\bullet
 in Olve a journal of mathematics

Induced trees, minimum semidefinite rank, and zero forcing

Rachel Cranfill, Lon H. Mitchell, Sivaram K. Narayan and Taiji Tsutsui

Induced trees, minimum semidefinite rank, and zero forcing

Rachel Cranfill, Lon H. Mitchell, Sivaram K. Narayan and Taiji Tsutsui
(Communicated by Chi-Kwong Li)

Abstract

We prove that the ordered subgraph number of a connected graph that has no duplicate vertices is at most three if and only if the complement does not contain a cycle on four vertices. The duality between zero forcing and ordered subgraphs then provides a complementary characterization for positive semidefinite zero forcing. We also provide some necessary conditions for when the minimum semidefinite rank can be computed using tree size.

1. Introduction

Graph theory provides a natural way to describe patterns in the entries of matrices and a large body of research and terminology to help study those patterns. Conversely, matrices that are associated to graphs can provide structural information about the graph. For example, the second-smallest eigenvalue of the Laplacian matrix of a graph is nonzero if and only if the graph is connected [Merris 1995].

The research described in this paper was inspired by the question of finding the smallest possible rank among matrices with a given zero/nonzero (off-diagonal) entry pattern. Depending on the type of matrices one allows (for example, real or complex, symmetric or not), different answers for the same pattern are possible [Berman et al. 2008; IMA-ISU 2010; Barioli et al. 2009], and a complete solution to this problem for any large class of matrices seems difficult. On the other hand, for certain types of patterns (graphs), there are very satisfying complete answers. For example, for trees and positive semidefinite (psd) real symmetric or complex Hermitian matrices, the minimum rank is equal to one less than the number of vertices [van der Holst 2003; Johnson and Duarte 2006]; for trees and symmetric matrices over any field, the minimum rank plus the zero forcing number gives the number of vertices [Chenette et al. 2007; Johnson and Duarte 1999].

[^0]One part of our work, described in Section 4, seeks to use the detailed knowledge we have for trees in general graphs. In particular, if a graph contains a tree as an induced subgraph, under what conditions will matrices associated to the larger graph behave like those for the tree with respect to minimum rank?

Rather than looking for trees, participants in the 2004 Research Experience for Undergraduates at Central Michigan University sought to find an alternative that would provide just as much rank information. The result, designed specifically for Hermitian psd matrices, was called ordered subgraphs [Hackney et al. 2009]. For some time, it was conjectured that ordered subgraphs would in fact determine minimum rank, but a counterexample on eight vertices was found: the Möbius ladder on eight vertices has psd minimum rank (msr) five and an ordered subgraph (OS) number of four [Mitchell et al. 2010].

Results on ordered subgraphs are of additional interest thanks to their connection to "zero forcing." Defined by the AIM Minimum Rank-Special Graphs Work Group [AIM 2008], zero forcing was also the result of looking for approaches to solving a minimum rank problem, but has since been shown to be of interest in quantum physics [Burgarth et al. 2011]. It turns out that the OS number and the positive semidefinite zero forcing number are two sides of the same coin, as for any graph they sum to the number of vertices [Barioli et al. 2010]. Moreover, the complement of an OS set is a zero forcing set and vice versa. This duality means that our OS results have an equivalent formulation in terms of zero forcing.

One of the many open questions concerning ordered subgraphs (and zero forcing) is how large the class of graphs is for which minimum rank and the ordered subgraph number differ. If the msr of a graph is one or two, then so is the OS number. The Möbius ladder example means that msr three is the remaining case ${ }^{1}$ in which we might hope that msr and the ordered subgraph number coincide. In Section 3, we study graphs that have msr 3, show that msr 3 implies OS number 3, and give a characterization of those graphs with OS number 3 . Whether OS number equal to 3 implies msr 3 remains open, although we are able to use our work on maximum induced trees from Section 4 to present some partial results in Section 5.

2. Preliminaries

A graph G is an ordered pair $(V(G), E(G))$, where $V(G)$ is a set of vertices and $E(G)$ is a set of unordered pairs of vertices. In this paper, we assume all graphs are simple (that is, have no multiple edges or loops). Two vertices u and v are said to be adjacent if they share an edge. If u and v are adjacent, we write $u v \in E(G)$.

[^1]For any $n \times n$ Hermitian matrix $A=\left[a_{i j}\right]$, we associate a simple graph $G(A)$ with vertex set $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $v_{i} v_{j} \in E(G)$ if and only if $a_{i j} \neq 0$ in A. Note that $G(A)$ is independent of the diagonal elements of A. For a given graph G, we define $\mathscr{P}(G)$ to be the set of all positive semidefinite matrices with graph G. The minimum semidefinite rank of G is

$$
\operatorname{msr}(G)=\min \{\operatorname{rank} A: A \in \mathscr{P}(G)\}
$$

If there is a path between two vertices u and v in G, the distance from u to v, $d_{G}(u, v)$, is the length of the shortest path between u and v. If no such path exists, we say $d_{G}(u, v)=\infty$.

