

Finite groups with some weakly *s*-permutably embedded and weakly *s*-supplemented subgroups Guo Zhong, XuanLong Ma, Shixun Lin, Jiayi Xia and Jianxing Jin

Finite groups with some weakly *s*-permutably embedded and weakly *s*-supplemented subgroups

Guo Zhong, XuanLong Ma, Shixun Lin, Jiayi Xia and Jianxing Jin

(Communicated by Joseph A. Gallian)

Let *G* be a finite group. A subgroup *H* of *G* is called weakly *s*-permutably embedded in *G* if there is a subnormal subgroup *T* of *G* and an *s*-permutably embedded subgroup H_{se} of *G* contained in *H* such that G = HT and $H \cap T \leq H_{se}$. The subgroup *H* is called weakly *s*-supplemented in *G* if *G* has a subgroup *K* such that HK = G and $H \cap K \leq H_{sG}$, where H_{sG} is the largest *s*-permutable subgroup of *G* contained in *H*. In this paper, we investigate the influence of weakly *s*-permutably embedded and weakly *s*-supplemented subgroups on the structure of finite groups. Some recent results are generalized.

1. Introduction

Throughout only finite groups are considered. We use conventional terminology and notation, as in [Robinson 1982]. Let *G* denote a group and |G| denote the order of *G*. Let $B \leq A \leq G$. Then A/B is a section of *G*. In the theory of groups, *G* is said to be A_4 -free if *G* does not posses a section isomorphic to A_4 .

Let \mathcal{F} be a class of groups. Then \mathcal{F} is called a formation provided that (1) if $G \in \mathcal{F}$ and $H \triangleleft G$, then $G/H \in \mathcal{F}$, and (2) if G/M and G/N are in \mathcal{F} , then $G/M \cap N$ is in \mathcal{F} for all normal subgroups M, N of G. A formation \mathcal{F} is said to be saturated if $G/\Phi(G) \in \mathcal{F}$ implies that $G \in \mathcal{F}$, where $\Phi(G)$ denotes the Frattini subgroup of G.

Two subgroups *H* and *K* of *G* are said to be permutable if HK = KH. Following [Kegel 1962], the subgroup *H* of *G* is said to be *s*-permutable in *G* if *H* permutes with every Sylow subgroup of *G*, that is, HP = PH for any Sylow subgroup *P* of *G*. Schmid [1998] showed that if both *H* and *K* are *s*-permutable subgroups of *G*, then both $H \cap K$ and $\langle H, K \rangle$ are *s*-permutable in *G*. Recently, Ballester-Bolinches and Pedraza-Aguilera [1998] generalized *s*-permutable subgroups to *s*-permutably

MSC2010: primary 20D10; secondary 20D20.

Keywords: weakly *s*-permutably embedded subgroups, weakly *s*-supplemented subgroups, *p*-nilpotent groups.

embedded subgroups. A subgroup H is said to be *s*-permutably embedded in G provided every Sylow subgroup of H is a Sylow subgroup of some *s*-permutable subgroup of G. By applying this concept, Ballester-Bolinches and Pedraza-Aguilera got new criteria for the supersolvability of groups. Moreover, a nice result in [Li et al. 2005] on the *p*-nilpotency of a group could be stated as follows: Let G be a group and P a Sylow *p*-subgroup of G, where p is the smallest prime dividing |G|. If G is A_4 -free and all 2-maximal subgroups of P are *s*-permutably embedded in G, then G is *p*-nilpotent.

In recent years, it has been of interest to use supplementation properties of subgroups to characterize properties of a group. Wang [1996] first introduced the concept of *c*-normal subgroups. Furthermore, Li, Qiao, and Wang [Li et al. 2009] continued to promote this concept and introduced weakly *s*-permutably embedded subgroups, which are a generalization of both *c*-normality [Wang 1996] and *s*-permutably embedding. A subgroup *H* of *G* is called weakly *s*-permutably embedded in *G* if there is a subnormal subgroup *T* of *G* and an *s*-permutably embedded subgroup H_{se} of *G* contained in *H* such that G = HT and $H \cap T \leq H_{se}$. In the meantime, Skiba [2007] introduced the definition of a weakly *s*-supplemented subgroup. A subgroup *H* is said to be weakly *s*-supplemented in *G* if *G* has a subgroup *T* such that HT = G and $H \cap T \leq H_{sG}$, where H_{sG} is the largest *s*-permutable subgroup of *G* contained in *H*.

