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The median is a way of measuring the center of a set of data that is robust to
outlying values. However, the concept of a median for three-dimensional rotation
data has been largely nonexistent. Although there are already ways to measure
the center of three-dimensional rotation data using the idea of a “mean rotation”,
the median estimator developed here is shown to be less influenced by outlying
data points. A simulation study that investigates scenarios under which the
median is an improvement over the mean will be discussed. An application to a
three-dimensional data set in the area of human motion will be considered.

1. Introduction

Data in the form of three-dimensional rotations are common in the areas of hu-
man motion and biomechanics, since they can be used to characterize the relative
orientation of one body segment with respect to another during movement. We
use data collected in a study by Rancourt, Rivest, and Asselin [Rancourt et al.
2000] to motivate the need for a median for this type of data. During the study,
individuals drilled into six locations on a vertical panel, with each subject repeating
the drilling five times. Infrared emitting diodes placed on the subject’s hand,
forearm, arm, and torso allowed for collection of orientations of the wrist, elbow,
and shoulder during the drillings. Figure 1 shows five repeated wrist orientations
for the drillings performed by one of the subjects studied. Since each observation
is a three-dimensional rotation, it can be represented mathematically as a 3× 3
orthogonal rotation matrix with determinant 1 (i.e., is a member of the rotation
group SO(3)) and can be displayed graphically as a set of three points on the sphere,
corresponding to the locations of three orthogonal axes. Notice that one of the five
orientations seems to be an outlying value, as it is not clustered near the other four
observations.
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Figure 1. Five repeated wrist orientations from the drilling study
(represented as a set of three points).

A common first step in data analysis is to characterize data according to some
measure of center, and we attempt to do so here for the repeated drilling data. First
consider using the “mean rotation” that is commonly used as a measure of center
for three-dimensional rotation data [León et al. 2006; Bingham et al. 2009; Khatri
and Mardia 1977]. If O1, . . . , On ∈ SO(3) is a random sample of three-dimensional
rotations and O =

∑n
i=1 Oi , the mean rotation is defined as T = V W ∈ SO(3),

where O = V6W is the singular value decomposition of O. The singular value
decomposition is necessary since O itself is not necessarily an element of SO(3)
and therefore cannot serve as a mean rotation. The mean rotation of the five wrist
orientations shown in Figure 1 was found and is displayed as the set of three axes
in Figure 2.

Figure 2. Five repeated wrist orientations from the drilling study
(represented as a set of three points) and the mean rotation (repre-
sented as a set of three perpendicular axes).
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Figure 3. Stereographic projections of the five repeated wrist ori-
entations displayed in Figure 2, with the center point representing
the mean.

Figure 3 shows the same data as a stereographic projection, with the open circle
at the center corresponding to the position of the mean rotation. It can be seen that
the mean is not robust to outliers, as it is pulled towards the one observation that
might be considered an outlier. In cases like this, a median would be preferred as
a measure of center due to its robustness. While the median is typically thought
of as the value that divides an ordered distribution in half, this definition is only
easily applied to data that exhibit some type of natural ordering, and this property is
nonexistent for three-dimensional rotation data. Therefore, we propose a possible
median estimator for three-dimensional rotations in Section 2. In Section 3 we
examine the effectiveness of this median through a simulation study, and in Section 4
we revisit the wrist orientations to show that the median provides a better measure
of center for this data.

2. Development of a median estimator

Because three-dimensional rotation data do not have a natural ordering, we cannot
simply define the median as the value that divides the ordered distribution in half.
Instead we will consider the optimality property of the median when developing a
possible median estimator for such data. The optimality property tells us that the
mean absolute deviation attains a minimum when the deviation is measured from
the median [Lee 1995], so that for a random variable X , E |X −m| is minimized
where m =median.

To use the optimality property for three-dimensional rotations, we need a concept
of “distance” (or deviation) between two orientations. For O1, O2 ∈ SO(3), there
exists a vector U ∈ R3 and an angle r ∈ [0, π] such that a rotation of O1 about U
by r results in O2. The angle r is sometimes referred to as a misorientation angle
[Morawiec 2004] and we consider this angle as a measure of distance between
rotations O1 and O2. Suppose P1, . . . , Pn is a set of n rotations in SO(3), and
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let r(Pi , M) denote the misorientation angle between Pi and M. We define the
median rotation as the element of SO(3) that minimizes f (M)=

∑n
i=1 r(Pi , M),

so that the average deviation from all data points would be minimized by the median
rotation. In the next section we compare this median rotation to the mean rotation
introduced in Section 1 through a simulation study.

