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In this paper we will fully characterize all types of winning moves in the “take-
away” game of Fibonacci Nim. We prove the known winning algorithm as a
corollary of the general winning algorithm and then show that no other winning
algorithms exist. As a by-product of our investigation of the game, we will
develop useful properties of Fibonacci numbers. We conclude with an exploration
of the probability that unskilled player may beat a skilled player and show that as
the number of tokens increase, this probability goes to zero exponentially.

1. Introduction

We begin with a brief introduction to the idea of “take-away” games. Schwenk
[1970] defined take-away games to be a two-person game in which the players
alternately diminish an original stock of tokens subject to various restrictions, with
the player who removes the last token being the winner.

In the generalized take-away game, τ(k) = η(k − 1)− η(k) where η(k) is the
number of tokens remaining after the k-th turn so that τ(k) is the number of tokens
removed on the k-th turn. Additionally, for all k ∈ N, k 6= 1, we have τ(k) ≤ mk ,
where mk is some function of τ(k − 1). Specifically in Fibonacci Nim, we have
mk = 2τ(k) for k > 1. We will immediately move away from this notation and
develop additional notation as it is required. We provide a simple example to
familiarize the reader with the game.

Example 1. Let n = 10. Player one may remove 1 to 9 tokens. Suppose player one
removes 3 tokens. Then, player two may now remove 1 through 2(3)= 6 tokens.
Play continues until one of the players removes the last token.

We will rely heavily on results from [Lekkerkerker 1952], specifically the Zeck-
endorff representation of natural numbers as a sum of Fibonacci numbers.
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The Fibonacci numbers are the positive integers generated by the recursion
Fk = Fk−1+ Fk−2, where F1= 1= F2 and k ∈N. Let F = {F2, F3, . . . , Fk, . . . } =

{1, 2, 3, 5, . . . }. This is the subset of Fibonacci numbers we will reference through-
out this paper. We now present the Zeckendorf representation theorem (ZRT)
without proof. A proof of this theorem may be found in [Hoggatt et al. 1973].

Theorem 2 (Zeckendorff representation theorem). Let n ∈N. For i, r ∈N we have
n= Fir +Fir−1+· · ·+Fi1 , where ir−(r−1)> ir−1−(r−2)> · · ·> i2−1> i1≥ 2.
Further, this representation is unique.

In other words, every positive integer can be written uniquely as a sum of non-
consecutive Fibonacci numbers. Clearly, in the notation of the theorem, Fir > Fir−1 >

· · ·> Fi1 . We will refer to the Zeckendorff Representation theorem frequently, so
we abbreviate it by ZRT.

Example 3. 12= (1)F6+ (0)F5+ (1)F4+ (0)F3+ (1)F2 = 8+ 3+ 1.

Corollary 4. If Fk+1 > n ≥ Fk , then Fk is the largest number in the Zeckendorff
representation of n.

Proof. If Fk+1 > n ≥ Fk then by Zeckendorff’s theorem we can write (n− Fk)=

Fd + · · ·+ Fi1 . We claim k− 1> d. Suppose not; then d ≥ (k− 1), thus

n = Fk + Fd + · · ·+ Fi1 ≥ Fk + Fd ≥ Fk + Fk−1 = Fk+1.

However, Fk+1 > n ≥ Fk+1 is a contradiction. Thus, k− 1> d so that

n = Fk + Fd + · · ·+ Fi1

is a valid, and thus the only, representation of n by the ZRT. �

The corollary above shows that for any n ∈ N where Fk+1 > n ≥ Fk , the
Zeckendorff representation of n must contain Fk . Therefore, we iteratively may
take the maximal Fibonacci number less than n, say Fk , subtract it from n which
yields n− Fk = n′ = Fir ′

+ Fir−1′
+ · · · + Fi1′

and repeat this process to find each
Fibonacci number in the representation of the original number, n.

Definition 5. Let n= Fir+Fir−1+· · ·+Fi1 where r, i, n ∈N. We define T (n)= Fi1 .
That is, T (n) is the smallest number in the Zeckendorff representation.

Definition 6. Let n = Fir + Fir−1 + · · · + Fi1 where r, i, n, j ∈ N. We now define
the length j tail to be the specific sum of j consecutive* Fibonacci numbers in the
Zeckendorff representation of n beginning with the smallest number, Fi1 . We set
T1(n)= T (n) for consistency. Then, T j (n)= T (n)+ Ti−1(n− T (n)).

The “consecutive*” in Definition 6 refers to the subscripts i j , i j+1 for some
j ∈ N. By the above definitions, we see that the length j tail of n is T j (n) =
Fi j + Fi j−1 + · · ·+ Fi1 where r ≥ j ≥ 1.
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Example 7. Consider

33= F8+F6+ F4+ F2 = 21+8+ 3+ 1,

12= F6+ F4+ F2 = 8+ 3+ 1.

Then, the length 3 tails are

T3(33)= F6+ F4+ F2 = 8+ 3+ 1,

T3(12)= F6+ F4+ F2 = 8+ 3+ 1.

Hence, 33 and 12 have the same length 3 tail.

Remark 8. By the definition of a length j tail, if T j (n) = T j (m), then for any
j ≥ s ≥ 1, we have Ts(n)= Ts(m).

Let n = Fir + Fir−1 + · · ·+ Fi1 be the Zeckendorff representation where

Fir > Fir−1 > · · ·> Fi1 .

Suppose there are n tokens in the pile during the current turn. The known winning
algorithm for Fibonacci Nim has the current player take the length 1 tail of n. That
is, the player removes T (n) = Fi1 tokens. We will prove that this is a winning
algorithm in the next section.