The tree size of a graph $G, \operatorname{ts}(G)$, is the maximum size of a subset of $V(G)$ that induces a tree [Erdős et al. 1986]. Since $\operatorname{msr}(G)=|G|-1$ if and only if G is a tree, this gives a general lower bound of $\operatorname{msr}(G) \geq \operatorname{ts}(G)-1$ [Booth et al. 2008].

Let the neighborhood of a vertex v in G be $N(v)=\{w \in V(G): v w \in E(G)\}$, and let the closed neighborhood of v be $N[v]=N(v) \cup\{v\}$. We say vertices u and w are duplicate vertices if $N[u]=N[w]$.

If $S \subseteq V(G)$ such that all of the vertices in S are pairwise nonadjacent, we say S is an independent set. The maximum cardinality of all independent sets of a graph G is called the independence number of G and is denoted by $\alpha(G)$ [West 1996, p. 113].

The union of two graphs G_{1} and G_{2}, denoted by $G_{1} \cup G_{2}$, is the disconnected graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. We frequently write the union of k copies of a graph G as $k G$. The join of G_{1} and G_{2}, written $G_{1} \vee G_{2}$, is the graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set consisting of all of the edges in $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$ as well as the edges $\left\{u v: u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$ [West 1996, p. 118].

Suppose $\vec{V}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is an n-tuple of vectors in \mathbb{C}^{m} such that, for $i \neq j$, we have $\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle=0$ if and only if $v_{i} v_{j} \notin E(G)$. We call \vec{V} a vector representation of G [Parsons and Pisanski 1989]; the rank of \vec{V} is defined as the dimension of the span of the vectors.

Let $\vec{V}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ be a vector representation of G. If $V=\left[\vec{v}_{1} \cdots \vec{v}_{n}\right]$, then $V^{*} V \in \mathscr{P}(G)$. If $A \in \mathscr{P}(G)$, then $A=B^{*} B$ for some matrix B with the same rank [Horn and Johnson 1990, p. 407]. Thus, for any $A \in \mathscr{P}(G)$, we can find a vector representation of G that produces A. This implies that finding a vector representation for a graph is equivalent to finding a positive semidefinite matrix of the graph.

Let G be a graph on n vertices and let $S=\left(v_{1}, \ldots, v_{m}\right)$ be an ordered set of vertices of G. Let G_{k} be the subgraph of G induced by $\left\{v_{1}, \ldots, v_{k}\right\}$ for $k \leq m$, and let H_{k} be the connected component of G_{k} containing v_{k}. If for each k there exists a vertex w_{k} of G such that $w_{k} \notin G_{k}, w_{k} v_{k} \in E(G)$, and $w_{k} v_{l} \notin E(G)$ for
all $v_{l} \in V\left(H_{k}\right)$ with $l \neq k$, we say S is a vertex set of ordered subgraphs (OS-set) of G [Hackney et al. 2009].

For every v_{k} in an OS-set, we call its corresponding w_{k} its OS-neighbor. The maximum cardinality of all OS-sets of a graph G is called the OS-number of G, denoted by $\operatorname{OS}(G)$.

Example 2.1. In the cycle $C_{4}, \operatorname{OS}\left(C_{4}\right)=2$. Here are some examples of OS-sets of C_{4} :

Proposition 2.2 [Hackney et al. 2009]. If G is a connected graph then $\operatorname{msr}(G) \geq$ $\mathrm{OS}(G) \geq \operatorname{ts}(G)-1$. In particular, if T is a tree, for every $v \in V(T), V(T) \backslash\{v\}$ is an OS-set.

If H is an induced subgraph of G, then $\operatorname{OS}(H) \leq \operatorname{OS}(G)$. The OS-number is related to the positive semidefinite zero forcing number, $Z_{+}(G)$, by $\operatorname{OS}(G)+Z_{+}(G)=$ $|G|$ [Barioli et al. 2010].

3. Graphs with minimum semidefinite rank three

An open question that has been of interest is a complete characterization of all graphs for which $\operatorname{msr}(G)=3$. Some prior results [Booth et al. 2011; AIM 2008] give sufficient conditions, including if $\bar{G}=P_{n}$ with $n \geq 4$ or $\bar{G}=C_{n}$ with $n \geq 5$ then $\operatorname{msr}(G)=3$, and a $\operatorname{sufficient~condition~for~when~} \operatorname{msr}(G) \leq 3$:

Proposition 3.1 [Booth et al. 2011]. If the cycle C_{m} is not a subgraph of \bar{G} for all $m \geq 4$, then $\operatorname{msr}(G) \leq 3$.

