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The surgery unknotting number of a Legendrian link is defined as the minimal
number of particular oriented surgeries that are required to convert the link into a
Legendrian unknot. Lower bounds for the surgery unknotting number are given
in terms of classical invariants of the Legendrian link. The surgery unknotting
number is calculated for every Legendrian link that is topologically a twist knot
or a torus link and for every positive, Legendrian rational link. In addition,
the surgery unknotting number is calculated for every Legendrian knot in the
Legendrian knot atlas of Chongchitmate and Ng whose underlying smooth knot
has crossing number 7 or less. In all these calculations, as long as the Legendrian
link of j components is not topologically a slice knot, its surgery unknotting
number is equal to the sum of j�1 and twice the smooth 4-ball genus of the
underlying smooth link.

1. Introduction

A classical invariant for smooth knots is the unknotting number: the unknotting
number of a diagram of a knot K is the minimum number of crossing changes
required to change the diagram into a diagram of the unknot; the unknotting number
of K is the minimum of the unknotting numbers of all diagrams of K. In the
following, we will define a surgery unknotting number for Legendrian knots and
links.

Legendrian links are smooth links that satisfy an additional geometric condition
imposed by a contact structure. We will focus on Legendrian links in R3 with its
standard contact structure. The notion of Legendrian equivalence is more refined
than smooth equivalence: there is only one smooth unknot, but there are an infinite
number of Legendrian unknots. Figure 1 shows the front projections of three
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Figure 1. Three different Legendrian knots that are topologically
the unknot.

different Legendrian unknots; the infinite structure representing all Legendrian
unknots is depicted in Figure 7 on page 281.

The act of changing a crossing (smoothly passing a knot through itself) is not a
natural operation in a contact manifold. Instead, given a Legendrian link, we will
attempt to arrive at a Legendrian unknot through a Legendrian “surgery” operation
in which two oppositely oriented strands in a Legendrian 0-tangle are replaced
by an oriented, Legendrian 1-tangle as illustrated in Figure 2. It is shown in
Proposition 3.5 that every Legendrian link can become a Legendrian unknot after a
finite number of surgeries. The surgery unknotting number of a Legendrian link ƒ,
�0.ƒ/, measures the minimal number of these surgeries that are required to convert
ƒ to a Legendrian unknot; see Definitions 3.1 and 3.6. In the following, our goal is
to study and calculate this Legendrian invariant �0.ƒ/.

Main results. Lower bounds on �0.ƒ/ exist in terms of the classical invariants
of ƒ. These invariants include invariants of the underlying smooth link type Lƒ

and the classical Legendrian invariants of ƒ: the Thurston–Bennequin, tb.ƒ/, and
rotation number, r.ƒ/, as defined in Section 2.

Figure 2. Oriented Legendrian surgeries: a basic, compatibly ori-
ented 0-tangle is replaced by a basic, compatibly oriented1-tangle.
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Theorem 1.1. Let ƒ be a Legendrian link. Then:

(1) tb.ƒ/Cjr.ƒ/jC 1� �0.ƒ/.

(2) If ƒ has j components, Lƒ denotes the underlying smooth link type of ƒ, and
g4.Lƒ/ denotes the smooth 4-ball genus of Lƒ,1 then

2g4.Lƒ/C .j � 1/� �0.ƒ/:

Remark 1.2. In parallel to Theorem 1.1 (1), when ƒ is a Legendrian knot with
underlying smooth knot type Kƒ, the well known slice-Bennequin inequality says
that

tb.ƒ/Cjr.ƒ/jC 1� 2g4.Kƒ/: (1-1)

There are now a number of proofs of this result, but all use deep theory. Lisca
and Matić [1998] prove this using their adjunction inequality obtained by Seiberg–
Witten theory. See also [Akbulut and Matveyev 1997; Rudolph 1995]. In contrast,
the proof of Theorem 1.1 is elementary and is given in Lemmas 3.8 and 3.9.

When ƒ is a knot, combining Theorem 1.1(2) and the slice-Bennequin inequal-
ity (1-1), we find:

Corollary 1.3. For any Legendrian knot ƒ, if Kƒ denotes the smooth knot type of
ƒ then

tb.ƒ/Cjr.ƒ/jC 1� 2g4.Kƒ/� �0.ƒ/:

Thus �0.ƒ/D 2g4.Kƒ/ when �0.ƒ/D tb.ƒ/Cjr.ƒ/jC 1.

As we will see below, this corollary sometimes allows us to calculate the smooth
4-ball genus of a knot.

Using the established lower bounds, we can calculate �0.ƒ/ when the underlying
smooth link type of ƒ falls within some important families.

Theorem 1.4. (1) If ƒ is a Legendrian knot that is topologically a nontrivial twist
knot, then �0.ƒ/D 2.

(2) If ƒ is a j -component Legendrian link that is topologically a .jp; j q/-torus
link, jpj> q > 1 and gcd.p; q/D 1, then

�0.ƒ/D .jjpj � 1/.j q� 1/:

Theorem 1.4 is proved in Section 4 as Theorems 4.1 and 4.2. The proof of
this theorem relies heavily on the classification of Legendrian twist knots given by
Etnyre, Ng and Vértesi [Etnyre et al. 2013], and the classification of Legendrian
torus knots by Etnyre and Honda [2001], which was extended to a classification of
Legendrian torus links by Dalton [2008]. When ƒ is topologically a positive torus

1That is, g4.Lƒ/ denotes the minimal genus of a smooth, compact, connected, oriented surface
†� B4 with @†DLƒ � R3 � S3 D @B4.
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link, p > 0, of maximal Thurston–Bennequin invariant, the calculation of �0.ƒ/

is obtained realizing the lower bound given in Theorem 1.1 by the Legendrian
invariants of ƒ. Thus by Corollary 1.3, which employs the deep slice-Bennequin
inequality in (1-1), we are able to deduce the Milnor conjecture about torus knots,
originally proved by Kronheimer and Mrowka:

Corollary 1.5 [Kronheimer and Mrowka 1993]. If T .p; q/ is a .p; q/-torus knot,
jpj> q > 1, then

2g4.T .p; q//D .jpj � 1/.q� 1/:

By comparing �0 of the Legendrian and g4 of the underlying smooth link type,
we can rephrase the conclusions of Theorem 1.4 as:

Corollary 1.6. If ƒ is a Legendrian link that is topologically a nonslice twist knot2

or a j -component torus link, Lƒ, then

�0.ƒ/D 2g4.Lƒ/C .j � 1/:

As an additional family of Legendrian links, we consider positive, Legendrian
rational links. These links are defined as Legendrian numerator closures of the
Legendrian rational tangles studied, for example, in [Traynor 1998] and [Schneider
2011]. These links are positive in the sense that an orientation is chosen on the
components so that all the crossings have a positive sign. Such Legendrian links
are specified by a vector .cn; : : : ; c1/ of positive integers; see Definition 4.4 and
Figure 18. Lemma 4.5 gives conditions on the ci that guarantee that the link is
positive.