3. Simulation study

To examine the effectiveness of the median estimator defined in Section 2, we
simulate random rotations from the uniform axis-random spin (UARS) distributions
of [Bingham et al. 2009] under various conditions. The UARS distributions are a
symmetric class of distributions for three-dimensional rotations, and Bingham et
al. [2009] begin their development of this class by discussing a technique for data
simulation. Simulation begins by starting with the 3× 3 identity matrix, denoted
by I3×3. Then a unit vector U that is uniformly distributed on the R3-sphere is
generated. Next, the angle θ ∈ (−π, π] is independently generated from a circular
distribution that is symmetric about 0 and depends on a concentration parameter
κ (with density C(θ | κ)). Rotating I3×3 around U by the angle θ results in an
orientation P . If this process is repeated n times, we arrive at a set of orientations
P1, . . . , Pn that is scattered about the center I3×3. Since κ controls the angle θ
that is generated from the circular distribution, it also controls the spread of the
resulting orientations from their center. Now, by letting Mi = SP i for i = 1, . . . , n,
the rotations M1, . . . , Mn have center at S. The rotation Mi is said to have UARS
distribution with parameters S (indicating center) and κ (indicating spread), which
is denoted by Mi ∼ UARS(S, κ).

For the simulation study considered here, we will use the UARS class with θ
coming from the von Mises circular distribution with mean 0. The von Mises
distribution is the most commonly used circular distribution because it is symmetric
and unimodal, and as κ→∞, the distribution approaches the normal distribution
with standard deviation 1/κ . The density for θ is

C(θ | κ)= [2π I0(k)]−1 exp[κ cos(θ)], θ ∈ (−π, π],

where I0(κ) is the modified Bessel function of order zero. (For more on the von
Mises distribution see [Mardia and Jupp 2000].) See Figure 4 for a plot of the
von Mises density for κ = 5 and κ = 10, which shows how the concentration
parameter κ affects the spread of the distribution. We refer to the von Mises version
of the UARS class as vM-UARS.

For the simulation study considered here, we generated S1 and S2 uniformly
in SO(3). A total of n rotations, Q1, . . . , Qn , were simulated from the vM-UARS
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Figure 4. Von Mises circular density for concentration parameter
κ = 5, 10.

distribution, with a proportion p being vM-UARS(S1, κ) and 1− p being vM-
UARS(S2, κ). We think of this data set as being composed of 100p% “outliers”, so
that the data is centered at S2 with outliers near S1. We then found the misorientation
angle between S1 and S2, called V (i.e., V = r(S1, S2)). We think of V as measuring
the distance between the center of the data and where the outliers are located. The
values of κ considered in the simulation study were 5, 10, 50, 100, and 500. The
values of n considered were 10, 50, 100, and 500. The values of p used for each
choice of n are given in Table 1. Figure 5 shows a plot of Q1, . . . , Q100 on the
sphere for two different cases of κ , p, and V . In both instances, the proportion of
bolder, cross-shaped points is p (representing the “outliers”).

Once Q1, . . . , Qn were generated, the mean and median rotations, referred to
as N and M, respectively, were found. To measure the “distance” from the mean
to the simulated rotations, we considered the sum of the misorientation angles∑n

i=1 r(Qi , N). A similar measure,
∑n

i=1 r(Qi , M), was found for the median.
We compared the mean and median by considering the difference of these distances,

Choices for p

n = 10 0.1, 0.3, 0.5
n = 50 0.04, 0.1, 0.3, 0.5
n = 100 0.01, 0.05, 0.1, 0.5
n = 500 0.002, 0.01, 0.1, 0.5

Table 1. Choices of p (proportion of “outliers”) used in the simu-
lation study for each value of n considered.
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Figure 5. 100 simulated orientations with (left) κ = 50, p = 0.10,
and V = 0.488 and (right) κ = 500, p = 0.50, and V = 1.092.

R(M, N)=
∑n

i=1 r(Qi , N)−
∑n

i=1 r(Qi , M). Note that larger values of R(M, N)
indicate that the median rotation is outperforming the mean rotation.

For each combination of κ and n, 1000 rotation data sets were generated. For
each data set, p was chosen randomly from the possible values listed in Table 1. A
plot was then created with V, the “distance” between the uniformly selected S1 and
S2, on the horizontal axis and R= R(M, N) on the vertical axis, with different plot
characters and shades of gray used to represent the various values for p. Although
a total of 20 plots were made (one for each combination of κ and n), only a few,
which show the general relationships seen in all plots, are provided here.