From examples, however, it seems that avoiding C_{4} in the complement is enough.
Conjecture 3.2. Let G be a connected graph with no duplicate vertices. Then $\mathrm{msr}(G) \leq 3$ if and only if C_{4} is not a subgraph of \bar{G}.

Remark 3.3. Conjecture 3.2 is not true if the duplicate vertices condition is removed. For example, if G is the graph obtained by identifying an edge of the complete graph on four vertices with an edge of a C_{4} (resulting in a graph on six vertices), then a C_{4} is a subgraph of \bar{G} but $\operatorname{msr}(G)=3$.

We now prove several results that are related to this conjecture, including that this result holds for the OS-number.

Lemma 3.4. Let G be a simple connected graph. If $S=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ is an OS-set of G, then there is an OS-set S^{\prime} of G of size four such that $G\left[S^{\prime}\right]$ has at least two components and each component has at most two vertices.

Proof. If $G[S]$ has three or four connected components, the conclusion follows. Otherwise, we consider two cases:

Case 1: $G[S]$ has two connected components, $G\left[\left\{v_{1}, v_{2}, v_{3}\right\}\right]$ and $G\left[\left\{v_{4}\right\}\right]$. Then $w_{3} \notin N\left[v_{1}\right] \cup N\left[v_{2}\right]$ and $G\left[\left\{v_{1}, v_{2}, w_{3}, v_{4}\right\}\right]$ has at least two components with each component having at most two vertices. Also, $S^{\prime}=\left(v_{1}, v_{2}, v_{4}, w_{3}\right)$ is an OS-set with OS-neighbors $\left(w_{1}, w_{2}, w_{4}, v_{3}\right)$.
Case 2: Suppose $G[S]$ is connected. Then $w_{4} \notin \bigcup_{i=1}^{3} N\left[v_{i}\right]$, and therefore $G\left[\left\{v_{1}, v_{2}, v_{3}, w_{4}\right\}\right]$ has at least two components. Furthermore, $S_{1}=\left(v_{1}, v_{2}, v_{3}, w_{4}\right)$ is an OS-set with OS-neighbors $\left(w_{1}, w_{2}, w_{3}, v_{4}\right)$, reducing the problem to case 1 .

Remark 3.5. If S_{1} and S_{2} are OS-sets of G such that there are no edges $v w \in E(G)$ with $v \in S_{1}$ and $w \in S_{2}$, then $S_{1} \cup S_{2}$ is an OS-set.

Lemma 3.6. Let G be a connected graph with no duplicate vertices. If an induced subgraph H of G is isomorphic to $s K_{2} \cup t K_{1}$, then the vertices of H form an OS-set.
Proof. Clearly, K_{1} is an OS-set since G is connected. Let $K_{2}=\{v, w\}$. Since G has no duplicate vertices, $N[v] \neq N[w]$. Without loss of generality, we can assume there is a vertex u adjacent to v but not adjacent to w. Then (w, v) is an OS-set with neighbors (v, u).

Proposition 3.7. Let G be a connected graph with no duplicate vertices. Then $\mathrm{OS}(G) \geq 4$ if and only if \bar{G} contains C_{4} as a subgraph.
Proof. Lemma 3.4 and Lemma 3.6 imply that $\operatorname{OS}(G) \geq 4$ if and only if G contains $4 K_{1}, 2 K_{1} \cup K_{2}$, or $2 K_{2}$ as an induced subgraph. However, $\overline{4 K_{1}}$ is $K_{4}, \overline{2 K_{1} \cup K_{2}}$ is K_{4} minus an edge, and $\overline{2 K_{2}}$ is C_{4}, giving the desired result.

As a consequence of Proposition 3.7, we see the absence of a C_{4} subgraph in \bar{G} is necessary for $\operatorname{msr}(G) \leq 3$. We believe that this condition is sufficient and can be shown by proving $\operatorname{OS}(G)=3$ if and only if $\operatorname{msr}(G)=3$. We do know, however, that if G is a connected graph without duplicate vertices and $\operatorname{msr}(G) \leq 3$, then $\operatorname{msr}(G)=\mathrm{ts}(G)-1$ [Booth et al. 2011]. As a result, we have:

Proposition 3.8. If $\operatorname{msr}(G)=3$, then $\operatorname{OS}(G)=3\left(\right.$ and $\left.Z_{+}(G)=|G|-3\right)$.
Conjecture 3.9. Suppose G is a connected graph without duplicate vertices. If $\mathrm{OS}(G)=3$, then $\operatorname{msr}(G)=3$.