Theorem 1.7. If ƒ.cn; : : : ; c2; c1/ is a positive, Legendrian rational link, then

�0.ƒ.cn; : : : ; c2; c1//D
X
i odd

ci �p.n/;

where p.n/ equals 1 when n is odd and equals 0 when n is even.

This is proved in Section 4; see Theorem 4.6.

Remark 1.8. When ƒ is a positive, Legendrian rational link, the calculation of
�0.ƒ/ is obtained realizing the lower bound given in Theorem 1.1 given by the
classical Legendrian invariants of ƒ. Thus by Corollary 1.3, when ƒ.cn; : : : ; c1/

is a positive, Legendrian rational knot, Theorem 1.7 gives a formula for twice
the smooth 4-ball genus of the underlying smooth knot. This can be used to get

2Casson and Gordon [1986] proved that the only twist knots that are slice are the unknot, 61, and
m.61/.
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formulas for the smooth 4-ball genus of a knot in terms of its rational notation. In
particular,

g4.52/D g4.N.3; 2//D
1
2
�0.ƒ.3; 2//D

1
2
.2/D 1;

g4.75/D g4.N.3; 2; 2//D
1
2
�0.ƒ.3; 2; 2//D

1
2
.2C 3� 1/D 2;

g4.N.5; 244; 4; 16; 3; 104; 2; 12; 1//D 1
2
.1C 2C 3C 4C 5� 1/:

This is an alternate to formulas for calculating the smooth 4-ball genus in terms
of crossings and Seifert circles as given by Nakamura in [2000]. In turn, using
Nakamura’s formula, we see that when the underlying link type ofƒ.cn; : : : ; c2; c1/

is a 2-component link Lƒ,

�0.ƒ.cn; : : : ; c2; c1//D 2g4.Lƒ/C 1I

see Remark 4.7.

Given the above calculations, it is natural to ask:

Question 1.9. Ifƒ is a Legendrian knot that is topologically a nonslice knot Kƒ, is
�0.ƒ/D 2g4.Kƒ/? More generally, ifƒ is a Legendrian link of j � 2 components
that is topologically the link Lƒ, is �0.ƒ/D 2g4.Lƒ/C .j � 1/?

To investigate the knot portion of this question, we examined Legendrian repre-
sentatives of knots with crossing number 7 or less. There is not yet a Legendrian
classification of all these knot types, but a conjectured classification is given by
Chongchitmate and Ng [2013].

Proposition 1.10. Assuming the conjectured classification of Legendrian knots in
[Chongchitmate and Ng 2013],3 if ƒ is a Legendrian knot that is topologically a
nonslice knot Kƒ with crossing number 7 or less, �0.ƒ/D 2g4.Kƒ/.

The only non-torus and non-twist knots with crossing number at most 7 are
62;m.62/, 63 D m.63/, 73, m.73/, 74, m.74/, 75, m.75/, 76, m.76/, 77, and
m.77/. While doing the calculations for Legendrians with these knot types, in
general we found that for a Legendrian ƒ whose underlying smooth knot type Kƒ

satisfies g3.Kƒ/D g4.Kƒ/, where g3.Kƒ/ denotes the (3-dimensional) genus of
the knot, it is fairly straight forward to show that �0.ƒ/D 2g4.Kƒ/. Legendrians
that are topologically 73;m.73/; 74;m.74/; 75, and m.75/ fall into this category.
For the remaining knot types under consideration, the calculation of the smooth
4-ball genus follows from the fact that the topological unknotting number of these
knots is equal to 1. We show that in a front projection of a Legendrian knot, it is
possible to locally change any negative crossing to a positive one by 2 surgeries;
see Lemma 5.2. This allowed us to prove Proposition 1.10 in the cases where ƒ is

3Potential duplications in their atlas will not affect the statement.



278 BIANCA BORANDA, LISA TRAYNOR AND SHUNING YAN

topologically 62; 63 Dm.63/; 76, or 77. For the remaining cases of m.62/, m.76/,
and m.77/, results of [Soteros et al. 2011] show that it is not possible to find a
front projection that can be unknotted at a negative crossing. However, we found
front projections that could be unknotted at a positive crossing in a special “S” or
“hooked-X” form: a positive crossing in one of these special forms can be locally
changed to a negative crossing by 2 surgeries; see Lemma 5.5.

The Lagrangian motivation and discussion. All of our calculations indicate that
�0.ƒ/ is measuring an invariant of the underlying smooth link type and that this
invariant will be the same for ƒ and ƒ0 when they represent smooth knots that
differ by the topological mirror operation. Below is an explanation for why this
may be true.

Although the definition of the surgery unknotting number has been formulated
above combinatorially, the motivation comes from trying to understand the flexibility
and rigidity of Lagrangian submanifolds of a symplectic manifold. From [Bourgeois
et al. � 2013] (see also [Ekholm et al. 2012]) the existence of an unknotting
surgery string .ƒn; : : : ; ƒ0/, as defined in Definition 3.1, implies the existence of
an oriented Lagrangian cobordism† in .R�R3Df.s;x;y; z/g/\f0� s�ng so that
.†\fs D ig/Dƒi , for i D n; : : : ; 0. Furthermore, if ƒ0 is the Legendrian unknot
with maximal Thurston–Bennequin invariant, this cobordism can be “filled in” with
a Lagrangian N† � fs � ng so that @ N† D ƒn. In fact, it is shown in [Chantraine
2010] that if ƒ0 is not the Legendrian unknot with maximal Thurston–Bennequin
invariant, then the cobordism † cannot be filled in to N†; moreover, when there does
exist the filling to N† and the smooth underlying knot type of ƒn is Kn, then the
genus of N† agrees with the smooth 4-ball genus of Kn.