We note that weakly *s*-permutably embedded subgroups and weakly *s*-supplemented subgroups are two distinct concepts. There are examples that show that weakly *s*-permutably embedded subgroups are not weakly *s*-supplemented subgroups, and, in general, the converse is also false.

Example 1.1. Let $G = A_5$ be the alternating group of degree 5. Then the Sylow 2-subgroups of G are weakly s-permutably embedded in G, but not weakly s-supplemented in G.

Example 1.2. Let $H = S_4$ be the symmetric group of degree 4, let *V* be an irreducible and faithful module for *H* over \mathbb{F}_3 , the finite field of 3 elements, and consider G = [V]H, the corresponding semidirect product. If *X* is a Sylow 3-subgroup of *H*, then *X* is weakly *s*-supplemented in *G* but not weakly *s*-permutably embedded in *G*.

Hence it is natural to ask the following question: can these two concepts and the related results be unified and generalized? The purpose of this article is to present an answer to the above question. By using these subgroup properties, we determine the structure of G based on the assumption that all 2-maximal subgroups of a Sylow subgroup of G are either weakly s-permutably embedded or weakly s-supplemented subgroups in G. Our results unify and generalize the above mentioned result and some other results in the literature on p-nilpotency and formation theory of finite groups.

2. Preliminaries

For the sake of convenience, we include the following results.

Lemma 2.1 [Ballester-Bolinches and Pedraza-Aguilera 1998, Lemma 1]. Let *H* be a subgroup of *G*.

- (1) If *H* is *s*-permutably embedded in *G* and $H \le M \le G$, then *H* is *s*-permutably embedded in *M*.
- (2) Let $N \triangleleft G$ and assume that H is s-permutably embedded in G. Then HN is s-permutably embedded in G and HN/N is s-permutably embedded in G/N.

Lemma 2.2 [Li et al. 2009, Lemma 2.5]. *Let U be a weakly s-permutably embedded subgroup of G and N a normal subgroup of G. Then:*

- (1) If $U \le H \le G$, then U is weakly s-permutably embedded in H.
- (2) If $N \leq U$, then U/N is weakly s-permutably embedded in G/N.
- (3) Let π be a set of primes, U a π -subgroup and N a π' -subgroup. Then UN/N is weakly s-permutably embedded in G/N.

Lemma 2.3 [Skiba 2007, Lemma 2.10]. Let H be a subgroup of a group G.

- (1) If H is weakly s-supplemented in G and $H \le M \le G$, then H is weakly s-supplemented in M.
- (2) Let $N \triangleleft G$ and $N \leq H$. If H is weakly s-supplemented in G, then H/N is weakly s-supplemented in G/N.
- (3) Let π be a set of primes, H a π-subgroup of G and N a normal π'-subgroup of G. If H is weakly s-supplemented in G, then HN/N is weakly s-supplemented in G/N.

Lemma 2.4 [Guo and Shum 2003, Lemma 3.12]. Let *P* be a Sylow *p*-subgroup of a group *G*, where *p* is the smallest prime dividing |G|. If *G* is A_4 -free and $|P| \le p^2$, then *G* is *p*-nilpotent.

Lemma 2.5 [Guo et al. 2009, Lemma 2.12]. Let p be a prime, and let G be a group with (|G|, p - 1) = 1. Suppose that P is a Sylow p-subgroup of G such that each maximal subgroup of P has a p-nilpotent supplement in G. Then G is p-nilpotent.

- **Lemma 2.6** [Li et al. 2005]. (1) If P is an s-permutable p-subgroup of G for some prime p, then $O^p(G) \le N_G(P)$.
- (2) Suppose that H is s-permutable in G and P is a Sylow p-subgroup of H, where p is a prime. If $H_G = 1$, then P is s-permutable in G.
- (3) Suppose that P is a p-subgroup of G contained in $O_p(G)$. If P is s-permutably embedded in G, then P is s-permutable in G.

Lemma 2.7 [Li and Guo 2000, Lemma 2.6]. Let H be a nontrivial solvable normal subgroup of G. If every minimal normal subgroup of G which is contained in H is not contained in $\Phi(G)$, then the Fitting subgroup F(H) of H is the direct product of minimal normal subgroups of G which are contained in H.