4. Maximum induced trees

Let T be a maximum induced tree of a graph G. For a vertex w in $V(G)$ such that w is not on T, we define $\mathscr{E}(w)$ to be the edge set of all paths in T between every pair of vertices of T that are adjacent to w.

Prior work on minimum semidefinite rank has yielded a sufficient, but not necessary, condition for when $\operatorname{msr}(G)=\operatorname{ts}(G)-1$ [Booth et al. 2008]:
\circledast There exists a maximum induced tree T such that for u and w not on T, $\mathscr{E}(u) \cap \mathscr{E}(w) \neq \varnothing$ if and only if u and w are adjacent in G.

We now present some sufficient conditions for strict inequality.
Proposition 4.1. Let T be a maximum induced tree of a graph G. If u and w are vertices not on T such that $u w \notin \mathscr{E}(G),|\mathscr{E}(u) \cap \mathscr{E}(w)|=1$, and u and w are only adjacent to the longest path P of T that contains $\mathscr{E}(u) \cap \mathscr{E}(w)$, then $\operatorname{msr}(G)>\operatorname{ts}(G)-1$.

Proof. The vertices of T not on P belong to an OS-set S. We enlarge S by adding the vertices on P. Let $P=v_{1} v_{2} \cdots v_{i} x y v_{i+1} \cdots v_{k-1} v_{k}$, and without loss of generality assume $x w \in \mathscr{E}(G)$ and $y u \in \mathscr{E}(G)$, where $\{x y\}=\mathscr{E}(u) \cap \mathscr{E}(w)$. We add vertices $v_{k}, v_{k-1}, \ldots, v_{i+2}, v_{i+1}$ to the set S since we can find OS-neighbors $v_{k-1}, v_{k-2}, \ldots, v_{i+1}, y$, respectively. Then we add w, y, and x in that order to the set followed by v_{i}, \ldots, v_{2} since these vertices have OS-neighbors $x, u, v_{i}, \ldots, v_{1}$ respectively. The size of this enlarged OS-set is $\operatorname{ts}(G)$. Thus, $\operatorname{msr}(G) \geq \operatorname{OS}(G)>$ $\operatorname{ts}(G)-1$.

This leads us to the following result.
Corollary 4.2. Let T be a maximum induced tree of a graph G. Suppose u and w are vertices not on T such that $u w \notin \mathscr{E}(G), \mathscr{E}(u) \cap \mathscr{E}(w)$ contains only the edge $x y$ where $x w \in \mathscr{E}(G), P=v_{1} v_{2} \cdots v_{i} x y v_{i+1} \cdots v_{k-1} v_{k}$ is the longest path P of T that contains $\mathscr{E}(u) \cap \mathscr{E}(w)$, there exists a path P^{\prime} on T where $P^{\prime}=y t_{1} t_{2} \cdots t_{l}$ and $t_{l} u \in \mathscr{E}(G)$, and u and w are adjacent only to vertices of $P \cup P^{\prime}$. Then $\operatorname{msr}(G)>\operatorname{ts}(G)-1$.

Proof. The vertices of T not on P or P^{\prime} belong to an OS-set S. We enlarge S by adding the vertices of P and P^{\prime}. We add vertices $v_{k}, v_{k-1}, \ldots, v_{i+1}$ to the set S since the set of OS-neighbors is $v_{k-1}, v_{k-2}, \ldots, y$, respectively. Then we add $w, y, t_{1}, \ldots, t_{l}$ in that order since these vertices have OS-neighbors x, t_{1}, t_{2}, \ldots, t_{l}, u, respectively. Also, we add $x, v_{i}, v_{i-1}, \ldots, v_{2}$ since the set of OS-neighbors is $v_{i}, v_{i-1}, \ldots, v_{1}$, respectively. Thus, by the same argument as in Proposition 4.1, $\operatorname{msr}(G) \geq \operatorname{OS}(G)>\operatorname{ts}(G)-1$.

Proposition 4.3. Let T be a maximum induced tree of a graph G such that T is a star graph. If there exist vertices u and w not on T such that $u w \notin \mathscr{E}(G)$ and $|\mathscr{E}(u) \cap \mathscr{E}(w)|=1$, then $\operatorname{msr}(G)>\operatorname{ts}(G)-1$.