From this Lagrangian perspective, it is a bit more natural to consider surgery
strings .ƒn; : : : ; ƒ0/ where ƒ0 is a Legendrian unlink (a trivial link of Legendrian
unknots), and define a corresponding “surgery unlinking number”; this is a project
that the second author has begun to pursue with other undergraduates. A Lagrangian
analogue of Question 1.9 is:

Question 1.11. If ƒ is a Legendrian knot with underlying smooth knot type Kƒ,
does there exist a Lagrangian cobordism constructed from Legendrian isotopy and
oriented Legendrian surgeries between ƒ and ƒ0, a Legendrian that is a smooth
unlink, that realizes g4.Kƒ/?

Any Lagrangian constructed from Legendrian isotopy and oriented Legendrian
surgeries would be in ribbon form; this means that the restriction of the height
function, given by the s coordinate, to the cobordism would not have any local
maxima in the interior of the cobordism. So a positive answer to Question 1.11
would imply that the slice genus agrees with the ribbon genus; for some background
on this and related problems, see, for example, [Livingston 2005].
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2. Background information on Legendrian links

Below is some basic background on Legendrian links. More information can be
found, for example, in [Etnyre 2005].

The standard contact structure on R3 is the field of hyperplanes � where �p D
ker.dz�ydx/p . A Legendrian link is a submanifold, L, of R3 diffeomorphic to a
disjoint union of circles so that for all p 2L, TpL� �p . It is common to examine
Legendrian links from their xz-projections, known as their front projections. A
Legendrian link will generically have an immersed front projection with semicubical
cusps and no vertical tangents; conversely, any such projection can be uniquely
lifted to a Legendrian link using y D dz=dx. Figure 3 shows Legendrian versions
of the trefoils 31 and m.31/.
ƒ0 and ƒ1 are equivalent Legendrian links if there exists a 1-parameter family

of Legendrian links ƒt joining ƒ0 and ƒ1. In fact, Legendrian links ƒ0; ƒ1 are
equivalent if and only if their front projections are equivalent by planar isotopies
that do not introduce vertical tangents and the Legendrian Reidemeister moves as
shown in Figure 4.

   

 

 

z

x

Figure 3. Left: front projection of a Legendrian knot that is topo-
logically the (negative/left) trefoil 31. Right: front projection of
a Legendrian knot that is topologically the mirror trefoil m.31/.
At crossings, it is not necessary to specify which strand is the
overstrand: the strand with lesser slope will always be on top.

1 2

3

Figure 4. The three Legendrian Reidemeister moves. There is
another type 1 move obtained by flipping the planar figure about a
horizontal line, and there are three additional type 2 moves obtained
by flipping the planar figure about a vertical, a horizontal, and both
a vertical and horizontal line.
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Figure 5. Negative (left) and positive (right) crossings.

Every Legendrian knot and link has a Legendrian representative. In fact, every
Legendrian knot and link has an infinite number of different Legendrian repre-
sentatives. For example, Figure 1 shows three different Legendrians that are all
topologically the unknot. These unknots can be distinguished by classical Legen-
drian invariants, the Thurston–Bennequin and rotation number. These invariants
can easily be computed from a front projection of the Legendrian link once we
understand how to assign a ˙ sign to each crossing and an up/down direction to
each cusp.

A positive (negative) crossing of a front projection of an oriented Legendrian
link is a crossing where the strands point to the same side (opposite sides) of a
vertical line passing through the crossing point; see Figure 5. Each cusp can also be
assigned an up or down direction; see Figure 6. Then for an oriented Legendrian
link ƒ, we have the following formulas for the Thurston–Bennequin, tb.ƒ/, and
rotation number, r.ƒ/, invariants:

tb.ƒ/D P �N �R; r.ƒ/D 1
2
.D�U /; (2-1)

where P is the number of positive crossings, N is the number of negative crossings,
R is the number of right cusps, D is the number of down cusps, and U is the
number of up cusps in a front projection of ƒ. Given that two front projections of
equivalent Legendrian links differ by the Legendrian Reidemeister moves described
in Figure 4, it is easy to verify that tb.ƒ/ and r.ƒ/ are Legendrian link invariants.

The two unknots in the second line of Figure 1 are obtained from the one at the
top by adding an up or down zig-zag (also known as a � stabilization). In general,
this stabilization procedure will not change the underlying smooth knot type but
will decrease the Thurston–Bennequin number by 1; adding an up (down) zig-zag
will decrease (increase) the rotation number by 1. If ƒ is a Legendrian knot, we
will use the notation S˙.ƒ/ to denote the double stabilization of ƒ, the Legendrian
knot obtained by adding both a positive and negative zig-zag.

Figure 6. Right and left down cusps (left) and right and left up
cusps (right).
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�1r D 01
tbD�1

�2

�3

Figure 7. The single-peaked mountain of all Legendrian unknots.

In fact, as discovered by Eliashberg and Fraser, all Legendrian unknots are
classified by their Thurston–Bennequin and rotation numbers:

Theorem 2.1 [Eliashberg and Fraser 2009; Etnyre and Honda 2001]. Suppose ƒ0

and ƒ0
0

are oriented Legendrian knots that are both topologically the unknot. Then
ƒ0 is equivalent to ƒ0

0
if and only if tb.ƒ0/D tb.ƒ0

0
/ and r.ƒ0/D r.ƒ0

0
/.

Figure 7 describes all the Legendrian unknots. Notice that any Legendrian
unknot is equivalent to one that is obtained by adding up and/or down zig-zags
to the unknot with Thurston–Bennequin number equal to �1 and rotation number
equal to 0 shown in Figure 1.

In general, it is an important question to understand the “geography” of other knot
types. By [Etnyre and Honda 2001; Etnyre et al. 2013], we understand the mountain
ranges for all torus and twist knots. The Legendrian knot atlas [Chongchitmate
and Ng 2013] gives the known and conjectured mountain ranges for all Legendrian
knots with arc index at most 9; this includes all knot types with crossing number at
most 7 and all non-alternating knots with crossing number at most 9.

3. The surgery unknotting number

In this section, we define the surgery operation, show that every Legendrian link
can be unknotted by surgeries, define the surgery unknotting number, and give some
basic properties of the surgery unknotting number.

The surgery operation can be viewed as a tangle surgery: the replacement of
one Legendrian tangle by another. A basic, compatibly oriented Legendrian 0-
tangle is a Legendrian tangle that is topologically the 0-tangle where the strands
are oppositely oriented and each strand has neither crossings nor cusps; the two
basic, compatibly oriented Legendrian 0-tangles can be seen on the left side of
Figure 2. A basic, compatibly oriented Legendrian1-tangle is Legendrian tangle
that is topologically the1-tangle where the strands are oppositely oriented and
each strand has precisely one cusp and no crossings; the two basic, compatibly
oriented Legendrian1-tangles can be seen on the right side of Figure 2.

