either weakly s-permutably embedded or weakly s-supplemented in G, then G is
p-nilpotent.

Corollary 3.3. Suppose that every 2-maximal subgroup of any Sylow subgroup of
a group G is either weakly s-permutably embedded or weakly s-supplemented in G.
If G is A4-free, then G is a Sylow tower group of supersolvable type.

In terms of the theory of formations, we have the following result:

Corollary 3.4. Let F be the class of groups with Sylow tower of supersolvable type
and suppose G is A4-free. Then G ∈ F if and only if there is a normal subgroup H
of G such that G/H ∈ F and every 2-maximal subgroup of any Sylow subgroup
of H is either weakly s-permutably embedded or weakly s-supplemented in G.

Proof. The necessity part is clear. We only need show the sufficiency part. Suppose
that this is not true and let G be a counterexample of minimal order. By Lemmas 2.2
and 2.3, every 2-maximal subgroup of any Sylow subgroup of H is either weakly
s-permutably embedded or weakly s-supplemented in H . By Corollary 3.3, H is
a Sylow tower group of supersolvable type. Let p be the maximal prime divisor
of |H | and let P be a Sylow p-subgroup of H . Then P is normal in G. Consider the
factor group G/P . It is easy to prove G/P meets the hypotheses of the theorem. By
the minimal choice of G, we get G/P ∈ F . Let N be a minimal normal subgroup
of G contained in P . The proof is divided into two steps.

Step 1: P = N .
If N < P , then (G/N )/(P/N ) ∼= G/P ∈ F . We will prove that G/N ∈ F .

If |P/N | ≤ p2, then G/N ∈ F by Lemma 2.4. If |P/N | > p2, then every
2-maximal subgroup of P/N is either weakly s-permutably embedded or weakly
s-supplemented in G/N by Lemmas 2.2 and 2.3. By the minimal choice of G, we
get G/N ∈ F . Since F is a saturated formation, N is the unique minimal normal
subgroup of G contained in P and N � 8(G). It follows from Lemma 2.7 that
P = F(P)= N , which is a contradiction.
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Step 2: The final contradiction.
If |N | ≤ p2, then G ∈ F by Lemma 2.9, a contradiction. Then |N | ≥ p3.

Since N C G, we may pick a 2-maximal subgroup N2 of N such that N2 C G p,
where G p is a Sylow p-subgroup of G. Then N2 is either weakly s-permutably
embedded or weakly s-supplemented in G. Let T be a supplement of N2 in G.
Then G = N2T = N T and N = N ∩N2T = N2(N ∩T ). This means that N ∩T 6= 1.
However, since N ∩ T is normal in G and N is minimal normal in G, we get
N ∩ T = N and thus T = G. If N2 is weakly s-permutably embedded in G, then
(N2)se ≥ N2 ∩G = N2 is s-permutably embedded in G. From Lemma 2.6, N2 is
s-permutable in G and O p(G) ≤ NG(N2), where O p(G) denotes the p-residual
subgroup.1 Thus N2CG p O p(G) = G. It follows that |N | = p2, a contradiction.
If N2 is weakly s-supplemented in G, then N2 = N2 ∩G ≤ (N2)sG . Similarly, we
also get that N2CG. We obtain the same contradiction, completing the proof. �
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