In what follows, we will extend the known winning algorithm to include tails
that satisfy certain criteria for some given n. We then will prove that this is a
complete collection of winning moves and that no others exist. We end this paper
by introducing a losing position strategy and then derive an upperbound on the
probability that an unskilled player may beat a skilled player.

2. Fibonacci Nim strategy

We begin this section by discussing how to win Fibonacci Nim. In the remainder
of this paper, we use n = Fir + Fir−1 +· · ·+ Fi1 with n, r, i ∈N as the Zeckendorff
representation for some n.

Assume there are n tokens in a given turn which the player whose turn it is
may remove from. Let 2p denote the maximum number of tokens this player may
remove from the n tokens. We can denote this position by (n, 2p). Note, this
implies that the previous player removed precisely p tokens.

Definition 9. A losing position is such that given the position (n, 2p), T (n) > 2p.
A winning position is any nonlosing position. A winning move is such that it results
in the next position being a losing position. A losing move is any nonwinning move.

We see by Definition 9 that we always want to leave our opponent in a losing
position where T (n)>2p. That is, a position where our opponent cannot remove any
length j tail, T j (n). As an immediate consequence, if our opponent cannot remove
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a tail of n, certainly he cannot remove all of n to win since n ≥ T j (n)≥ T (n) > 2p.
Therefore, if we can successively give our opponent a losing position, we can ensure
we win.

Lemma 10. For every i ∈ N where i ≥ 3, 2Fi−1 ≥ Fi and Fi+1 > 2Fi−1.

Proof. We have 2(F2)= 2(1)= 2= F3 and F4= 3> 2= 2(1)= 2(F2). Assume that
2Fi−1 ≥ Fi and Fi+1 > 2Fi−1. We have 2(Fi )= 2(Fi−1+ Fi−2)≥ 2Fi−1+ Fi−2 =

Fi + Fi−1 = Fi+1 since for each for j ∈ N, F j ≥ 1. Similarly,

Fi+2 = Fi+1+ Fi = (Fi + Fi−1)+ (Fi−1+ Fi−2)

> Fi + (Fi−1+ Fi−2)= 2Fi . �

Lemma 11 below implies that if on a given turn our opponent has a losing
position to play from, regardless of how he plays, our next play will be from a
winning position.

Lemma 11. Let n ∈N. For any p with T (n) > p, (n− p, 2p) is a winning position.

Proof. Let n ∈N. Assume T (n) > p. We have, n− p= Fir +· · ·+ Fi1− p. Define
m = T (n)− p = Fi ′r + · · · + Fi ′1 . Suppose (n− p, 2p) is a losing position. Then,
T (n − p) > 2p and by Lemma 10, 2Fi ′1−1 ≥ Fi ′1 > 2p. Hence, the Zeckendorff
representation of p does not include Fi ′1−1, thus p= Fi ′′r +· · ·+Fi ′′1 where Fi ′1−1> Fi ′′r .
But then, n= Fir +· · ·+Fi2+Fi ′r +· · ·+Fi ′1+Fi ′′r +· · ·+Fi ′′1 is a valid Zeckendorff
representation of n. This is a contradiction since Zeckendorff representations are
unique. Hence, we must have 2p ≥ T (n− p). Since Fi2 > T (n) > T (n)− p, then,
n− p= Fir +· · ·+Fi2+m is a valid Zeckendorff representation of n− p and hence
the only representation. Thus, the next position, (n− p, 2p) has 2p ≥ T (n− p) so
that (n− p, 2p) is a winning position. �

Lemma 12 below paired with Lemma 11 proves the known winning strategy.
That is, if we take the length 1 tail of n, T (n), the next position is a losing position.
Successively implementing this lemma results in winning the game in a finite
number of moves.

Lemma 12. Let n ∈ N. Set p = T (n). Then (n− p, 2p) is a losing position.

Proof. Let n ∈ N. Set p = T (n). Suppose for some k ∈ N, Fk = T (n) = Fi1 . By
Theorem 2, Fi2≥ Fk+2. Then, by Lemma 10, Fi2≥ Fk+2>2Fk=2p. By uniqueness
of the ZRT, n − p = Fir + · · · + Fi2 and (n − p, 2p) has T (n − p) = Fi2 > 2p.
Hence, (n− p, 2p) is a losing position. �

For now, we state that not every tail may always be taken from n to produce
a losing position. In the following subsections, we will prove this rigorously and
derive results which show exactly which tails may be removed to put our opponent
in a losing position. Theorem 13 is this section’s main result. Namely, it proves
that removing length j tails of n are the only winning moves for n ∈ N.
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Theorem 13 (Fundamental theorem of Fibonacci Nim). Let n ∈ N. Then, for any
p /∈ {Tr−1(n), Tr−2(n), . . . , T (n)}, (n− p, 2p) is a winning position.

Proof. Let n ∈N and suppose our opponent has removed p tokens. Then the current
position is (n − p, 2p). Assume T (n − p) > 2p, that is, (n − p, 2p) is a losing
position. If p = T j (n) for some r > j ≥ 1, then p ∈ {Tr−1(n), Tr−2(n), . . . , T (n)}.
This leaves two cases to examine: (1) p is a sum of terms Fit where r ≥ t ≥ 1 and
p 6= T j (n) for some r > j ≥ 1 or (2) p 6= T j (n) for some r > j ≥ 1 and p is not of
the form given in case (1).