Definition 3.1. An oriented, Legendrian surgery of an oriented, Legendrian link is
the Legendrian link obtained by replacing a basic, compatibly oriented Legendrian
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0-tangle with a basic, compatibly oriented Legendrian1-tangle; see Figure 2. An
oriented surgery string consists of a vector of oriented, Legendrian links

.ƒn; ƒn�1; : : : ; ƒ0/;

where, for all j 2 fn�1; : : : ; 0g, ƒj is obtained from ƒjC1 by Legendrian isotopy
and an oriented, Legendrian surgery. An oriented, unknotting surgery string of
length n for ƒ consists of an oriented surgery string .ƒn; ƒn�1; : : : ; ƒ0/ where
ƒn Dƒ and ƒ0 is topologically an unknot.

To start, we have the following relationships between the classic invariants of
two Legendrian links related by surgery:

Lemma 3.2. If ƒ is an oriented, Legendrian link and ƒ0 is obtained from ƒ by an
oriented, Legendrian surgery, then:

(1) the parity of the number of components of ƒ and ƒ0 differ;

(2) tb.ƒ0 /D tb.ƒ/� 1, and r.ƒ0 /D r.ƒ/.

Proof. The statements about the Thurston–Bennequin and rotation numbers are
easily verified using Equation (2-1). Regarding the parity, one surgery to a knot
will always produce a link of two components, while doing a surgery to a link will
increase or decrease the number of components by 1 depending on whether or not
the strands in the 0-tangle belong to the same component of the link. �

Recall that for any Legendrian knotƒ, the Legendrian knotƒ0DS˙.ƒ/ obtained
as the double ˙ stabilization of ƒ will have r.ƒ0 /D r.ƒ/ and tb.ƒ0 /D tb.ƒ/� 2.
Thus it is potentially possible that ƒ0 can be obtained from ƒ by two oriented
Legendrian surgeries. In fact, it is possible.

Lemma 3.3. For any oriented, Legendrian knot ƒ there exists an oriented surgery
string .ƒ2; ƒ1; ƒ0/ with ƒ2 Dƒ and ƒ0 D S˙.ƒ/.

Proof. These surgeries are illustrated in Figure 8. Every Legendrian link ƒ must
have a right cusp. By a Legendrian isotopy, we can pull a right cusp far to the right
and perform one surgery near this right cusp. This produces a link consisting of
the original link and a Legendrian unknot. After a Legendrian isotopy, a second
surgery can be done using one strand near the same cusp of the original link and a
strand from the unknot. The result is S˙.ƒ/. �

In the chart of Legendrian unknots given in Figure 7, we see that any two unknots
with the same rotation number are related by a sequence of double ˙ stabilizations.
Thus we get:

Corollary 3.4. If ƒ and ƒ0 are oriented, Legendrian unknots with r.ƒ/D r.ƒ0 /

and tb.ƒ/D tb.ƒ0 /C 2m, for m� 0, then there exists an oriented surgery string
.ƒ2m; ƒ2m�1; : : : ; ƒ0/, where ƒ2m Dƒ, and ƒ0 Dƒ

0.
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Figure 8. Two oriented, Legendrian surgeries produce S˙.ƒ/

from ƒ.

Thus if we can reach a Legendrian unknot by surgeries, then we can reach an
infinite number of Legendrian unknots by surgery. The basis for our new invariant
is the fact that every Legendrian link can be “unknotted” by a string of surgeries:

Proposition 3.5. For any oriented, Legendrian link ƒ, there exists an oriented, un-
knotting surgery string .ƒDƒu; ƒu�1; : : : ; ƒ0/. Moreover, ifƒ has j components
and there exists a front projection of ƒ with m crossings, then u� 2mC j � 1.

Proof. Assume that there is a front projection of ƒ with m crossings. We will first
show that there is an oriented surgery string . Qƒm; Qƒm�1; : : : ; Qƒ0/, where Qƒm Dƒ

and Qƒ0 is a trivial link of Legendrian unknots. If Qƒ0 has c components, we will
then show that it is possible to do an additional c � 1 surgeries to get this into a
single component unknot.

Given the initial Legendrian linkƒ having a projection with m crossings, assume
that n of these crossings are negative. It is then possible to construct a surgery string
. Qƒm; Qƒm�1; : : : ; Qƒm�n/ where Qƒm D ƒ and Qƒm�n has a front projection with
m� n crossings, all of which are positive. This surgery string is obtained by doing
a surgery to the right of each negative crossing and then doing a Legendrian isotopy
to remove the positive crossing introduced by the surgery, as shown in Figure 9.
Next, by applying a planar Legendrian isotopy, it is possible to assume that all the
crossings of Qƒm�n have distinct x-coordinates. The left cusps associated to the
leftmost positive crossing are either nested or stacked and fall into one of the 6 cases
listed in Figure 10; by an additional Legendrian planar isotopy, we can assume that
all other left cusps occur to the right of this crossing. For each case, it is possible

Figure 9. A negative crossing can be removed by an oriented
Legendrian surgery and then Legendrian isotopy.
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Figure 10. Three cases for the leftmost positive crossing and their
associated left cusps; three additional cases are obtained by revers-
ing the orientations on both strands.

to do a surgery immediately to the right of this leftmost crossing. After Legendrian
Reidemeister moves, the crossing is eliminated and the number of crossings of
the projection of the resulting link has decreased by 1; see Figure 10. What was
the second leftmost positive crossing is now the leftmost positive crossing and the
procedure can be repeated. In this way, we obtain a surgery string of Legendrian
links . Qƒm; : : : ; Qƒm�n; Qƒm�n�1; : : : ; Qƒ0/ where Qƒ0 has a front projection with no
crossings. It follows that Qƒ0 is topologically a trivial link of unknots. By applying
a Legendrian isotopy, we can assume that Qƒ0 consists of c Legendrian unknots
which are vertically stacked and where each unknot is oriented “clockwise”; an
example of this is shown in Figure 11. It is then easy to see that after applying c�1

additional surgeries, we can obtain a Legendrian unknot. Thus there is a length
u D mC c � 1 unknotting surgery sequence for ƒ. By Lemma 3.2, if ƒ D Qƒm

has j components, Qƒ0 has at most c D j Cm components. Thus we see that
u� 2mC j � 1, as claimed. �

Definition 3.6. Given a Legendrian link ƒ, the (oriented) Legendrian surgery
unknotting number of ƒ, �0.ƒ/, is defined as the minimal length of an oriented,
unknotting surgery string for ƒ.