Lemma 2.8 [Doerk and Hawkes 1992, A, Lemma 1.2]. Let U, V and W be subgroups of G. The following statements are equivalent:

(1) $U \cap VW = (U \cap V)(U \cap W).$

(2) $UV \cap UW = U(V \cap W)$.

Lemma 2.9 [Guo and Shum 2003, Lemma 3.16]. Let \mathcal{F} be the class of groups with Sylow tower of supersolvable type. Also let P be a normal p-subgroup of G such that $G/P \in \mathcal{F}$. If G is A_4 -free and $|P| \leq p^2$, then $G \in \mathcal{F}$.

Lemma 2.10 [Zhang and Li 2012, Lemma 2.11]. Let p be the smallest prime dividing |G| and P a Sylow p-subgroup of G. If G is A_4 -free and every 2-maximal subgroup of P is weakly s-permutably embedded in G, then G is p-nilpotent.

Lemma 2.11 [Yang et al. 2012, Lemma 2.12]. If a p-subgroup H is s-permutable in G, then $H \leq O_p(G)$.

3. Main results

Our first result unifies and improves the results [Ballester-Bolinches and Guo 1999, Theorem 3; Guo and Shum 2001, Theorem 3.2; Wang 2000, Theorem 4.2] on the *p*-nilpotency of a group.

Theorem 3.1. Let p be the smallest prime dividing |G| and P a Sylow p-subgroup of G. If G is A_4 -free and every 2-maximal subgroup of P is either weakly s-permutably embedded or weakly s-supplemented in G, then G is p-nilpotent.

Proof. Suppose that the statement is false and let G be a counterexample of minimal order. We proceed with the following steps.

<u>Step 1</u>: By Lemma 2.4, $|P| \ge p^3$ and thus every 2-maximal subgroup of P is nontrivial.

<u>Step 2</u>: G is not a nonabelian simple group.

Assume that G is nonabelian simple. By Lemma 2.5, P has a maximal subgroup P_1 which has no p-nilpotent supplement in G. It follows that any 2-maximal subgroup P_2 of P contained in P_1 has no p-nilpotent supplement in G. From the hypothesis, P_2 is either weakly s-permutably embedded or weakly s-supplemented in G. If P_2 is weakly s-permutably embedded in G, then there is a subnormal subgroup T of G and an s-permutably embedded subgroup $(P_2)_{se}$ of G contained in P_2 such that $G = P_2T$ and $P_2 \cap T \leq (P_2)_{se}$. Clearly, T = G and thus $P_2 = (P_2)_{se}$

is *s*-permutably embedded in *G*. Thus there is an *s*-permutable subgroup *K* of *G* such that P_2 is a Sylow *p*-subgroup of *K*. Since *G* is simple, we get $K_G = 1$. By Lemma 2.6, P_2 is *s*-permutable in *G*. Consequently, $1 \neq P_2 \leq O_p(G)$ by Lemma 2.11, which is a contradiction. If P_2 is weakly *s*-supplemented in *G*, then there is a non-*p*-nilpotent subgroup *T* of *G* such that

$$G = P_2 T$$
 and $P_2 \cap T \leq (P_2)_{sG} \leq O_p(G) = 1$

by Lemma 2.11. By Lemma 2.4, T is p-nilpotent, a contradiction.

<u>Step 3</u>: *G* has a unique minimal normal subgroup *N*, and *G*/*N* is *p*-nilpotent. Furthermore, $\Phi(G) = 1$.

Let *N* be a minimal normal subgroup of *G*. Consider the factor group G/N; we will prove that G/N meets the hypotheses of the theorem. Since *P* is a Sylow *p*-subgroup of *G*, *PN*/*N* is a Sylow *p*-subgroup of G/N. If $|PN/N| \le p^2$, then G/N is *p*-nilpotent by Lemma 2.4. Hence we assume $|PN/N| \ge p^3$. Let M_2/N be a 2-maximal subgroup of PN/N. Then $M_2 = N(M_2 \cap P)$. Let $P_2 = M_2 \cap P$. It follows that $P_2 \cap N = M_2 \cap P \cap N = P \cap N$ is a Sylow *p*-subgroup of *N*. Since