Case 1: Our opponent removes p = ar Fir + ar−1 Fir−1 + · · · + a1 Fi1 where each
a j ∈ {0, 1} for j ∈ [1, ir ] and there exists at least one pair (a j , a j+1) such that
a j = 0 and a j+1= 1 in the representation of p. Then, p 6= T j (n) for some r > j ≥ 1.
Without loss of generality, let (a j , a j+1) be the minimal pair such that a j = 0 and
a j+1 = 1 in the representation of p. Define

n′ = (Fir − ar Fir )+ · · ·+ (Fi j+1 − a j+1 Fi j+1)

+ (Fi j−1 − a j−1 Fi j−1)+ · · ·+ (Fi1 − a1 Fi1).

Then,

n− p = Fir + Fir−1 + · · ·+ Fi1 − (ar Fir + ar−1 Fir−1 + · · ·+ a1 Fi1)= n′+ Fi j

which is a valid Zeckendorff representation and hence the only representation of
n− p. Since (a j , a j+1) is minimal, T (n− p)= Fi j . We have 2p> Fi j+1 > T (n− p),
thus (n− p, 2p) is a winning position and we have reached a contradiction.

Case 2: Our opponent removes p tokens such that p 6=ar Fir+ar−1 Fir−1+· · ·+a1 Fi1

where each a j ∈ {0, 1}. Since (n− p, 2p) is a losing position, by Lemma 11 we
must have p > T (n). Without loss, let T j (n) for r > j ≥ 1 be the minimal tail such
that p > T j (n). By assumption, p 6= T j (n). We have Fi j+1 + T j (n) > p > T j (n)
so that Fi j+1 > p− T j (n) > 0. Define δp = p− T j (n) so that p = T j (n)+ δp. Let
m= n−T j (n). Then, n− p=m+T j (n)−(T j (n)+δp)=m−δp. Since T (m)> δp,
by Lemma 11 and the uniqueness of Zeckendorff representations, (m− δp, 2δp) is
a winning position. It follows that 2p > 2δp ≥ T (m− δp)= T (n− p). Therefore,
(n− p, 2p) is a winning position and we have reached a contradiction.

Hence, removing some p 6= T j (n) for some r > j ≥ 1 results in a winning
position. Since there is only one other possible move, removing some tail F j (n), it
follows that if (n− p, 2p) is a losing move, then p= T j (n) for some r > j ≥ 1. �

Remark 14. By Definition 9 and Theorem 13, removing T j (n) tokens where r >
j ≥ 1 will force an immediate losing position to our opponent when Fi j+1 > 2T j (n).

In section (2) we have shown that the only possible winning moves in Fibonacci
Nim are those that are partial consecutive* sums or, tails of the Zeckendorff repre-
sentation of the number of tokens in that turn. In the next section, we determine
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which tails force losing positions and how to identify these tails based solely on the
Zeckendorff representation for a given n.

3. Winning tails

In this Section, we will show how to take the result from Remark 14: removing T j (n)
tokens where r > j ≥ 1 will force an immediate losing position to our opponent
when Fi j+1 > 2T j (n) and identify which tails satisfy this condition. Existence of
winning moves was proved for Dynamic One-Pile Nim in a paper by Holshouser,
Reiter and Rudzinski [2003]; Fibonacci Nim is classified as a dynamic one-pile
Nim game in their paper. Below, we validate the existence of these moves as well
as carefully show exactly how to find these winning moves. In addition, we have
included a table at the end of this paper to present these results for the first 90
positive integers.

We are concerned with which tails can be taken and which cannot. That is, if
n = Fir + Fir−1 + · · ·+ Fi1 , when is Fi j+1 > 2T j (n) for r > j ≥ 1? We accomplish
this by looking at an arbitrary tail T j (n) of n. We classify exactly when taking
T j (n) results in leaving a losing position to our opponent.

We begin by setting a j+1 = i j+1− i j and a j = i j − i j−1. Then, a j+1 and a j are
the differences in the subscripts of consecutive* Fibonacci numbers in a Zeckendorff
representation of n. In this section we will show that for any Fi j , by considering
the “gaps” around it, where the gaps are the differences above, we can determine if
removing Ti j (n) tokens give our opponent a losing position. For us to do this, we
must first introduce the gap-vector.

Definition 15. Let n = Fir + Fir−1 + · · · + Fi1 . We define the gap-vector of n to
be G(n) = (ar , ar−1, . . . , a2; a1) where ar = ir − ir−1, ar−1 = ir−1 − ir−2, . . . ,
a2 = i2 − i1, and a1 = i1. We also define |G(n)| = r , where r is the number of
summands in the Zeckendorf representation of n.

Example 16. Let n = 129= F11+ F9+ F5+ F2. Then,

G(129)= (11− 9, 9− 5, 5− 2; 2)= (2, 4, 3; 2) and |G(129)| = 4.

The gap-vector of n shows the difference of the subscripts of the consecutive*
Fibonacci numbers in the Zeckendorff representation of n (again, consecutive*
refers to the subscripts i j , i j+1 for some j ∈ N ). The last coordinate of the gap-
vector is the subscript of the smallest Fibonacci number present in the Zeckendorff
representation of n. It follows that we can reconstruct n by using

Example 17. Let G(n)= (2, 4, 3; 2). Then, F2 is the first Fibonacci number in the
representation of n. From here, we can build the rest of the numbers: 2+3 = 5, so
F5 is the next number; 5+4 = 9, so F9 is the third number; and 9+2=11, so F11 is
the last number in the representation of n. Hence, n = F11+ F9+ F5+ F2 = 129.
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It is worth mentioning that by the ZRT each a j ≥ 2 for j ∈ N. We now begin
to examine which tails provide winning moves. Consider p = T j (n) for some
n, j ∈ N. We will classify exactly when T j (n) is a winning move and hence leaves
the opponent the losing position (n− p, 2p).