Remark 3.7. Here are some basic properties of �0.ƒ/:

(1) By Lemma 3.2, for any Legendrian link ƒ, the parity of �0.ƒ/ is opposite the
parity of the number of components of ƒ;

(2) For any oriented, Legendrian link ƒ with j components, j � 1� �0.ƒ/ <1,
with 0D �0.ƒ/ if and only if ƒ is topologically an unknot.



THE SURGERY UNKNOTTING NUMBER OF LEGENDRIAN LINKS 285

Figure 11. After all crossings are eliminated, a Legendrian isotopy
can be applied so that ƒ0 is a stack of c Legendrian unknots
oriented clockwise. After c � 1 additional surgeries, a Legendrian
unknot is obtained.

(3) If ƒ is a topologically nontrivial Legendrian knot and there exists an oriented
unknotting surgery string for ƒ of length 2, then �0.ƒ/D 2.

(4) If ƒ0 is obtained from ƒ by stabilization(s), then �0.ƒ
0 /� �0.ƒ/.

Proposition 3.5 and, more importantly, explicit calculations will give upper
bounds for �0.ƒ/. Now we turn to examining some lower bounds for �0.ƒ/.

First, by Theorem 2.1, if ƒ0 is a Legendrian unknot, then

tb.ƒ0 /Cjr.ƒ0 /j � �1:

Thus if ƒ is a Legendrian link with a “large” Thurston–Bennequin and/or rotation
number, one is forced to do a certain number of Legendrian surgeries. More
precisely, Lemma 3.2 implies:

Lemma 3.8. For any Legendrian link ƒ,

tb.ƒ/Cjr.ƒ/jC 1� �0.ƒ/:

Lemma 3.8 gives us improved lower bounds over those given in Remark 3.7 when
2 � tb.ƒ/C jr.ƒ/j.4 For example, there exists a Legendrian whose underlying
smooth knot type is m.51/ and whose classical invariants satisfy

tb.ƒ/Cjr.ƒ/j D 3I

see, for example, [Chongchitmate and Ng 2013]. Thus Lemma 3.8 implies that
4 � �0.ƒ/. However for many links, tb.ƒ/C jr.ƒ/j � 2. For example, for any
Legendrian ƒ that is topologically the 51 knot, tb.ƒ/C jr.ƒ/j � �5. Although
Lemma 3.8 will not help us, in this case we can make use of another result:

4The parity of tb.ƒ/C jr.ƒ/j agrees with the parity of the number of components of ƒ, so for
knots, we get interesting new bounds when 3� tb.ƒ/Cjr.ƒ/j.
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Lemma 3.9. For a Legendrian link ƒ with j components, let Lƒ denote the
underlying smooth link type of ƒ, and let g4.Lƒ/ denote the smooth 4-ball genus
of Lƒ. Then

2g4.Lƒ/C .j � 1/� �0.ƒ/:

Proof. From a Legendrian surgery string of length n that ends at an unknot, one can
construct a smooth, orientable, compact, and connected 2-dimensional surface in
B4 with boundary equal to Lƒ and Euler characteristic equal to 1� n; the genus,
g, of this surface satisfies 1� nD 2� 2g� j . Thus, by definition of the smooth
4-ball genus,

.j � 1/C 2g4.Lƒ/� .j � 1/C 2g D n:

Since �0.ƒ/ is the minimum length of a surgery unknotting string, the claim
follows. �

A convenient table of smooth 4-ball genera of knots can be found at KnotInfo
[Cha and Livingston 2012].

4. The surgery unknotting number for families of knots

In this section we will calculate the surgery unknotting numbers for Legendrian
twist knots, Legendrian torus links, and positive, Legendrian rational links. The
fact that we can precisely calculate these numbers for the first two families rests
upon classification results of [Etnyre et al. 2013; Etnyre and Honda 2001; Dalton
2008].

Legendrian twist knots. A twist knot is a knot that is smoothly equivalent to a knot
Km in the form of Figure 12. In other words, a twist knot is a twisted Whitehead
double of the unknot.

Theorem 4.1. If ƒ is a Legendrian knot that is topologically a nontrivial twist knot
then �0.ƒ/D 2.

Proof. Etnyre, Ng and Vértesi [Etnyre et al. 2013] have classified all Legendrian twist
knots. In particular, every Legendrian knot ƒ with maximal Thurston–Bennequin
invariant that is topologically Km, for some m� �2, is Legendrian isotopic to one

m

Figure 12. The twist knot Km; the box contains m right-handed
half twists if m � 0, and jmj left-handed twists if m < 0. Notice
that K0 and K�1 are unknots.
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mC2

(a)

(b)

(c)

Figure 13. Any Legendrian knot that is topologically a nega-
tive twist knot, Km with m � �2, and has maximal Thurston–
Bennequin invariant is Legendrian isotopic to one of the form in
(a) where the box contains jmC 2j half twists, each of form S as
shown in (b) or of form Z as shown in (c).

   m

Figure 14. Any Legendrian knot that is topologically a positive
twist knot, Km with m� 0, and has maximal Thurston–Bennequin
invariant is Legendrian isotopic to one of the form on the left. The
box contains m half twists, each of form X as shown on the right.

of the form in Figure 13, and every Legendrian knot ƒ with maximal Thurston–
Bennequin invariant that is topologically Km, for m� 1 with maximal Thurston–
Bennequin invariant is Legendrian isotopic to one of the form in Figure 14.5 Every
Legendrian knot ƒ that is topologically a nontrivial twist knot is obtained by
stabilization of one of these with maximal Thurston–Bennequin invariant. By
Remark 3.7, it suffices to show for any Legendrian knot ƒC that is topologically a
nontrivial twist knot and has maximal Thurston–Bennequin invariant, �0.ƒ

C/D 2.
For ƒC, we can do the two unknotting surgeries near the “clasp”. The sign of the
crossings in the clasp will depend on whether m is even or odd: Figure 15 shows
the positions of two surgeries that result in an unknot. �

Legendrian torus links. A torus link is a link that can be smoothly isotoped so
that it lies on the surface of an unknotted torus in R3. Every torus knot can be
specified by a pair .p; q/ of coprime integers: we will use the convention that the
.p; q/-torus knot, T .p; q/, winds p times around a meridional curve of the torus
and q times in the longitudinal direction. See, for example, [Adams 2004]. In fact,
T .p; q/ is equivalent to T .q;p/ and to T .�p;�q/. So we will always assume that
jpj> q > 0; in addition we will assume q > 1 since we are interested in nontrivial

5We omit mD 0;�1 since those correspond to the unknot.
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(a) (b)

Figure 15. For a Legendrian knot with maximal Thurston–Bennequin
invariant that is topologically Km, (a) gives the surgery points when
m is even, and (b) gives the surgery points when m is odd.

torus knots. For j � 2, T .jp; j q/, with jpj > q > 1 and gcd.p; q/ D 1, will be
a j -component link where each component is a T .p; q/ torus link. We will only
consider torus links of nontrivial components.