Figure 6 contains the plots for (κ, n) combinations of (5, 10), (10, 50), (50, 100),
and (500, 100). As expected, when κ increases (meaning the simulated data is less
spread) or n increases, the relationship between V and R becomes more defined. An
interesting and unexpected feature seen in the plots is the quadratic-type relationship
between V and R. We see that the maximum values of R, which coincide with the
median most outperforming the mean, happen in the middle of the range of V values.
One might expect that R would increase as V increases and the outliers move farther
from the rest of the data. Instead, when the outliers are at a misorientation angle
of π away, the mean and median are almost identical. This phenomenon is due
to the fact that the three axes are orthogonal, making it impossible for them to
be simultaneously pulled toward the outliers. Figure 7 contains 100 orientations
plotted as a set of three points on the sphere, of which 10 would be considered
outliers (p = 0.10). The points around the x-, y-, and z-axes have been plotted
using three different colors so that it is clear which outliers belong to which cluster
of points. The angle between the cluster of points of seven points and the three
outliers is V = π . The mean and median are indistinguishable from one another on
this plot, and both are represented by the set of three axes. If one axis were to be
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Figure 6. Plot of R (vertical axis) against V (horizontal axis) for
1000 simulated data sets using (top left) κ = 5, n = 10, (top right)
κ = 10, n = 50, (bottom left) κ = 50, n = 100, and (bottom right)
κ = 500, n = 100.

pulled toward the outliers, the other axes would not be able to be pulled toward the
outliers and still remain orthogonal. As a result, the mean is not influenced by the
outliers in this case. Therefore, the quadratic-type relationship between V and R,
while unexpected, is understandable after considering the orthogonality of the axes
within a three-dimensional rotation data point.

We can also discuss the plots in regards to the proportion of outliers, p. In all
plots we see that with p = 0.50 the mean and median are generally equivalent (R
near 0). This is due to the fact that with an equal number of data points coming
from the two centers S1 and S2, both the mean and median will tend to be half-way
between these centers (with neither measure experiencing more pull toward one
center). From the plots presented in Figure 6 it appears that, with the exception
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Figure 7. Plot of 100 orientations, represented as a set of three
points on the sphere. Here p = 0.10, V = π , and the set of three
axes represents the mean/median.

of p = 0.50, the value of R increases as the percentage of outliers increases. So
the median is preferred. However, there are many other values of p that could be
chosen. With p = 0.50 producing low values of R, it was expected that at some p
we would achieve maximum values of R before again seeing a decrease. Therefore,
for one of the κ and n combinations, a simulation was done with more possible
values of p. Figure 8 shows the relationship between V and R for p = 0.06, 0.12,
0.18, 0.24, 0.30, 0.36, 0.43, and 0.50, where κ = 50 and n = 100. From the plot,
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Figure 8. Plot of R against V for 1000 simulated data sets using
κ = 50 and n = 100.
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Figure 9. Five repeated wrist orientations for the drilling study
(represented as a set of three points) and the median rotation (rep-
resented as a set of three perpendicular axes).

we see that the median most outperforms the mean near p = 0.30. As p increases
from 0.30 to 0.50 the value of R begins to decrease. Even though the median is
robust to outlying values, as we let p approach 0.50, it is ambiguous as to which
observations would comprise the “outliers” (with p = 0.50 being a situation that
might be best labeled as “bimodal” rather than having outliers at all).

4. Application to drilling data

Now that we have investigated the effectiveness of the median under various param-
eter choices, we return to the drilling data of [Rancourt et al. 2000]. In Section 1
it was seen that the mean orientation for the five repeated wrist orientations was
pulled toward the outlying value. Thus, for this data set, it is desirable to use the
median rotation as a measure of center. Figure 9 shows the five repeated wrist
orientations on the sphere with the set of perpendicular axes now representing the
median rotation. Figure 10 shows the data as a stereographic projection, with the
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Figure 10. Stereographic projections of the five repeated wrist
orientations, in black, with the center point at (0,0) representing
the median and the open circle representing the mean.
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point in the center at (0, 0) corresponding to the median rotation and the open circle
representing the mean rotation. Both figures show the median near the center of
four of the orientations, illustrating the fact that the median is not affected by the
outlying value like the mean is.

This small data set with repeated drilling rotations is just one example of a
situation in which a median estimator would be preferred over the mean estimator
that is typically used to measure the center for three-dimensional rotation data. In
subject areas where three-dimensional rotations are common, like the study of human
motion, data sets with outliers are bound to show up, making the median estimator
developed in Section 2 an important addition to statistics for three-dimensional
rotation data.
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