$$p^2 = |PN/N : M_2/N| = |PN : (M_2 \cap P)N| = |P : M_2 \cap P| = |P : P_2|,$$

 P_2 is a 2-maximal subgroup of P. If P_2 is weakly *s*-supplemented in G, then there is a subgroup T of G such that $G = P_2T$ and $P_2 \cap T \leq (P_2)_{sG}$. So

$$G/N = M_2/N \cdot TN/N = P_2N/N \cdot TN/N.$$

Since $(|N : P_2 \cap N|, |N : T \cap N|) = 1$,

$$(P_2 \cap N)(T \cap N) = N = N \cap G = N \cap P_2T.$$

By Lemma 2.8, $(P_2N) \cap (TN) = (P_2 \cap T)N$. It follows that

$$(P_2N/N) \cap (TN/N) = (P_2N \cap TN)/N = (P_2 \cap T)N/N \le (P_2)_{sG}N/N.$$

By Lemma 2.6(2) of [Skiba 2007], we know that $(P_2)_{sG}N/N$ is *s*-permutable in *G* and thus $(P_2)_{sG}N/N \le (P_2N/N)_{sG}$. Hence M_2/N is weakly *s*-supplemented in *G/N*. If P_2 is weakly *s*-permutably embedded in *G*, by Lemma 2.1, it follows analogously that M_2/N is weakly *s*-permutably embedded in *G/N*, too. Consequently, *G/N* meets the hypotheses of the theorem. The minimal choice of *G* implies that G/N is *p*-nilpotent. The uniqueness of *N* and $\Phi(G) = 1$ are clear.

<u>Step 4</u>: $O_{p'}(G) = 1$.

If $O_{p'}(G) \neq 1$, then $N \leq O_{p'}(G)$ by Step 3. Since

$$G/O_{p'}(G) \cong (G/N)/(O_{p'}(G)/N)$$

is *p*-nilpotent, we get that G is *p*-nilpotent, a contradiction.

<u>Step 5</u>: $O_p(G) = 1$.

If $O_p(G) \neq 1$, Step 3 yields $N \leq O_p(G)$ and $\Phi(O_p(G)) \leq \Phi(G) = 1$. Hence, *G* has a maximal subgroup *M* such that G = MN and $G/N \cong M$ is *p*-nilpotent. Since $O_p(G) \cap M$ is normalized by *N* and *M*, and also by *G*, the uniqueness of *N* yields $N = O_p(G)$. Obviously, $P = N(P \cap M)$. Since $P \cap M < P$, there exists a maximal subgroup P_1 of *P* such that $P \cap M \leq P_1$. Then $P = NP_1$. Pick a 2-maximal subgroup P_2 of *P* such that $P_2 \leq P_1$. Under the hypothesis, P_2 is either weakly *s*-permutably embedded or weakly *s*-supplemented in *G*. If P_2 is weakly *s*-permutably embedded in *G*, then there is a subnormal subgroup *T* of *G* and an *s*-permutably embedded subgroup $(P_2)_{se}$ of *G* contained in P_2 such that $G = P_2T$ and $P_2 \cap T \leq (P_2)_{se}$. Thus there is an *s*-permutable subgroup *K* of *G* such that $N \leq (P_2)_{se} \leq P_1$, and thus $P = N(P \cap M) = NP_1 = P_1$, a contradiction. If $K_G = 1$, by Lemma 2.6, $(P_2)_{se}$ is *s*-permutable in *G*. It follows from Lemma 2.11 that

$$P_2 \cap T \le (P_2)_{se} \le O_p(G) = N.$$

Hence, $(P_2)_{se} \leq P_1 \cap N$. It follows that

$$((P_2)_{se})^G = 1$$
 or $((P_2)_{se})^G = P_1 \cap N = N.$

If $((P_2)_{se})^G = 1$, then $P_2 \cap T = 1$ and thus $|T|_p = p^2$. Hence *T* is *p*-nilpotent by Lemma 2.4. Let $T_{p'}$ be the normal *p*-complement of *T*. Then $T_{p'}$ is a normal Hall *p'*-subgroup of *G* since *T* is subnormal in *G*, which is a contradiction. If $((P_2)_{se})^G = P_1 \cap N = N$, then $N \leq P_1$ and thus $P = P_1$, a contradiction. Now we may assume that P_2 is weakly *s*-supplemented in *G*. Then there is a subgroup *T* of *G* such that $G = P_2T$ and $P_2 \cap T \leq (P_2)_{sG} \leq O_p(G) = N$ by Lemma 2.11. Similarly, we get that