Proof. The vertices of T that are not the center of T and are not adjacent to u or w belong to an OS-set. Let the center vertex of T be x and $\mathscr{E}(u) \cap \mathscr{E}(w)=\{x y\}$. We add vertices of T which are adjacent to u and not on $\mathscr{E}(u) \cap \mathscr{E}(w)$ to the OS-set since all of these vertices have OS-neighbor x. Then we add u and y in that order since they have OS-neighbors y and w. Next, we add vertices that are adjacent
to w and not on $\mathscr{E}(u) \cap \mathscr{E}(w)$ to the OS-set since they also have OS-neighbor x. Thus, the size of OS-set is ts (G), so $\operatorname{msr}(G) \geq \operatorname{OS}(G)>\operatorname{ts}(G)-1$.

If $\mathscr{E}(u) \cap \mathscr{E}(w)=\varnothing$, we have the following result.
Proposition 4.4. Let T be a maximum induced tree of a graph G. If there are two vertices $u, w \in V(G)$ such that $u, w \notin V(T), u w \in \mathscr{E}(G)$, and $\mathscr{E}(u) \cap \mathscr{E}(w)=\varnothing$, then $\mathrm{OS}(G)>\operatorname{ts}(G)-1$. In particular, $\operatorname{msr}(G)>\mathrm{ts}(G)-1$.

Proof. Let $G^{\prime}=G[V(T) \cup\{u, w\}]$. By constructing an OS-set of size ts (G) in G^{\prime}, we will show that $\operatorname{OS}(G)>\operatorname{ts}(G)-1$. Let $v_{1}, \ldots, v_{a} \in V(T)$ be vertices of degree one in G^{\prime}. Then $\left(v_{1}, \ldots, v_{a}\right)$ forms an OS-set of G^{\prime} with each v_{i} having corresponding w_{i} such that w_{i} is the only vertex adjacent to v_{i}. Let $F=G\left[V\left(G^{\prime}\right) \backslash\left\{v_{1}, \ldots, v_{a}\right\}\right]$. If $v_{a+1}, \ldots, v_{l} \in V(T)$ such that $\operatorname{deg}_{F}\left(v_{i}\right)=1$ for all $i \in\{a+1, \ldots, l\}$, then $\left(v_{1}, \ldots, v_{a}, v_{a+1}, \ldots, v_{l}\right)$ forms an OS-set of G^{\prime} where, for all $i \in\{a+1, \ldots, l\}$, w_{i} is the unique vertex in F such that $v_{i} w_{i} \in \mathscr{E}(F)$. We can repeat this process until all vertices of degree one in $G\left[V\left(G^{\prime}\right) \backslash\left\{v_{1}, \ldots, v_{l}\right\}\right]$ have been included in an OS-set of G^{\prime}, say $S=\left(v_{1}, \ldots, v_{k}\right)$.

Let $\mathscr{\mathscr { C }}(u)=\left\{v \in V(T): v v^{\prime} \in \mathscr{E}(u)\right.$ for some $\left.v^{\prime}\right\}$ and $\mathscr{V}(w)=\{v \in V(T)$: $v v^{\prime} \in \mathscr{E}(w)$ for some $\left.v^{\prime}\right\}$. Without loss of generality, assume that $|\mathscr{V}(u)| \geq|\mathscr{V}(w)|$. Because $|\mathscr{V}(u) \cap \mathscr{V}(w)| \geq 2$ would imply $\mathscr{E}(u) \cap \mathscr{E}(w) \neq \varnothing$, there are two possibilities:
Case 1: $|\mathscr{V}(u) \cap \mathscr{V}(w)|=1$. Note that if $|\mathscr{V}(u)|=n$ and $|\mathscr{V}(w)|=m$, then $\operatorname{ts}(G)=k+n+m-1$. Suppose $v \in \mathscr{V}(u) \cap \mathscr{V}(w)$. Since $G[\mathscr{V}(u)]$ is a tree, by Proposition 2.2, $\mathscr{V}(u) \backslash\{v\}=\left(v_{k+1}, \ldots, v_{k+n-1}\right)$ forms an OS-set. Furthermore, $\left(v_{1}, \ldots, v_{k+n-1}, u\right)$ forms an OS-set since $u w \in \mathscr{E}(G)$ but $v_{i} w \notin \mathscr{E}(G)$ for all $i \in\{1, \ldots, k+n-1\}$.

Now order vertices $\left\{x_{1}, \ldots, x_{m-1}\right\}=\mathscr{V}(w) \backslash\{v\}$ such that $d_{H}\left(x_{i}, u\right) \leq d_{H}\left(x_{i+1}, u\right)$ where $H=G[V(T) \cup\{u\}]$. Since for every $i \leq m-1$ there is a $j>i$ such that $d_{H}\left(x_{i}, u\right)=d_{H}\left(x_{j}, u\right)+1$ and where $x_{j} x_{i} \in \mathscr{E}(G)$ but x_{j} is not adjacent to any other vertex in the connected component of $G\left[\left\{x_{1}, \ldots, x_{j-1}\right\}\right]$, we now have an OS-set $\left(v_{1}, \ldots, v_{k+n-1}, u, x_{1}, \ldots, x_{m-1}\right)$ of $\operatorname{size} \operatorname{ts}(G)$.