Notational remark. For the following lemmas, we introduce the symbol (k : 2)
such that (k : 2) ∈ {2, 3} where (k : 2) ≡ k mod 2. Similarly, (k : 3) ∈ {2, 3, 4}
where (k : 3) ≡ k mod 3. For example, F8 + · · · + F8:2 = F8 + · · · + F2 since
(8 : 2)≡ 8 mod 2 and (8 : 2) ∈ {2, 3}.

For the remainder of this section, we will give a lemma and then a corollary. The
lemma provides properties of particular Fibonacci series. The corollaries tie the
lemma into Fibonacci Nim.

Lemma 18. For k ≥ 5, we have Fk > 2(Fk−3+ Fk−5+ · · ·+ Fk:2).

Proof. For k = 5 and k = 6,

F5 = 5> 2(1)= 2(F2),

F6 = 8> 4= 2(2)= 2(F3).

Suppose Fk > 2(Fk−3 + Fk−5 + · · · + Fk:2). Then by the induction hypothesis,
2Fk−1+ Fk > 2Fk−1+ 2(Fk−3+ Fk−5+ · · · + Fk:2) = 2(Fk−1+ · · · + Fk:2). But,
Fk+2= Fk+1+Fk > 2Fk−1+Fk by Lemma 10. Hence, Fk+2> 2(Fk−1+· · ·+Fk:2).

�

Corollary 19. Let G(n) = (ar , ar−1, . . . , a2; a1) where r > 1 and a j ≥ 2 for
r ≥ j > 1. If aq+1 ≥ 3 for some r > q > 1, then (n− p, 2p) is a losing position for
p = Tq(n).

Proof. Let G(n) = (ar , ar−1, . . . , a2; a1) where r > 1 and a j ≥ 2 for r ≥ j > 1.
Suppose aq+1 ≥ 3 for some r > q > 1 and set p = Tq(n). Then iq+1 ≥ iq + 3.
By Lemma 18, we have Fiq+1 > 2(Fiq + · · · + Fi1) = 2Tq(n). We have, n −
p = Fir + · · · + Fiq+1 by the uniqueness of Zeckendorff representations, hence
T (n− p)= Fiq+1 > 2Tq(n)= 2p and (n− p, 2p) is a losing position. �

We see by the above corollary that if G(n)= (ar , . . . , a2; a1) contains coordinates
a j ≥ 2 and some aq+1 ≥ 3 we can always remove the tail beginning with the
Fibonacci number Fiq . But notice, by the ZRT, every representation will have
a j ≥ 2 for r ≥ j ≥ 2. Hence, we have just shown by Corollary 19 that given some
n = Fir + · · ·+ Fi j+1 + Fi j + · · ·+ Fi1 , if i j+1− 3≥ i j , then removing p = T j (n)
results in (n− p, 2p) being a losing position. Therefore it follows that we need
only to consider when i j+1− 2= i j to classify the remainder of winning tails.

Lemma 20. For k ≥ 8, we have Fk > 2(Fk−2+ Fk−6+ Fk−8+ · · ·+ Fk:2).
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Proof. For k = 8 and k = 9,

F8 = 21> 2(8+ 1)= 2(F6+ F2),

F9 = 34> 30= 2(13+ 2)= 2(F7+ F3).

Assume
Fk > 2(Fk−2+ Fk−6+ Fk−8+ · · ·+ Fk:2).

By the induction hypothesis we have,

Fk+2 = Fk+1+ Fk > Fk+1+ 2Fk−2+ 2(Fk−6+ · · ·+ Fk:2).

But, Fk+1+ 2Fk−2 = Fk + Fk−1+ 2Fk−3+ 2Fk−4. By Lemma 10, 2Fk−3 > Fk−2.
Hence, Fk+1 + 2Fk−2 > Fk + Fk−1 + Fk−2 + 2Fk−4 = 2(Fk + Fk−4). Therefore,
Fk+2 > 2(Fk + Fk−4+ Fk−6+ · · ·+ Fk:2). �

Corollary 21. Let G(n) = (ar , ar−1, . . . , a2; a1) where r > 1 and a j ≥ 2 for
r ≥ j > 1. If aq ≥ 4 and aq+1 = 2 for some r ≥ q > 1, then (n− p, 2p) is a losing
position for p = Tq(n).

Proof. Let G(n) = (ar , ar−1, . . . , a2; a1) where r > 1 and a j ≥ 2 for r ≥ j > 1.
Suppose that aq ≥ 4 for some r ≥ q > 1 and set p = Tq(n). Then, iq+1 − 2 =
iq ≥ iq−1 + 4. By Lemma 20, we have Fiq+1 > 2(Fiq + · · · + Fi1) = 2Tq(n). We
have, n− p = Fir + · · ·+ Fiq+1 by the uniqueness of Zeckendorff representations,
hence T (n− p)= Fiq+1 > 2Tq(n)= 2p and (n− p, 2p) is a losing position. �

We see by Corollary 21 that if G(n) = (ar , . . . , a2; a1) contains coordinates
a j ≥ 2 and some aq ≥ 4 and aq+1 = 2, we can always remove the tail beginning
with the Fibonacci number Fiq . Hence, we have just shown that given some
n = Fir + · · ·+ Fi j+1 + Fi j + · · ·+ Fi1 , if iq+1− 2= iq ≥ iq−1+ 4, then removing
p = T j (n) results in (n − p, 2p) being a losing position. By Corollaries 19 and
21, we have just shown that if we have aq+1 ≥ 3 or, if aq+1 = 2 and aq ≥ 4, then
p = Tq(n) is a winning move, that is, (n− p, 2p) is a losing position. Thus, what
remains to examine are the cases aq+1 = 2 = aq and aq+1 = 2 and aq = 3. We
begin with the former.