$$((P_2)_{sG})^G = 1$$
 or $((P_2)_{sG})^G = P_1 \cap N = N.$

Arguing as before we may assume that $((P_2)_{sG})^G = 1$ and deduce that T is p-nilpotent. Let $T_{p'}$ be the normal p-complement of T. Since M is p-nilpotent, we have that M has a normal Hall p'-subgroup $M_{p'}$ and $M \leq N_G(M_{p'}) \leq G$. The maximality of M and the fact that $O_{p'}(G) = 1$ imply that $M = N_G(M_{p'})$. By using a deep result of Gross [1987, main theorem], there exists $g \in G$ such that $T_{p'}^g = M_{p'}$. Hence $T^g \leq N_G(T_{p'}^g) = N_G(M_{p'}) = M$. But $T_{p'}$ is normalized by T, thus g can be considered to be an element of P_2 . It follows that $G = P_2T^g = P_2M$ and $P = P_2(P \cap M) = P_1$, a contradiction.

<u>Step 6</u>: G has Hall p'-subgroups and any two Hall p'-subgroups of G are conjugate in G.

If every 2-maximal subgroup of P is weakly *s*-permutably embedded in G, then G is *p*-nilpotent by Lemma 2.10, a contradiction. Thus there is a 2-maximal subgroup P_2 of P such that P_2 is weakly *s*-supplemented in G. Then there exists a subgroup T of G such that $G = P_2T$ and $P_2 \cap T \leq (P_2)_{sG} \leq O_p(G) = 1$ by Lemma 2.11. By Lemma 2.4, T is *p*-nilpotent and thus T has normal *p*complement $T_{p'}$. Obviously, $T_{p'}$ is also a Hall *p'*-subgroup of G. By [Gross 1987, main theorem], we have that any two Hall *p'*-subgroups of G are conjugate in G.

Step 7: The final contradiction.

If NP < G, then NP meets the hypotheses of the theorem. The minimal choice of *G* yields that NP is *p*-nilpotent. Let $N_{p'}$ be the normal *p*-complement of *N*. It is easy to see that $N_{p'} \lhd G$, so that $N_{p'} = 1$ by Step 4 and *N* is a nontrivial *p*-group, contrary to Step 5. Consequently, we must have G = NP. From Step 6, *G* has Hall *p'*-subgroups. Then we may assume that *N* has a Hall *p'*-subgroup $N_{p'}$. By the Frattini argument,

$$G = NN_G(N_{p'}) = (P \cap N)N_{p'}N_G(N_{p'}) = (P \cap N)N_G(N_{p'}),$$

and thus

$$P = P \cap G = P \cap (P \cap N)N_G(N_{p'}) = (P \cap N)(P \cap N_G(N_{p'})).$$

Since $N_G(N_{p'}) < G$, we have $P \cap N_G(N_{p'}) < P$. We pick a maximal subgroup P_1 of P such that $P \cap N_G(N_{p'}) \le P_1$. Then $P = (P \cap N)P_1$. Let P_2 be a 2maximal subgroup of P such that $P_2 \le P_1$. Under the hypothesis, P_2 is either weakly *s*-permutably embedded or weakly *s*-supplemented in G. If P_2 is weakly *s*-permutably embedded in G, then there is a subnormal subgroup T of G and an *s*-permutably embedded subgroup $(P_2)_{se}$ of G contained in P_2 such that $G = P_2T$ and $P_2 \cap T \le (P_2)_{se}$. Hence there is an *s*-permutable subgroup K of G such that $(P_2)_{se}$ is a Sylow *p*-subgroup of K. If $K_G \ne 1$, then $N \le K_G \le K$ and so $(P_2)_{se} \cap N$ is a Sylow *p*-subgroup of N, thus $(P_2)_{se} \cap N = P_2 \cap N = P \cap N$. Consequently,