Case 2: $\mathscr{V}(u) \cap \mathscr{V}(w)=\varnothing$. Begin by ordering vertices $u_{i} \in \mathscr{V}(u)$ by $d_{J}\left(u_{i}, w\right) \geq$ $d_{J}\left(u_{i+1}, w\right)$ for $i=1, \ldots, n-1$ where $J=G[V(T) \cup\{w\}]$.

Let $H=G[V(T) \cup\{u\}]$ and define $\mathscr{V}^{\prime}(w)=V(T) \backslash(\mathscr{V}(u) \cup S)$. Let v be the unique vertex in $\mathscr{V}^{\prime}(w)$ such that $d_{H}(v, u)<d_{H}(x, u)$ for every $x \in \mathscr{V}^{\prime}(w)$ where $x \neq$ v. If $\mathscr{V}(u)=\left\{u_{1}, \ldots, u_{n}\right\}$, then, because $\left\{u_{1}, \ldots, u_{n}, v\right\}$ induces a tree on G, $\left(u_{1}, \ldots, u_{n}\right)$ forms an OS-set. Moreover, $\left(v_{1}, \ldots, v_{k}, u_{1}, \ldots, u_{n}, u\right)$ forms an OSset, as $u w \in \mathscr{E}(G)$ but $u_{i} w \notin \mathscr{E}(G)$ and $v_{j} w \notin \mathscr{E}(G)$ for any i, j.

Order the vertices in $\mathscr{V}^{\prime}(w)=\left\{x_{1}, \ldots, x_{j}, v\right\}$ such that $d_{H}\left(x_{i}, u\right) \geq d_{H}\left(x_{i+1}, u\right)$ for $i=1, \ldots, j-1$. Then $S \cup\left(u_{1}, \ldots, u_{n}, u, x_{1}, \ldots, x_{j}\right)$ is an OS-set that includes u and all vertices on the maximum induced tree except for v.

5. OS number three

In this final section, we use our work on maximum induced trees, and, in particular, the condition \circledast, to prove that $\operatorname{OS}(G)=3$ implies $\operatorname{msr}(G)=3$ for certain graphs.

Proposition 5.1. Let G be a connected graph without duplicate vertices. If \bar{G} does not contain C_{4} as a subgraph then $\operatorname{msr}(G) \leq 3$ or there exists a connected graph G^{\prime} without duplicate vertices such that
(1) G is an induced subgraph of G^{\prime},
(2) $\overline{G^{\prime}}$ does not contain C_{4} as a subgraph,
(3) $K_{1,3}$ is an induced subgraph of G^{\prime}, and
(4) G^{\prime} is not $\left(\left|G^{\prime}\right|-3\right)$-connected.

Proof. For the last claim, if G^{\prime} is $\left(\left|G^{\prime}\right|-3\right)$-connected then $\operatorname{msr}(G) \leq 3$ [van der Holst 2008; Lovász et al. 1989; 2000].

Case 1: $\alpha(G)=3$. If necessary, form G^{\prime} by adding a new vertex adjacent to all vertices of G.

Case 2: $\alpha(G)=2$. Let $\{u, v\} \subset V(G)$ induce $2 K_{1}$ in G. Form G^{\prime} by adding a new vertex adjacent to all vertices of G except for u and v. As \bar{G} does not contain K_{3} as an induced subgraph, $\overline{G^{\prime}}$ does not contain C_{4} as a subgraph.
Case 3: $\alpha(G)=1$. Then G is complete and $\operatorname{msr}(G) \leq 1$.
Suppose that G is a connected graph without duplicate vertices such that \bar{G} does not contain C_{4} as a subgraph and $\operatorname{OS}(G)=3$. From Proposition 5.1, we may assume without loss of generality that $K_{1,3}$ is an induced subgraph of G. Therefore $K_{1,3}$ is a maximum induced tree T of G.

Remark 5.2. Since \bar{G} does not contain C_{4} as a subgraph, there are at most three vertices in G not belonging to T that are pairwise disjoint.

Remark 5.3. If u and v are not on T and satisfy \circledast, then there exists a vector representation of $G[V(T) \cup\{u, v\}]$ of rank three.

Proposition 5.4. Suppose G is a connected graph without duplicate vertices such that \bar{G} does not contain C_{4} as a subgraph and $\operatorname{OS}(G)=3$. Let $T=K_{1,3}$ be a maximum induced tree of G. If u, v, and w are pairwise nonadjacent vertices not on T such that no two of them satisfy \circledast, then $H=G[V(T) \cup\{u, v, w\}]$ has minimum semidefinite rank equal to three.