Theorem 4.2. If ƒ is a j -component Legendrian link that is topologically the
.jp; j q/-torus link, jpj> q > 1, then �0.ƒ/D .jjpj � 1/.j q� 1/.

Proof. First consider the case whereƒ is topologically a positive torus knot, T .p; q/

with p > 0. As shown by Etnyre and Honda [2001], the list of different Legendrian
representations of a positive torus knot can be represented as a “single-peaked
mountain” in parallel to the mountain of unknots shown in Figure 7. Namely,
for fixed p > q > 1, there is a unique Legendrian knot ƒC that is topologically
T .p; q/ with maximal Thurston–Bennequin invariant tb.ƒC/ D pq � p � q and
r.ƒC/ D 0; any Legendrian knot ƒ that is topologically T .p; q/ is obtained by
stabilizations of ƒC. By Remark 3.7, it suffices to show that if ƒC is a Legendrian
knot that is topologically T .p; q/ and has maximal Thurston–Bennequin invariant,
then �0.ƒ

C/D .p� 1/.q� 1/. By Lemma 3.8,

tb.ƒC/Cjr.ƒC/jC 1D .p� 1/.q� 1/� �0.ƒ/:

In fact, it is possible to unknot with .p � 1/.q � 1/ surgeries. Starting from the
left most string of crossings, do .q� 1/ successive surgeries as illustrated for the
.5; 3/-torus knot in Figure 16; in this sequence of surgeries, one begins with the
surgery on the innermost strands, and then performs a Legendrian isotopy so that
it is possible to do a surgery on the next set of innermost strands. In general, this
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q

p

Figure 16. The Legendrian .5; 3/-torus knot with maximal tb
invariant. The general, positive Legendrian .p; q/-torus knot
with maximal Thurston–Bennequin invariant is constructed us-
ing q strands and a length p string of crossings. Shown are the
.p� 1/.q� 1/ oriented Legendrian surgeries that unknot the Leg-
endrian positive .p; q/-torus knot with maximal tb.

takes the .p; q/-torus knot to the .p�1; q/-torus link. Repeating this p�1 times
results in the .1; q/-torus knot, which is an unknot.6

The above proof easily generalizes to positive torus links of nontrivial components.
Dalton [2008] showed that there is a unique Legendrian linkƒC that is topologically
T .jp; j q/ with maximal Thurston–Bennequin invariant tb.ƒC/D jpj q�jp�j q.
The construction of this one exactly parallels the construction in Figure 16, and so
the same pattern of .jp� 1/.j q� 1/ surgeries will produce a Legendrian unknot.

Next consider the case where ƒ is topologically a negative torus knot, T .p; q/

with p < 0. In this case, Etnyre and Honda have shown that the list of different
Legendrian representations of a negative torus knots, T .p; q/ for p < 0 and jpj>
q > 1, can be represented as a many-peaked “mountain range” where the number
of representatives with maximal Thurston–Bennequin invariant depends on the
divisibility of p by q. Namely, if jpj DmqC e, 0< e < q, then there will be 2m

Legendrian representatives of T .p; q/ with maximal Thurston–Bennequin invariant
of pq<0. Half of these different representatives with maximal Thurston–Bennequin
invariant are obtained by writing m D 1C n1C n2, where n1; n2 � 0, and then
ƒC

.n1;n2/
is constructed using the form shown in Figure 17 with n1 and n2 copies

of the tangle B inserted as indicated:

r
�
ƒC

.n1;n2/

�
D q.n2� n1/C e:

The other m Legendrian versions of T .p; q/ with maximal Thurston–Bennequin
invariant are obtained by reversing the orientation. For negative torus knots,
Lemma 3.8 will not be a useful lower bound. However, since the calculation
of the 4-ball genus is the same for both the knot and its mirror, the calculations in

6By Corollary 1.3, we can now deduce the Milnor conjecture as mentioned in Corollary 1.5.
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L

q

n1B

n2B

R

e

B D

Figure 17. The .jpj�1/.q�1/ oriented Legendrian surgeries that
unknot a Legendrian negative .p; q/-torus knot with maximal
Thurston–Bennequin invariant.

the positive torus knot case and Corollary 1.3, (or [Kronheimer and Mrowka 1993]),
show that for a negative torus knot T .p; q/, 2g4.T .p; q//D .jpj�1/.q�1/. Thus,
by Lemma 3.9

.jpj�1/.q�1/� �0.ƒ/:

In fact, it is possible to arrive at an unknot with .jpj�1/.q�1/ surgeries. Figure 17
shows the claimed surgeries: a surgery is done to the right of all crossings in
the L, R, and B regions (contributing 1

2
q.q�1/C 1

2
q.q�1/C.n1Cn2/q.q�1/

surgeries), and between each Z in the e string one does q�1 successive surgeries
(contributing .e�1/.q�1/ surgeries). Thus the total number of surgeries is

.1Cn1Cn2/q.q�1/C.e�1/.q�1/D .mqCe�1/.q�1/D .jpj�1/.q�1/:

The proof easily generalizes to negative torus links. It follows from [Nakamura
2000] that g4.T .jp; j q//C .j � 1/D .j jpj � 1/.j q� 1/; see Remark 4.3. It was
shown in [Dalton 2008] that there are 2m Legendrian linksƒC that are topologically
T .jp; j q/ with maximal Thurston–Bennequin invariant, and all Legendrians that
are topologically T .jp; j q/ are obtained by stabilizations of one of these. Each
of these with maximal Thurston–Bennequin invariant can be constructed as in
Figure 17, and so the same pattern of .j jpj � 1/.j q� 1/ surgeries will produce a
Legendrian unknot. �

Remark 4.3. Nakamura’s formula [2000] for the smooth 4-ball genus of a j -
component positive link L is that

2g4.L/D 2� j � s.D/C c.D/;
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where s.D/ is the number of Seifert circles and c.D/ is the number of crossings in
a non-split positive diagram D for L. It is straightforward to see that when L is
the positive torus link T .jp; j q/, using the diagram D corresponding to Figure 16,
s.D/D j q and c.D/D jp.j q� 1/. So,

2g4.T .jp; j q//D 2� j � j qC jp.j q� 1/D .1� j /C .jp� 1/.j q� 1/:

Thus for any Legendrian linkƒ that is topologically T .jp; j q/, for either p positive
or negative,

2g4.T .jp; j q//C .j � 1/D �0.ƒ/:

Positive, Legendrian rational links.