Lemma 22. For k ≥ 6, we have Fk ≤ 2(Fk−2+ Fk−4).

Proof. Let k = 6. Then, F6 = 8= 2(3+ 1)= 2(F4+ F2). For any k > 6, we have
Fk = 2Fk−2+ Fk−3. By Lemma 11, 2Fk−4 ≥ Fk−3. Hence, Fk = 2Fk−2+ Fk−3 ≤

2(Fk−2+ Fk−4). �

Corollary 23. Let G(n) = (ar , ar−1, . . . , a2; a1) where r > 2 and a j ≥ 2 for
r ≥ j > 1. If aq+1 = 2 = aq for some r ≥ q > 1, then (n − p, 2p) is a winning
position for p = Tq(n).
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Proof. Let G(n) = (ar , ar−1, . . . , a2; a1) where r > 1 and a j ≥ 2 for r ≥ j > 1.
Suppose aq+1= 2= aq for some r ≥ q > 1 and set p= Tq(n). Then iq+1−2= iq =

iq−1+2. By Lemma 22, we have Fiq+1 ≤2(Fiq+Fiq−1)≤2(Fiq+· · ·+Fi1)=2Tq(n).
We have, n− p= Fir +· · ·+Fiq+1 by the uniqueness of Zeckendorff representations,
but T (n− p)= Fiq+1 ≤ 2Tq(n)= 2p. Thus, (n− p, 2p) is a winning position. �

We are now left with the case aq+1 = 2 and aq = 3. It turns out, this case
is slightly more complicated than the previous cases. We will show that given
G(n)= (ar , ar−1, . . . , a2; a1) where r > 1 and a j ≥ 2 for r ≥ j > 1, if there exists
some q such that every ak ≥ 3 for r > q ≥ k > 1, then Tq(n) for r > q > 1 is a
winning move. If however, we have some ak = 2 for q ≥ k > 1, then Tq(n) for
r > q > 1 is a losing move. We begin with the former.

Lemma 24. For k ≥ 10, Fk − 2(Fk−2 + Fk−5 + Fk−8 + · · · + Fk:3) = q where
q ∈ {1, 2}.

Proof. We prove the lemma in cases for Fk:3. Specifically for some m ∈ N and
m ≥ 3, Fk:3= F2 when k = 3m+1 since 3m+1−(2+3(m−1))= 2 and Fk:3= F3

when k = 3m+2 since 3m+2− (2+3(m−1))= 3. Fk:3 = F4 when k = 3m since
3m− (2+ 3(m− 2))= 4. Note, if we have 3m− (2+ 3(m− 1))= 1, we will not
have a valid Zeckendorff representation, hence we must reduce our multiple by one,
which yields 3(m− 2) above.

Case 1. Let Fk:3 = F2 and let m = 3 so that k = 3m + 1 = 10. In this case,
F10 − 2(F8 + F5 + F2) = 55 − 2(21 + 5 + 1) = 1. Let m > 3 so that k > 10
and assume that F3m+1− 2(F3m−1+ F3m−4+ F3m−7+ · · · + F5+ F2)= 1. Then,
F3m+1+2F3m+2−2F3m+2−2(F3m−1+F3m−4+· · ·+F5+F2)= 1 by the inductive
hypothesis. But, F3(m+1)+1 = F3m+4 = F3m+3+ F3m+2 = 2F3m+2+ F3m+1. Hence,
F3m+4− 2(F3m+2+ F3m−1+ F3m−4+ · · ·+ F5+ F2)= 1.

Case 2. Now suppose that Fk:3 = F3 and let m = 3 so that k = 11. In this case,
F11 − 2(F9 + F6 + F3) = 89 − 2(34 + 8 + 2) = 1. Let m > 3 so that k > 11
and assume that F3m+2 − 2(F3m + F3m−3 + F3m−6 + · · · + F6 + F3) = 1. Then
F3m+2+2F3m+3−2F3m+3−2(F3m+ F3m−3+· · ·+ F6+ F3)= 1 by the inductive
hypothesis. But, F3(m+1)+2 = F3m+5 = F3m+4+ F3m+3 = 2F3m+3+ F3m+2. Hence,
F3m+5− 2(F3m+3+ F3m + F3m−3+ · · ·+ F6+ F3)= 1.

Case 3. Finally, let Fk:3 = F4 and let m = 4 so that k = 12. Here we have
F12 − 2(F10 + F7 + F4) = 144− 2(55+ 13+ 3) = 2. Let m > 4 so that k > 12
and assume that F3m − 2(F3m−2 + F3m−5 + F3m−8 + · · · + F7 + F4) = 2. Then,
F3m+2F3m+1−2F3m+1−2(F3m−2+ F3m−5+· · ·+ F7+ F4)= 2 by the inductive
hypothesis. But, F3(m+1)= F3m+3= F3m+2+F3m+1= 2F3m+1+F3m . So, F3m+3−

2(F3m+1+ F3m−2+ F3m−5+ · · ·+ F7+ F4)= 2.
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Hence, in each case we find with q ∈ {1, 2} that

Fk − 2(Fk−2+ Fk−5+ Fk−8+ · · ·+ Fk:3)= q. �

Remark 25. It should be clear from Lemma 24 that for k ≥ 10,

Fk > 2((Fk−2+ Fk−5+ Fk−8+ · · ·+ Fk:3).