Proof. If independent vertices u, v, and w are joined to all vertices of $K_{1,3}$, then $H=K_{1,3} \vee 3 K_{1}$. Thus, its complement consists of $2 K_{3}$. From this observation, since \bar{G} does not contain C_{4} as a subgraph, the complement of H has to be one of the following graphs:

Since all of these graphs are C_{m}-free for $m \geq 4$, we can use Proposition 3.1 to conclude that $\operatorname{msr}(H) \leq 3$. Since $\operatorname{OS}(H)=3$, it follows that the $\operatorname{msr}(H)=3$.

Acknowledgements

The authors would like to thank Andrew Zimmer for helpful discussions, and the referee for suggestions that improved the quality of the paper.

References

[AIM 2008] AIM Minimum Rank - Special Graphs Work Group, "Zero forcing sets and the minimum rank of graphs", Linear Algebra Appl. $428: 7$ (2008), 1628-1648. MR 2008m:05166 Zbl 1135.05035
[Barioli et al. 2009] F. Barioli, S. M. Fallat, H. T. Hall, D. Hershkowitz, L. Hogben, H. van der Holst, and B. Shader, "On the minimum rank of not necessarily symmetric matrices: a preliminary study", Electron. J. Linear Algebra 18 (2009), 126-145. MR 2010e:05176 Zbl 1169.05345
[Barioli et al. 2010] F. Barioli, W. Barrett, S. M. Fallat, H. T. Hall, L. Hogben, B. Shader, P. van den Driessche, and H. van der Holst, "Zero forcing parameters and minimum rank problems", Linear Algebra Appl. 433:2 (2010), 401-411. MR 2011g:15002 Zbl 1209.05139
[Berman et al. 2008] A. Berman, S. Friedland, L. Hogben, U. G. Rothblum, and B. Shader, "Minimum rank of matrices described by a graph or pattern over the rational, real and complex numbers", Electron. J. Combin. 15:1 (2008), Research Paper 25, 19. MR 2008k:05124
[Booth et al. 2008] M. Booth, P. Hackney, B. Harris, C. R. Johnson, M. Lay, L. H. Mitchell, S. K. Narayan, A. Pascoe, K. Steinmetz, B. D. Sutton, and W. Wang, "On the minimum rank among positive semidefinite matrices with a given graph", SIAM J. Matrix Anal. Appl. 30:2 (2008), 731-740. MR 2009g:15003 Zbl 1226.05151
[Booth et al. 2011] M. Booth, P. Hackney, B. Harris, C. R. Johnson, M. Lay, T. D. Lenker, L. H. Mitchell, S. K. Narayan, A. Pascoe, and B. D. Sutton, "On the minimum semidefinite rank of a simple graph", Linear Multilinear Algebra 59:5 (2011), 483-506. MR 2012e:15004 Zbl 1223.05170
[Burgarth et al. 2011] D. Burgarth, D. D'Alessandro, L. Hogben, S. Severini, and M. Young, "Zero forcing, linear and quantum controllability for systems evolving on networks", preprint, 2011. arXiv 1111.1475
[Chenette et al. 2007] N. L. Chenette, S. V. Droms, L. Hogben, R. Mikkelson, and O. Pryporova, "Minimum rank of a tree over an arbitrary field", Electron. J. Linear Algebra 16 (2007), 183-186. MR 2008f:05110 Zbl 1142.05335
[Erdős et al. 1986] P. Erdős, M. Saks, and V. T. Sós, "Maximum induced trees in graphs", J. Combin. Theory Ser. B 41:1 (1986), 61-79. MR 87k:05062
[Hackney et al. 2009] P. Hackney, B. Harris, M. Lay, L. H. Mitchell, S. K. Narayan, and A. Pascoe, "Linearly independent vertices and minimum semidefinite rank", Linear Algebra Appl. 431:8 (2009), 1105-1115. MR 2011a: 15016 Zbl 1188.05085
[van der Holst 2003] H. van der Holst, "Graphs whose positive semi-definite matrices have nullity at most two", Linear Algebra Appl. 375 (2003), 1-11. MR 2004g:05104 Zbl 1029.05099
[van der Holst 2008] H. van der Holst, "Three-connected graphs whose maximum nullity is at most three", Linear Algebra Appl. 429:2-3 (2008), 625-632. MR $2009 \mathrm{~g}: 05104$ Zbl 1145.05037
[Horn and Johnson 1990] R. A. Horn and C. R. Johnson, Matrix analysis, Corrected reprint of the 1985 original ed., Cambridge University Press, 1990. MR 91i:15001 Zbl 0704.15002
[IMA-ISU 2010] IMA-ISU Research Group on Minimum Rank (Institute for Mathematics and its Applications - Iowa State University), "Minimum rank of skew-symmetric matrices described by a graph", Linear Algebra Appl. 432:10 (2010), 2457-2472. MR 2011h:15001
[Johnson and Duarte 1999] C. R. Johnson and A. L. Duarte, "The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree: Invariant factors", Linear and Multilinear Algebra 46:1-2 (1999), 139-144. MR 2000e:05114 Zbl 0929.15005
[Johnson and Duarte 2006] C. R. Johnson and A. L. Duarte, "Converse to the Parter-Wiener theorem: the case of non-trees", Discrete Math. 306:23 (2006), 3125-3129. MR 2007h:05101 Zbl 1114.05061
[Lovász et al. 1989] L. Lovász, M. Saks, and A. Schrijver, "Orthogonal representations and connectivity of graphs", Linear Algebra Appl. 114/115 (1989), 439-454. MR 90k:05095 Zbl 0681.05048
[Lovász et al. 2000] L. Lovász, M. Saks, and A. Schrijver, "A correction: "Orthogonal representations and connectivity of graphs" [Linear Algebra Appl. 114/115 (1989), 439-454; MR0986889 (90k:05095)]", Linear Algebra Appl. 313:1-3 (2000), 101-105. MR 2001g:05070
[Merris 1995] R. Merris, "A survey of graph Laplacians", Linear and Multilinear Algebra 39:1-2 (1995), 19-31. MR 97c:05104 Zbl 0832.05081
[Mitchell et al. 2010] L. H. Mitchell, S. K. Narayan, and A. M. Zimmer, "Lower bounds in minimum rank problems", Linear Algebra Appl. 432:1 (2010), 430-440. MR 2010m:15004 Zbl 1220.05077
[Parsons and Pisanski 1989] T. D. Parsons and T. Pisanski, "Vector representations of graphs", Discrete Math. 78:1-2 (1989), 143-154. MR 90k:05104 Zbl 0693.05058
[West 1996] D. B. West, Introduction to graph theory, Prentice Hall, Upper Saddle River, NJ, 1996. MR 96i:05001 Zbl 0845.05001