$$P = (N \cap P)P_1 = (P_2 \cap N)P_1 = P_1,$$

which is a contradiction. Thus $K_G = 1$. By Lemma 2.6, $(P_2)_{se}$ is *s*-permutable in *G*. It follows from Lemma 2.11 that $P_2 \cap T \leq (P_2)_{se} \leq O_p(G) = 1$. Since $|T|_p = p^2$, *T* is *p*-nilpotent by Lemma 2.4. Let $T_{p'}$ be the normal *p*-complement of *T*. Then $T_{p'}$ is a normal Hall *p'*-subgroup of *G*, a contradiction. Consequently, we may assume P_2 is weakly *s*-supplemented in *G*. Then there is a subgroup *T* of *G* such that $G = P_2T$ and $P_2 \cap T \leq (P_2)_{sG} \leq O_p(G) = 1$ (where $O_p(G)$ denotes the *p*-core of *G*) by Lemma 2.11. Since $|T|_p = p^2$, *T* is *p*-nilpotent by Lemma 2.4. Let $T_{p'}$ be the normal *p*-complement of *T*. Then $T_{p'}$ is a Hall *p'*-subgroup of *G*. By Step 6, $T_{p'}$ and $N_{p'}$ are conjugate in G. Since $T_{p'}$ is normalized by T, there exists $g \in P_2$ such that $T_{p'}^g = N_{p'}$. Hence

$$G = (P_2T)^g = P_2T^g = P_2N_G(T_{p'}^g) = P_2N_G(N_{p'})$$

and

$$P = P \cap G = P \cap P_2 N_G(N_{p'}) = P_2(P \cap N_G(N_{p'})) \le P_1,$$

a final contradiction.

The following corollaries are immediate from Theorem 3.1.

Corollary 3.2. Let p be the smallest prime dividing |G| and suppose G is A_4 -free. Assume that H is a normal subgroup of G such that G/H is p-nilpotent. If there exists a Sylow p-subgroup P of H such that every 2-maximal subgroup of P is either weakly s-permutably embedded or weakly s-supplemented in G, then G is p-nilpotent.

Corollary 3.3. Suppose that every 2-maximal subgroup of any Sylow subgroup of a group G is either weakly s-permutably embedded or weakly s-supplemented in G. If G is A_4 -free, then G is a Sylow tower group of supersolvable type.

In terms of the theory of formations, we have the following result:

Corollary 3.4. Let \mathcal{F} be the class of groups with Sylow tower of supersolvable type and suppose G is A_4 -free. Then $G \in \mathcal{F}$ if and only if there is a normal subgroup Hof G such that $G/H \in \mathcal{F}$ and every 2-maximal subgroup of any Sylow subgroup of H is either weakly s-permutably embedded or weakly s-supplemented in G.

Proof. The necessity part is clear. We only need show the sufficiency part. Suppose that this is not true and let *G* be a counterexample of minimal order. By Lemmas 2.2 and 2.3, every 2-maximal subgroup of any Sylow subgroup of *H* is either weakly *s*-permutably embedded or weakly *s*-supplemented in *H*. By Corollary 3.3, *H* is a Sylow tower group of supersolvable type. Let *p* be the maximal prime divisor of |H| and let *P* be a Sylow *p*-subgroup of *H*. Then *P* is normal in *G*. Consider the factor group G/P. It is easy to prove G/P meets the hypotheses of the theorem. By the minimal choice of *G*, we get $G/P \in \mathcal{F}$. Let *N* be a minimal normal subgroup of *G* contained in *P*. The proof is divided into two steps.

<u>Step 1</u>: P = N.

If N < P, then $(G/N)/(P/N) \cong G/P \in \mathcal{F}$. We will prove that $G/N \in \mathcal{F}$. If $|P/N| \le p^2$, then $G/N \in \mathcal{F}$ by Lemma 2.4. If $|P/N| > p^2$, then every 2-maximal subgroup of P/N is either weakly *s*-permutably embedded or weakly *s*-supplemented in G/N by Lemmas 2.2 and 2.3. By the minimal choice of *G*, we get $G/N \in \mathcal{F}$. Since \mathcal{F} is a saturated formation, *N* is the unique minimal normal subgroup of *G* contained in *P* and $N \nleq \Phi(G)$. It follows from Lemma 2.7 that P = F(P) = N, which is a contradiction.

Step 2: The final contradiction.