Corollary 26. Let G(n) = (ar , ar−1, . . . , a2; a1) where r > 2 and a j ≥ 2 for
r ≥ j > 1. If aq+1 = 2 and a j ≥ 3 for q ≥ j ≥ 1, then (n − p, 2p) is a losing
position for p = Tq(n).

Proof. Let G(n) = (ar , ar−1, . . . , a2; a1) where r > 2 and a j ≥ 2 for r ≥ j > 1.
Suppose aq+1 = 2 and a j ≥ 3 for q ≥ j ≥ 1 and set p = Tq(n). Then iq+1− 2= iq

and i j+1 − 3 ≥ i j for every q > j ≥ 1. By Lemma 24 and Remark 25, we have
Fiq+1 > 2(Fiq + · · · + Fi1) = 2Tq(n). We have, n − p = Fir + · · · + Fiq+1 by the
uniqueness of Zeckendorff representations and T (n− p)= Fiq+1 > 2Tq(n)= 2p.
Thus, (n− p, 2p) is a losing position. �

By Corollary 26, if G(n)= (ar , . . . , a2; a1) contains coordinates a j ≥ 2 and if
for some aq+1 = 2 we have for every q ≥ k ≥ 1, ak ≥ 3 then we may remove the
tail beginning with the Fibonacci number Fiq , that is, Tq(n). All that remains to
show is the case when at least one ak = 2.

Lemma 27. For k ≥ 6, we have Fk − (Fk−1+ Fk−4+ Fk−7+ · · ·+ Fk:3) > 1.

Proof. We prove the lemma in cases for Fk:3. Specifically for some m ∈ N and
m ≥ 2, there are three distinct possibilities: either Fk:3 = F2 when k = 3m since
3m−(1+3(m−1))=2 or Fk:3= F3 when k=3m+1 since 3m+2−(1+3(m−1))=3
or Fk:3 = F4 when k = 3m+ 2 since 3m+ 2− (1+ 3(m− 1))= 4.

Case 1. Let m = 2 so that k = 6. Then, F6 − (F5 + F2) = 8 − (5 + 1) = 2.
Assume Fk− (Fk−1+ Fk−4+ Fk−7+· · ·+ Fk:3) > 1 for m > 2. Then, by induction
hypothesis, we have F3m+ F3m+2− F3m+2− (F3m−1+ F3m−4+· · ·+ F2) > 1. But,
F3m+3 = F3m+2 + F3m+1 > F3m+2 + F3m and F3m+1 − F3m > 2 when m > 2 by
construction. Hence, F3m+3− (F3m+2+ F3m−1+ · · ·+ F2) > 1.

In Case 2, we replace k = 3m with k = 3m+1 and in Case 3 we replace k = 3m
with k = 3m+ 2. The arguments are then the same as that of Case 1. �

Corollary 28. Let G(n)= (ar , ar−1, . . . , a2; a1). If every a j = 3 for some r > j > 1
but there exists at least one aq=2 such that j>q≥1, then for p=T j (n), (n−p, 2p)
is a winning position.

Proof. Let G(n) = (ar , ar−1, . . . , a2; a1). Suppose that every a j = 3 for some
r > j > 1 except for some aq = 2 such that j > q ≥ 1 and set p = T j (n). Define
G(n′)= (br , br−1, . . . , r2; r1) where each b j = 3 for r ≥ j > 1 and b1 = a1. Then,
by definitions 6 and 15, if Tq(n) = Fiq + Fiq−1 + · · · + Fi1 then Tq(n) = Fiq−1 +
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Fiq−1−1+ · · ·+ Fi1−1. If i1− 1= 1, then Tq(n′) terminates with Fi2−1, which will
make no difference in the following argument. By Lemma 24, Fiq+1 − 2Tq(n′)= g
where g ∈ {1, 2}. By Lemma 27, Fiq+1 ≥ Tq(n′)+ 2. Therefore,

Fiq+1 − 2Tq(n)≤ Fiq+1 − 2(Tq(n′)+ 2)= g− 4.

Since g ∈ {1, 2}, g− 4< 0. This immediately shows that

T (n− p)= Fiq+1 ≤ 2Tq(n)= 2p

and hence (n− p, 2p) is a winning position. �

We have now fully characterized when T j (n) is a winning move based solely on
the gap-vectors of n. We present a table below to summarize this section’s findings.
Let n = Fir + Fir−1 + · · · Fi1 . Then, G(n) = (ar , ar−1, . . . , a2; a1). Recall, each
a j ≥ 2 by construction. Let the tail in question be T j (n). Then the “gaps” that
surround Fi j are precisely a j+1 and a j . We have the following:

a j+1 a j Further Conditions Winning Move

≥ 3 ≥ 2 None Yes
2 ≥ 4 None Yes
2 2 None No
2 3 j ≥ q ≥ 1, aq ≥ 3 Yes
2 3 ∃q for j ≥ q ≥ 1, aq = 2 No

Thus, by knowing the Zeckendorff representation of n, we may now find all
possible winning moves, or moves that make (n− p, 2p) a losing position.

In Table 1, we present these results for n ∈ [1, 90] ⊂ N. First, recall the first
11 Fibonacci numbers: F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, F7 = 13,
F8 = 21, F9 = 34, F10 = 55, F11 = 89. The column ‘Zeck.’ gives the Zeckendorf
representation in vector form, where the rightmost number is the coefficient of F2,
for example, 17= F7+ F4+ F2 = (100101). The last column lists the sum of each
winning tail. Continuing with n = 17, we have G(17)= (3, 2; 2) and by the table
above, we see that taking F2 = 1 and F4+ F2 = 3+ 1= 4 are both winning moves.