Received: 2011-05-20	Revised: 2012-06-12 Accepted: 2012-06-13
rachel_cranfill@hmc.edu	Department of Mathematics, Harvey Mudd College, Claremont, CA 91771, United States
Imitchell2@vcu.edu	Department of Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014, United States
sivaram.narayan@cmich.edu	Department of Mathematics, Central Michigan University, Mount Pleasant, MI 48859, United States
tsutsuit@my.hiram.edu	Department of Mathematics, Hiram College, Hiram, OH 44234, United States

involve

 msp.org/involve

 msp.org/involve EDITORS

 EDITORS}

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2012 is US $\$ 105 /$ year for the electronic version, and $\$ 145 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

involve 2012 vol. 5 no. 4

Theoretical properties of the length-biased inverse Weibull distribution 379 Jing Kersey and Broderick O. Oluyede
The firefighter problem for regular infinite directed grids 393
Daniel P. Biebighauser, Lise E. Holte and Ryan M. Wagner
Induced trees, minimum semidefinite rank, and zero forcing 411
Rachel Cranfill, Lon H. Mitchell, Sivaram K. Narayan and Taiji Tsutsui
A new series for π via polynomial approximations to arctangent 421
Colleen M. Bouey, Herbert A. Medina and Erika Meza
A mathematical model of biocontrol of invasive aquatic weeds 431
John Alford, Curtis Balusek, Kristen M. Bowers and Casey Hartnett
Irreducible divisor graphs for numerical monoids 449Dale Bachman, Nicholas Baeth and Craig Edwards
An application of Google's PageRank to NFL rankings 463
Laurie Zack, Ron Lamb and Sarah Ball
Fool's solitaire on graphs 473Robert A. Beeler and Tony K. Rodriguez
Newly reducible iterates in families of quadratic polynomials 481
Katharine Chamberlin, Emma Colbert, Sharon Frechette, Patrick Hefferman, Rafe Jones and Sarah Orchard
Positive symmetric solutions of a second-order difference equation 497
Jeffrey T. Neugebauer and Charley L. Seelbach

[^0]: MSC2010: 05C50, 15A18, 15B48.
 Keywords: minimum semidefinite rank.
 Research supported in part by NSF grant 05-52594.

[^1]: ${ }^{1}$ For small rank, that is - some results are known for small nullity as well; see for example [van der Holst 2003].