If $|N| \leq p^2$, then $G \in \mathcal{F}$ by Lemma 2.9, a contradiction. Then $|N| \geq p^3$. Since $N \triangleleft G$, we may pick a 2-maximal subgroup N_2 of N such that $N_2 \triangleleft G_p$, where G_p is a Sylow p-subgroup of G. Then N_2 is either weakly s-permutably embedded or weakly s-supplemented in G. Let T be a supplement of N_2 in G. Then $G = N_2T = NT$ and $N = N \cap N_2T = N_2(N \cap T)$. This means that $N \cap T \neq 1$. However, since $N \cap T$ is normal in G and N is minimal normal in G, we get $N \cap T = N$ and thus T = G. If N_2 is weakly s-permutably embedded in G, then $(N_2)_{se} \geq N_2 \cap G = N_2$ is s-permutably embedded in G. From Lemma 2.6, N_2 is s-permutable in G and $O^p(G) \leq N_G(N_2)$, where $O^p(G)$ denotes the p-residual subgroup.¹ Thus $N_2 \triangleleft G_p O^p(G) = G$. It follows that $|N| = p^2$, a contradiction. If N_2 is weakly s-supplemented in G, then $N_2 = N_2 \cap G \leq (N_2)_{sG}$. Similarly, we also get that $N_2 \triangleleft G$. We obtain the same contradiction, completing the proof. \Box

Acknowledgements

The authors cordially thank the referee for valuable comments which led to the improvement of this paper.

References

- [Ballester-Bolinches and Guo 1999] A. Ballester-Bolinches and X. Guo, "On complemented subgroups of finite groups", Arch. Math. (Basel) 72 (1999), 161–166. MR 2000a:20037 Zbl 0929.20015
- [Ballester-Bolinches and Pedraza-Aguilera 1998] A. Ballester-Bolinches and M. C. Pedraza-Aguilera, "Sufficient conditions for supersolubility of finite groups", *J. Pure Appl. Algebra* **127**:2 (1998), 113–118. MR 99d:20048 Zbl 0928.20020
- [Doerk and Hawkes 1992] K. Doerk and T. Hawkes, *Finite soluble groups*, de Gruyter Expositions in Mathematics **4**, Walter de Gruyter, Berlin, 1992. MR 93k:20033 Zbl 0753.20001
- [Gross 1987] F. Gross, "Conjugacy of odd order Hall subgroups", *Bull. London Math. Soc.* **19**:4 (1987), 311–319. MR 89c:20038 Zbl 0616.20007
- [Guo and Shum 2001] X. Guo and K. P. Shum, "On *c*-normal subgroups of finite groups", *Publ. Math. Debrecen* **58**:1-2 (2001), 85–92. MR 2001k:20034 Zbl 1062.20503
- [Guo and Shum 2003] X. Guo and K. P. Shum, "Cover-avoidance properties and the structure of finite groups", *J. Pure Appl. Algebra* **181**:2-3 (2003), 297–308. MR 2004g:20027 ZbI 1028.20014
- [Guo et al. 2009] W. Guo, F. Xie, and B. Li, "Some open questions in the theory of generalized permutable subgroups", *Sci. China Ser. A* **52**:10 (2009), 2132–2144. MR 2010k:20027 Zbl 1193.20021
- [Kegel 1962] O. H. Kegel, "Sylow-Gruppen und Subnormalteiler endlicher Gruppen", *Math. Z.* **78** (1962), 205–221. MR 26 #5042 Zbl 0102.26802
- [Li and Guo 2000] D. Li and X. Guo, "The influence of *c*-normality of subgroups on the structure of finite groups", *J. Pure Appl. Algebra* **150**:1 (2000), 53–60. MR 2001c:20032 Zbl 0967.20011

¹This mean $O^p(G)$ is the intersection of all normal subgroups of G whose index in G is a power of k. The quotient $G/O^p(G)$ is the largest (not necessarily abelian) p-group onto which G surjects.