4. Skilled vs unskilled players and probabilities of an unskilled win

We begin this section by noting that in order for an unskilled player to win against
a skilled player, (1) the unskilled player must go first and always make a winning
move, or, (2) the skilled player must start from n= Fk for some n, k ∈N. If not, the
skilled player will immediately gain control of the game and provided the skilled
player doesn’t make any mistakes, he will force a win over the nonskilled player.
It is from this perspective that we discuss probabilities of an unskilled win. For
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n Zeck. Moves n Zeck. Moves n Zeck. Moves

1 (1) 1 31 (1010010) 2; 10 61 (100001001) 1; 6
2 (10) 2 32 (1010100) 3 62 (100001010) 2; 7
3 (100) 3 33 (1010101) 1 63 (100010000) 8
4 (101) 1 34 (10000000) 34 64 (100010001) 1; 9
5 (1000) 5 35 (10000001) 1 65 (100010010) 2; 10
6 (1001) 1 36 (10000010) 2 66 (100010100) 3; 11
7 (1010) 2 37 (10000100) 3 67 (100010101) 1; 12
8 (10000) 8 38 (10000101) 1; 4 68 (100100000) 13
9 (10001) 1 39 (10001000) 5 69 (100100001) 1; 14

10 (10010) 2 40 (10001001) 1; 6 70 (100100010) 2; 15
11 (10100) 3 41 (10001010) 2; 7 71 (100100100) 3; 16
12 (10101) 1 42 (10010000) 8 72 (100100101) 1; 4; 17
13 (100000) 13 43 (10010001) 1; 9 73 (100101000) 5; 18
14 (100001) 1 44 (10010010) 2; 10 74 (100101001) 1; 6; 19
15 (100010) 2 45 (10010100) 3; 11 75 (100101010) 2; 20
16 (100100) 3 46 (10010101) 1; 12 76 (101000000) 21
17 (100101) 1; 4 47 (10100000) 13 77 (101000001) 1; 22
18 (101000) 5 48 (10100001) 1; 14 78 (101000010) 2; 23
19 (101001) 1; 6 49 (10100010) 2; 15 79 (101000100) 3; 24
20 (101010) 2 50 (10100100) 3; 16 80 (101000101) 1; 4; 25
21 (1000000) 21 51 (10100101) 1; 4 81 (101001000) 5; 26
22 (1000001) 1 52 (10101000) 5 82 (101001001) 1; 6; 27
23 (1000010) 2 53 (10101001) 1; 6 83 (101001010) 2; 7
24 (1000100) 3 54 (10101010) 2 84 (101010000) 8
25 (1000101) 1; 4 55 (100000000) 55 85 (101010001) 1; 9
26 (1001000) 5 56 (100000001) 1 86 (101010010) 2; 10
27 (1001001) 5; 6 57 (100000010) 2 87 (101010100) 3
28 (1001010) 2; 7 58 (100000100) 3 88 (101010101) 1
29 (1010000) 8 59 (100000101) 1; 4 89 (1000000000) 89
30 (1010001) 1; 9 60 (100001000) 5 90 (1000000001) 1

Table 1. Zeckendorff representations and winning tail sums.

the remainder of this section, we assume that the unskilled player removes tokens
randomly and that the skilled player is free from making errors. Further, we commit
to the following strategy for a skilled player in a losing position:

Losing position strategy (LPS). If the skilled player is currently playing from a
losing position, then he removes one token.
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Therefore, by Definition 9 if the skilled player is given a position (n, 2p′) such
that T (n)> 2p′, then set p= 1 and give the opponent the position (n−1, 2). Hence,
the unskilled player may take either one or two tokens on their next turn.

Lemma 29. Let the current position be (n, 2) to the unskilled player. Then for
p ∈ {1, 2}, we have P

[
(n− p, 2p)= losing position

]
≤

1
2 .

Proof. Assume the unskilled player has position (n, 2) where

n = Fir + Fir−1 + · · ·+ Fi1 .

If Fi1 = 1= F2, then p= 1 leaves n−1= Fir+Fir−1+· · ·+Fi2 but T (n−1)≥ F4=

3> 2(1)= 2p. Now, p= 2 leaves (n−2, 4). Since 2= p 6= T j (n), by Theorem 13,
(n− 2, 4) is a winning position. Now suppose Fi1 = 2= F3, then the role of p = 1
and p = 2 are the reverse of case 1. Finally, If Fi1 = m ≥ 3, then T (n)= Fi1 > 2
by the ZRT. Then, by Lemma 11, (n− p, 2p) where p = 1 or p = 2 is a winning
position. Hence, in all three instances, P

[
(n− p, 2p)= losing position

]
≤

1
2 . �

Lemma 30. Let n = Fir + Fir−1 + · · ·+ Fi1 . Then,
∣∣G(n)∣∣≤ ⌊ ir

2

⌋
.

Proof. Let n = Fir + Fir−1 + · · ·+ Fi1 and suppose Fir = Fk from some k. Define
n′ = Fir ′

+ Fir−1′
+ · · · + Fi1′

such that Fir ′
= Fk and G(n′) = (2, 2, . . . , 2; 2).