Definition 4.4. Given a vector of integers .cn; : : : ; c2; c1/, where cn � 2, and n� 2

implies ci � 1 for i D 1; : : : ; n � 1, we construct the rational Legendrian link
ƒ.cn; : : : ; c2; c1/ to be the Legendrian numerator closure of the Legendrian tangle
.cn; : : : ; c2; c1/ as demonstrated in Figure 18; see also [Adams 2004; Traynor 1998;
Schneider 2011]. The rational Legendrian link ƒ.cn; : : : ; c2; c1/ is positive if all
crossings are positive.

This Legendrian link ƒ.cn; : : : ; c1/ is topologically the numerator closure of the
rational tangle associated to the rational number q with continued fraction expansion
q D c1C 1=.c2C 1=.c3C : : : //; see [Conway 1970].

c1 c1c2

c3

c2

c1

c4 c3

c2

c1

Figure 18. The general form of ƒ.c1/, ƒ.c2; c1/, ƒ.c3; c2; c1/,
and ƒ.c4; c3; c2; c1/.
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The “even” entries c2; c4; : : : of the vector .cn; : : : ; c2; c1/ denote the strings of
vertical crossings. It is straightforward to verify that the parity of these vertical
entries determine when ƒ.cn; : : : ; c1/ is a positive link:

Lemma 4.5. (1) When n is odd, there exists an orientation on the components of
ƒ.cn; : : : ; c1/ so that it is a positive link if and only if ci is even, for all i even.
Moreover, ƒ.cn; : : : ; c1/ is a knot when

P
i odd ci is odd.

(2) When n is even, there exists an orientation on the components ofƒ.cn; : : : ; c1/

so it is a positive link if and only if cn is odd and cn�2; cn�4; : : : ; c2 are all
even. Moreover, ƒ.cn; : : : ; c1/ is a knot when

P
i odd ci is even.

The Legendrian surgery unknotting number of a positive link has a convenient
formula in terms of the “odd” entries, which correspond to the strings of horizontal
crossings. There will be some differences in following formulas depending on
whether ƒ is constructed from an odd or an even length vector. Define

p.n/D

(
1; n odd;

0; n evenI

p.n/ measures the parity of the “length” of the vector .cn; : : : ; c1/.

Theorem 4.6. If ƒ.cn; : : : ; c2; c1/ is a positive, Legendrian rational link, then

�0.ƒ.cn; : : : ; c2; c1//D
X
i odd

ci �p.n/:

Proof. This will be proved using the lower bound on �0.ƒ/ provided by Lemma 3.8,
and explicit calculations.

We will first show that

r.ƒ.cn; : : : ; c2; c1//D 0 and tb.ƒ.cn; : : : ; c2; c1//D
X
i odd

ci �p.n/� 1:

It is easy to verify that when all the crossings are positive, the up and down cusps
cancel in pairs and thus the rotation number vanishes. To calculate tb.ƒ.cn; : : : ; c1//,
notice that when n is odd the number of right cusps is 2 more than the number of
vertical crossings,

P
i even ci , while when n is even, the number of rights cusps is 1

more than the number of vertical crossings. Thus:

tb.ƒ.cn; : : : ; c2; c1//D

nX
iD1

ci �

� X
i even

ci C 1Cp.n/

�
D

X
i odd

ci � 1�p.n/:

Thus, by Lemma 3.8,X
i odd

ci �p.n/� �0.ƒ.cn; : : : ; c2; c1//:
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Figure 19. Two positive, Legendrian rational knots of odd and
even lengths. In both cases, it is possible to unknot by doing ci �1

surgeries in each horizontal segment (i odd) and 1 surgery in each
vertical segment.

In fact, it is possible to unknotƒ.cn; : : : ; c2; c1/ by doing ci�1 surgeries in each
horizontal component and 1 surgery in each vertical segment; Figure 19 illustrates
some examples of this. When nD 1, there are no vertical segments; for other odd
n, the number of vertical components is one less than the number of horizontal
components, and when n is even, the number of vertical components agrees with
the number of horizontal components. Thus

�0.ƒ.cn; : : : ; c1//�
X
i odd

ci �p.n/;

and the desired calculation of �0.ƒ.cn; : : : ; c1// follows. �

Remark 4.7. In the above proof, �0.ƒ.cn; : : : ; c1// is obtained by realizing the
lower bound given by the classical Legendrian invariants. Thus, by Corollary 1.3,
we see that when ƒ.cn; : : : ; c1/ has an underlying topological type of the knot Kƒ,
�0.ƒ.cn; : : : ; c1//D 2g4.Kƒ/. Moreover, when ƒ.cn; : : : ; c1/ has an underlying
topological type of a 2-component link Lƒ, we can compare �0.ƒ.cn; : : : ; c1// to
the smooth 4-ball genus of Lƒ using Nakamura’s formula (see Remark 4.3) for the
smooth 4-ball genus of a positive link. When n is odd, the number of Seifert circles
is s.D/D 2C

P
i even ci , while when n is even, s.D/D 1C

P
i even ci . Thus we

find that for a 2-component, positive, Legendrian rational link ƒ.cn; : : : ; c1/,

2g4.Lƒ/C 1D c.D/� s.D/C 1D
X
i odd

ci �p.n/D �0.ƒ.cn; : : : ; c1//:

5. The surgery unknotting number for small crossing knots

Given the calculations of the previous section, it is natural to ask Question 1.9
in the Introduction. To investigate the knot portion of this question, we exam-
ined Legendrian representatives of low-crossing knots. There is not a Legendrian
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73 m.73/

74
m.74/

Figure 20. Front projections representing all conjectured Leg-
endrian representatives of 73, m.73/, 74, and m.74/ with maxi-
mal Thurston–Bennequin invariant. For all of these knot types,
g3.Kƒ/D g4.Kƒ/; the indicated surgery points realize �0.ƒ/D

2g4.Kƒ/.

classification of all these knot types, but a conjectured classification of these knot
types can be found in [Chongchitmate and Ng 2013]. In the following, we prove
Proposition 1.10, which says that the surgery unknotting number of the Legendrian
agrees with twice the smooth 4-ball genus of the underlying smooth knot for all
Legendrians that are topologically a nonslice knot with crossing number at most 7.