- [Li et al. 2005] Y. Li, Y. Wang, and H.-Q. Wei, "On *p*-nilpotency of finite groups with some subgroups π -quasinormally embedded", *Acta Math. Hungar.* **108**:4 (2005), 283–298. MR 2006f:20022 Zbl 1094.20007
- [Li et al. 2009] Y. Li, S. Qiao, and Y. Wang, "On weakly *s*-permutably embedded subgroups of finite groups", *Comm. Algebra* **37**:3 (2009), 1086–1097. MR 2010a:20041 Zbl 1177.20036
- [Robinson 1982] D. J. S. Robinson, *A course in the theory of groups*, Graduate Texts in Mathematics **80**, Springer, New York, 1982. 2nd ed. published in 1996. MR 84k:20001 Zbl 0483.20001
- [Schmid 1998] P. Schmid, "Subgroups permutable with all Sylow subgroups", *J. Algebra* **207**:1 (1998), 285–293. MR 99g:20037 Zbl 0910.20015
- [Skiba 2007] A. N. Skiba, "On weakly *s*-permutable subgroups of finite groups", *J. Algebra* **315**:1 (2007), 192–209. MR 2008k:20043 Zbl 1130.20019
- [Wang 1996] Y. Wang, "*c*-normality of groups and its properties", *J. Algebra* **180**:3 (1996), 954–965. MR 97b:20020 Zbl 0847.20010
- [Wang 2000] Y. Wang, "Finite groups with some subgroups of Sylow subgroups *c*-supplemented", *J. Algebra* **224**:2 (2000), 467–478. MR 2001c:20036 Zbl 0953.20010
- [Yang et al. 2012] N. Yang, W. Guo, J. Huang, and M. Xu, "Finite groups with weakly *S*-quasinormally embedded subgroups", *J. Algebra Appl.* **11**:3 (2012), 1250050, 14. MR 2928118 Zbl 1244.20021
- [Zhang and Li 2012] X. Zhang and C. Li, "On weakly *s*-quasinormally embedded and *c*-supplemented subgroups of finite groups", *Southeast Asian Bull. Math.* **36**:2 (2012), 293–300. MR 2992484 Zbl 06128975

Received: 2013-01-10	Revised: 2013-08-06 Accepted: 2013-08-07
zhg102003@163.com	School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, Guangxi 530023, China
709725875@qq.com	School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
shixunlin@live.com	College of Mathematics and Statistics, Zhaotong University, Zhaotong, Yunnan 657000, China
305612276@qq.com	School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, Guangxi 530023, China
407156835@qq.com	School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, Guangxi 530023, China

EDITORS

MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS					
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A&M University, USA larson@math.tamu.edu		
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu		
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu		
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu		
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz		
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu		
Pietro Cerone	La Trobe University, Australia P.Cerone@latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com		
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu		
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir		
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu		
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu		
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobriel@luc.edu		
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu		
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com		
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	YF. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch		
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu		
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu		
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu		
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu		
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu		
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu		
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu		
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu		
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu		
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu		
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com		
Natalia Hritonenko	Prairie View A&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu		
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu		
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it		
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com		
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu		
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu		

PRODUCTION

Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2015 is US \$140/year for the electronic version, and \$190/year (+\$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/ © 2015 Mathematical Sciences Publishers

2015 vol. 8 no. 2

Enhancing multiple testing: two applications of the probability of correct selection			
statistic			
ERIN IRWIN AND JASON WILSON			
On attractors and their basins			
ALEXANDER ARBIETO AND DAVI OBATA	211		
Convergence of the maximum zeros of a class of Fibonacci-type polynomials REBECCA GRIDER AND KRISTI KARBER			
Iteration digraphs of a linear function			
HANNAH ROBERTS			
Numerical integration of rational bubble functions with multiple singularities MICHAEL SCHNEIER	233		
Finite groups with some weakly <i>s</i> -permutably embedded and weakly <i>s</i> -supplemented subgroups			
Guo Zhong, XuanLong Ma, Shixun Lin, Jiayi Xia and Jianxing Jin			
Ordering graphs in a normalized singular value measure	263		
CHARLES R. JOHNSON, BRIAN LINS, VICTOR LUO AND SEAN MEEHAN			
More explicit formulas for Bernoulli and Euler numbers			
FRANCESCA ROMANO			
Crossings of complex line segments			
Samuli Leppänen			
On the ε -ascent chromatic index of complete graphs			
JEAN A. BREYTENBACH AND C. M. (KIEKA) MYNHARDT			
Bisection envelopes			
NOAH FECHTOR-PRADINES			
Degree 14 2-adic fields			
CHAD AWTREY, NICOLE MILES, JONATHAN MILSTEAD, CHRISTOPHER			
SHILL AND ERIN STROSNIDER			
Counting set classes with Burnside's lemma	337		
Joshua Case, Lori Koban and Jordan LeGrand			
Border rank of ternary trilinear forms and the <i>j</i> -invariant			
DEREK ALLUMS AND JOSEPH M. LANDSBERG			
On the least prime congruent to 1 modulo <i>n</i>			
JACKSON S. MORROW			