Let k = 2m for some m ∈ N. Recall, every a j ≥ 2 by the ZRT. Since there are
(2m− 2)/2+ 1= m multiples of 2 ∈ [2, k], we have m = k/2= |G(n′)|. Suppose
r >m. Then by Corollary 4 and Definition 15, r = |G(n)|>m implies that Fir > Fk

which is a contradiction. Now let k = 2m + 1. Note that bk/2c = m. Let n′ be
defined such that G(n′)= (ar ′, ar−1′, . . . , a2′; a1′) where Fir ′

= Fk and each a j ′ = 2
except for some ak′ = 3 where r ′ ≥ k ′ ≥ 1′. Since there are⌊

(2m+ 1)− 2
2

+ 1
⌋
= m

multiples of 2 ∈ [2, k], we have m = bk/2c = |G(n′)|. Suppose r > m. Then by
Corollary 4 and Definition 15, r = |G(n)| > m implies that Fir > Fk which is a
contradiction. �

Lemma 30 gives an upper bound on the number of terms in the Zeckendorff
representation of some n.

Lemma 31. For k ≥ 5, Fk ≥
pk
− 0.1
√

5
, where p =

√
5+ 1
2

.

Proof. The closed form of Fibonacci numbers is given by,

Fk =
pk
− (−p)−k
√

5
, where p =

√
5+ 1
2
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(see, e.g., [Bóna 2002]). Then, we have

(−p)−5
≈−0.09016994

(−p)−6
≈ 0.05572809.

By simple application of the derivative test from elementary calculus, we see that
this is a decreasing function for all k≥ 5. Hence, we have that−0.1≤ (−p)−k

≤ 0.1
for all k ≥ 5. Then for k ≥ 5, we have

Fk ≥
pk
− 0.1
√

5
. �

Corollary 32. Let the current position be (n, n− 1) to the unskilled player where
n ≥ 5 and Fk+1 > n ≥ Fk , then

P
[

p = T j (n)
]
≤

k
√

5
2(pk − 0.1)

where 1≤ j ≤ k and p is the unskilled player’s next move.

Proof. If n = Fk , then P[p = T j (n)] = 0 since the only tail is Fk = n and the
unskilled player may remove at most n − 1 tokens. Let Fk+1 > n > Fk so that
the number of terms in the Zeckendorf representation of n is at most k

2 terms by
Lemma 30 and hence at most k

2 possible tails. Then, since there are at least Fk

possible choices for p, by Lemma 31 we have for 1≤ j ≤ k,

P[p = T j (n)] =
k/2

(pk − 0.1)/
√

5
=

k
√

5
2(pk − 0.1)

. �

Corollary 32 shows that if an unskilled player begins the game where n ≥ 5, then
the probability that the unskilled player chooses p such that p is a winning move is
less than 2

5 and by elementary calculus, the probability function P[p = T j (n)] can
be shown to be a decreasing function for k ≥ 5 so that as n increases, the probability
that an unskilled player will choose a winning move from the beginning position
(or any other of the form (n, n− 1)) decreases exponentially. Note, if n = 3 then
the first player will lose and if n = 4, then only winning move the first player may
take is p = 1, thus the first player has a probability of 1

4 <
2
5 of correctly choosing

a tail.
We now have everything in place to state the main result of this section. This

upper bound is dependent on the first move of the unskilled player however, and
therefore cannot be calculated explicitly before the game begins.

Theorem 33. Let n > p and (n− p,m) be the first position to the skilled player
where m ∈ {n− 1, 2p}. Set n′ = n− p. Then, using the LPS,
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(1) if n 6= Fk for some k ≥ 4 then

P
[
Unskilled player wins

]
≤

1
5(2b−1)

, where b =
⌊n′

3

⌋
;

(2) if n = Fk for some k ≥ 5, then

P
[
Unskilled player wins

]
≤

1
2b , where b =

⌊n′

3

⌋
.

Proof. There are two nontrivial cases needed to prove the result.

Case 1. n 6= Fk for some n, k ∈N. If the skilled player starts, he wins every time.
Thus, skilled player receives the position (n − p, 2p) where n − 1 ≥ p ≥ 1. By
LPS, after the initial turn, the unskilled player will always receive (k, 2) for some
k < n and by Lemma 29, P[(n− p′, 2p′)= losing position] ≤ 1

2 where p′ ∈ {1, 2}.
Hence, at most, 3 tokens are removed after one round of play. Let n′ = n − p,
then there will be at least bn′/3c rounds played from this point in the game. By
Corollary 32 and repeated use of Lemma 29, we find that

P
[
Unskilled player wins

]
≤

(2
5

)( 1
2bn′/3c

)
=

1
5(2b−1)

, where b =
⌊n′

3

⌋
.

Case 2. n = Fk for some n, k ∈ N. By Lemma 11, removing p tokens make
(n− p, 2p) a winning position. Hence, the unskilled player loses if he goes first.
Now assume the skilled player begins and by LPS, takes 1 < T (n) tokens. By
Lemma 11, (n− 1, 2) is a winning position. Thus, this position is that of Case 1,
where the unskilled player doesn’t have the free move: (n, n− 1). Hence,

P
[
Unskilled player wins

]
≤

1
2bn′/3c

=
1
2b , where b =

⌊n′

3

⌋
. �

5. Final remarks

In this paper we have characterized all winning algorithms for the game Fibonacci
Nim. We have shown that the known winning algorithm is just a particular case of
the generalized wining algorithm. In addition, we have shown an upper bound on the
probability that an unskilled player may beat a skilled player if our unskilled player
guesses randomly and our skilled player plays according to our losing position
strategy.

Future research may look into different losing position strategies as well as
different types of unskilled players. For example, as a second losing position
strategy, by taking more than one token from a losing position, we may find a
tighter upper bound on the probability that the unskilled player wins. Additionally,
we could introduce a semiskilled player, one whose guesses are not random but are
based on some rule.
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