In Section 4, Proposition 1.10 is verified for all torus and twist knots. The
only non-torus and non-twist knots with 7 or fewer crossings are 62;m.62/, 63 D

m.63/, 73, m.73/, 74, m.74/, 75, m.75/, 76, m.76/, 77, and m.77/. The needed
calculations fall into three categories as described below.

Example 5.1. For the smooth knots 73;m.73/; 74;m.74/; 75, and m.75/, the genus,
g3, agrees with the smooth 4-ball genus g4.7 In general, we find that for a Legen-
drian ƒ whose underlying knot type Kƒ satisfied g3.Kƒ/D g4.Kƒ/, it is fairly
straightforward to show that �0.ƒ/D 2g4.Lƒ/. For example, Figure 20 shows all
conjectured representatives of 73, m.73/, 74, m.74/, 75, and m.75/ with maximal
Thurston–Bennequin invariant (after perhaps selecting alternate orientations and/or
performing the Legendrian mirror operation, which consists of rotating the diagram
180ı). For each of these with maximal Thurston–Bennequin invariant, it is possible
to unknot with 2g4.Kƒ/ surgeries as indicated.

In general, we found that for a Legendrian ƒ whose underlying knot type
Kƒ satisfied g4.Kƒ/ < g3.Kƒ/, it is more difficult to calculate �0.ƒ/. To do
calculations for our remaining cases, we made use of the well known fact that the

7This is also the situation for the torus and nonslice twist knots studied in Section 4.
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Figure 21. A sequence of two topological surgeries in a neighbor-
hood of a negative crossing that topologically change the crossing.
An analogous picture shows that a positive crossing can be changed
into a negative crossing by two topological surgeries.

unknotting number of a knot, u.K/, gives an upper bound to the smooth 4-ball
genus:

g4.K/� u.K/: (5-1)

Figure 21 demonstrates two topological surgeries that produce a crossing change;
an argument as in the proof of Lemma 3.9 then proves inequality (5-1). Notice that
the topological Reidemeister moves used in the equivalence are not Legendrian
Reidemeister moves. However, near a negative crossing, it is possible to “Legendrify”
this construction:

Lemma 5.2. If the Legendrian knot ƒ has a front projection that can be topologi-
cally unknotted by changing a negative crossing, then

�0.ƒ/� 2:

Proof. Figure 22 demonstrates how two surgeries can locally produce a topological
crossing change. �

Example 5.3. Using Lemma 5.2, it is possible to show that for any conjectured
Legendrian representative ƒ of 62, 63, 76, or 77, �0.ƒ/ D 2g4.Kƒ/. Figure 23
shows the conjectured Legendrian representatives of these knot types with maximal
Thurston–Bennequin invariant (after perhaps selecting alternate orientations and/or
performing a mirror operation, which corresponds to a rotation of the front diagram

Figure 22. A sequence of two oriented surgeries in a neighborhood
of a negative crossing that topologically change the crossing.
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62 63

76 77

Figure 23. Front projections representing all conjectured Legen-
drian representatives of 62, 63, 76, and 77 with maximal Thurston–
Bennequin invariant. These projections can be topologically un-
knotted at the indicated negative crossing.

by 180ı), and the negative crossing that when topologically changed produces an
unknot.

We were not able to find front projections of the conjectured maximal Thurston–
Bennequin representatives of m.62/, m.76/, or m.77/ that could be topologically
unknotted by changing a negative crossing; in fact, by [Soteros et al. 2011], it is
not possible to do this even in the smooth setting. Luckily, sometimes we can
topologically change a positive crossing when it has a special form.

Definition 5.4. A positive crossing is of S form, Z form, or hooked-X form if it
takes the form as shown in Figure 24.

Lemma 5.5. If ƒ is a nontrivial Legendrian knot that has a projection that can
be topologically unknotted by changing a positive crossing in S , Z, or hooked-X
form, then

�0.ƒ/� 2:

(a) (b) (c)

Figure 24. A positive crossing of (a) S form, (b) Z form, and (c)
hooked-X form. Reversing the orientations on both strands keeps
the respective forms. Also reflecting the planar figure in (c) about
a horizontal line produces another hooked-X form.
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Figure 25. A positive crossing of S form can be transformed into
a negative crossing with 2 surgeries. Similarly, a positive crossing
of Z form can be transformed into a negative crossing with 2

surgeries.

Figure 26. A positive crossing of hooked-X form can be trans-
formed into a negative crossing with 2 Legendrian surgeries.

Proof. Figures 25 and 26 show how a positive crossing in S , Z, or hooked-X form
can be transformed into a negative crossing using two surgeries and Legendrian
isotopies. �

Example 5.6. Using Lemma 5.5, it is possible to show that for any conjectured Leg-
endrian representativeƒ of m.62/, m.76/, or m.77/, �0.ƒ/D 2g4.Kƒ/. Figure 27
shows the conjectured Legendrian representatives of these knot types with maximal
Thurston–Bennequin invariant (after perhaps selecting alternate orientations and/or

    
    m.62/ m.76/

m.77/

Figure 27. Front projections representing all conjectured Legen-
drian representatives of m.62/, m.76/ and m.77/ with maximal
Thurston–Bennequin invariant. Each of these can be topologically
unknotted by changing the indicated positive crossing in S form or
hooked-X form.
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performing a mirror operation). These projections differ from those in [Chong-
chitmate and Ng 2013] by Legendrian Reidemeister moves of type II and III. The
black dot indicates a positive crossing that when topologically changed produces
an unknot.

The proofs of Lemmas 5.2 and 5.5 in fact show that if the Legendrian knot ƒ
has a front projection that can be topologically unknotted by changing � negative
crossings and � crossings in S, Z, or hooked-X form, then �0.ƒ/ � 2� C 2�.
However, for our calculations we did not need this more general form.
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